① 七年级上册数学第三单元归纳知识点
复习提纲(一)
★扇形统计图:
1. 扇形统计图的意义:用整个圆表示总数,用圆内各个扇形的大小表示各部分占总数的百分数。
2. 扇形统计图的特点:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系。
3. 从统计图中获取信息:综合观察,联系实际解读出统计图反映的情况,并能做简单的分析、判断。
4. 结合统计图解决问题:根据统计图中提供的数据和题中已知条件,应用百分数的知识,解决题中的问题和实际生活中的问题。
★数学广角
1. 鸡兔同笼问题的特点:题中有两个或两个以上未知单量,要求根据两个或两个以上未知量的总数量,求出两个单量或两个以上的单量。
2. 鸡兔同笼问题的解题方法:(1)猜测法(2)假设法:先做出某种假设,根据设想进行推算,如果推出的结果与题意矛盾,再做适当调整,找出正确答案。(3)方程解法:设其中一个量为X,根据等量关系式列出方程。
★位置
1. 列、行的意义:竖排称为列, 横排称为行。
2. 数对的表示:(列、行)
★圆
一、圆的认识
1、 半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示。
直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
2、 圆规画圆的方法:
先把圆规的两脚分开,用直尺定好两脚之间的距离(定半径r)。
再把有针尖的一脚固定在一点上(定圆心O)。
再有铅笔的一脚旋转一周。
3、 圆的特点:
1)圆有无数条直径,也有无数条半径。
2) 同圆或等圆内,所有的直径都相等,所有的半径也都相等。
3) 同圆或等圆内,直径是半径的2倍,半径是直径的一半,即:d=2r r=d/2
4) 圆有无数条对称轴,每一条直径所在的直线,都是它的对称轴。
5) 圆的位置由圆心决定,大小由半径/直径决定。
6)两端都在圆上的线段中,直径最长。
二、圆的周长(化曲为直的推导过程)
1、圆周率(π):任意一个圆的周长和它的直径的比值都是一个固定的数,这个比就叫圆周率。
1)圆周率(π)
2)π是无限不循环小数
2、三组公式
d=2r
d=c/π
r=d/2
r=c/2π
c=πd
c=2πr
三、圆的面积(化圆为方的推导过程要了解,书上的例题要看看。)
S=π×r的平方
S环形=π×R的平方—π×r的平方
★百分数
一、百分数的意义
表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分比和百分率。
二、百分数与分数、小数的互化
1.小数变百分数:将小数的小数点向右移动2位(分子×100)。同时在后面加上“%”(分母×100)。
百分数变小数:去“%”,同时小数点左移2位
2、分数变百分数:
方法一:先把分数转化成小数(即分子除以分母),再把小数转化成百分数。除不尽时,保留三位小数。
方法二:分母是100的因数(如5,10,20,25,50)时,直接把分数转化成分母是100的分数,再写成百分数。
百分数变分数:先写成分母是100的分数,再化简。
3. 百分数和分数的不同
分数既可以表示两个数之间的关系,也可以表示一个具体的