导航:首页 > 数字科学 > 数学类主干课有哪些

数学类主干课有哪些

发布时间:2022-06-14 13:24:18

① 数学与应用数学专业的主要课程有哪些

我是吉大数学专业的一名同学,学数学学到头秃的那种,接下来给大家介绍一下数学与应用数学的课程。

主干课程有数学分析、高等代数、空间解析几何、实变函数、复变函数、常微分方程、数学物理方程、泛函分析、微分几何、拓扑学、抽象代数

数学分析、高等代数、空间解析几何这三门课程是在大一上的,是最基础的三门课程,是其他课程的根基,直接点说,就是这三门学不明白,接下来的其他课程将更加学不懂。其中数学分析内容较多,也较为重要,初学可能较为困难,多用些功夫,就会渐入佳境了。下图即为我们院所用的数学分析的教材,也是我们学院老师编着的。

因为我现在是大二下学期,所以对后面的课程还不是特别了解,就不一一为大家介绍了。

最后,我想说,数学各个课程之间关联非常强,大家想学好数学,基础一定要打牢。

② 数学专业有哪些专业课程

数学专业的专业课程有:

一、数学分析

又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。

数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。

二、高等代数

初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。

发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。

三、复变函数论

复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。

复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。

四、抽象代数

抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用“群”的概念彻底解决了用根式求解代数方程的可能性问题。

他是第一个提出“群”的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。

五、近世代数

近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。

法国数学家伽罗瓦在1832年运用“群”的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出“群”的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

参考资料来源:

网络—数学分析

网络—高等代数

网络—复变函数论

网络—抽象代数

网络—近世代数

③ 数学教育专业有哪些课程

数学教育专业的课程有:高等数学、线性代数、概率统计、运筹学、数学建模、初等数论、现代教育技术、数学课程与教学论、心理学、教育学等。

1、数学是研究数量、结构、变化、空间、信息等相关概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。

2、主要培养德、智、体、美全面发展,具有良好职业道德和人文素养以及现代教育理念,掌握数学教育专业的基本理论、知识和技能,具备初步的数学教学研究能力和应用能力,从事中小学数学教育工作的教师。

数学教育专业课程设置:

1、专业代码:A070101

2、专业名称:数学教育(独立本科)

3、主考学校:华南师范大学

4、开考方式:面向社会

5、报考范围:全省及港澳地区

以上内容参考网络-数学教育

④ 大学本科数学专业的,都要学哪些科目

按专业以后的发展方向来分:

1、纯粹的数学专业主干课程:初等数论、概率论与数理统计、数学教学论、小学数学教材教法、数学分析选讲、复变函数、近世代数、高等代数选讲、数学教育学等 、数学与应用数学。

2、应用数学主要课程:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。

3、信息与计算科学专业主要课程:数学分析、高等代数、几何、概率统计、数学模型、离散数学、模糊数学、实变函数、复变函数、微分方程、物理学、信息处理、信息编码与信息安全、现代密码学教程、计算智能、计算机科学基础、数值计算方法、数据挖掘、最优化理论、运筹学、计算机组成原理、计算机网络、计算机图形学、c/c++语言、java语言、汇编语言、算法与数据结构、数据库应用技术、软件系统、操作系统等。

⑤ 数学类一级学科有哪些

我国一共有13个学科门类,数学属于理学类。2011年3月,中华人民共和国国务院学位委员会和教育部颁布修订的《学位授予和人才培养学科目录(2011年)》,规定我国分为哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学13个学科门类。

理学是指研究物质世界基本规律的科学。主要包括以下专业:数学、统计学、光学、化学、动物学、环境科学、天文学、地质学、地球化学、地理科学、大气科学、生态学、心理学、生物科学、应用心理学等学科。

(5)数学类主干课有哪些扩展阅读:

我国高等学校本科教育专业设置按“学科门类”、“学科大类(一级学科)”、“专业”(二级学科)三个层次来设置。数学属于一级学科,学科代码0701,所包含的二级学科及代码有:

1、070101基础数学

2、070102计算数学

3、070103概率论与数理统计

4、070104应用数学

5、070105运筹学与控制论

数学专业主干课程:数学分析、高等代数、高等数学、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。师范类还要学习数学教育学等。

⑥ 数学类专业都学些什么

专业课有:大概两个方向,分析和代数。
数学分析,实变函数,复变函数,常微分方程,偏微分方程,泛函分析,概率论,抽象函数
高等代数,解析几何,抽象代数,微分几何,拓扑,图论,组合论,有限群表示论,李代数
等等

⑦ 数学与应用数学专业日常开设哪些课程

我本人虽然不是数学专业的,但我有一个好哥们是数学专业的,平时常在一起玩。所以对他们专业学的内容还算比较了解。

大三、大四就进入到专业课的学习了。数学专业会有《偏微分方程》、《泛函分析》、《拓扑学》、《小波分析》、《模糊数学》等课程。我自己作为非数学类专业,到了研究生时才会学习《泛函分析》和《小波分析》,当然,是选修课。

以上就是我从我哥们处了解到的一些数学专业学习的课程内容,肯定不全面,欢迎大家补充。

⑧ 大学数学系到底学些什么课程

大学数学系主干课程包括数学分析、高等代数、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。师范类还要学习数学教育学等。

⑨ 数学专业考研考什么科目

数学专业一般有以下几个方向:(01)基础数学;(02)计算数学 ;(03)应用数学 ;(04)运筹学与控制论 。具体的考试科目看报考哪个学校。初试一般英语政治统考,然后是专业课。数学分析和高等代数是一定会考的,有的学校还有考其他科目,比如:常微分,复变,实变等。具体情况要到报考的高校官网查询。

(9)数学类主干课有哪些扩展阅读:

(一)、中华人民共和国公民。

(二)、拥护中国共产党的领导,品德良好,遵纪守法。

(三)、身体健康状况符合国家和招生单位规定的体检要求。

(四)、考生必须符合下列学历等条件之一:

1、国家承认学历的应届本科毕业生(录取当年9月1日前须取得国家承认的本科毕业证书。含普通高等学校、成人高校、普通高等学校举办的成人高等学历教育应届本科毕业生,及自学考试和网络教育届时可毕业本科生)。

2、具有国家承认的大学本科毕业学历的人员。

3、获得国家承认的高职高专毕业学历后满2年(从毕业后到录取当年9月1日,下同)或2年以上,达到与大学本科毕业生同等学力,且符合招生单位根据本单位的培养目标对考生提出的具体业务要求的人员。

4、国家承认学历的本科结业生,按本科毕业生同等学力身份报考。

5、已获硕士、博士学位的人员。

6、在校研究生报考须在报名前征得所在培养单位同意。

资料来源:网络-考研

⑩ 大学数学(师范类)主要学什么

主要专业课程

数学分析续论,高等代数、复变函数论,常微分方程,初等数论,近世代数,中学数学方法论,概率论与数理统计(三),组合数学,线性规划,微分几何,应用统计方法等。

毕业生应获得以下几方面的知识和能力:

1、具有良好的、稳定的思想品德、社会公德、职业道德,能为人师表。

2、有扎实的数学基础,初步地掌握数学科学的基础理论和基本思想方法。

3、有良好的使用计算机的能力。

4、具有良好的教师职业素养和从事数学教学的基本能力,熟悉教育法规,掌握并初步运用教育学、心理学基本理论以及数学教学理论,有较强的语言表达能力和班级管理能力。

5、掌握强身健体的科学方法,养成良好的体育锻炼和卫生习惯,达到国家规定的关于大学生身体素质、心理素质和审美能力的要求。

(10)数学类主干课有哪些扩展阅读

就业方向

1、IT业职员

数学专业属于基础专业,是其他相关专业的“母专业”。该专业的毕业生如欲“转行”进入科研数据分析、软件开发、三维动画制作等职业,具备先天的优势。

2、商务人员

金融数学家已经是华尔街最抢手的人才之一。最简单的例子是,保险公司中地位和收入最高的,可能就是总精算师。在美国,芝加哥大学、加州伯克利大学、斯坦福大学、卡内基·梅隆大学和纽约大学等着名学府,都已经设立了金融数学相关的学位或专业证书教育。

尽管如此,在美国很吃香的保险精算师,很多都是数学专业出身。除了保险精算师以外,由于经济学也引入了数学建模,因此懂经济原理的数学人才也被用人单位广泛接纳,还有国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识。

3、教师类职业

全国37个大中城市人才市场的统计分析表明,数学教师十分抢手。拓宽师资渠道,面向社会招聘教师,已成为教育人事制度改革的重要举措。这无疑为报考综合院校数学专业毕业生就业提供了很大的发展空间。

阅读全文

与数学类主干课有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1422
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071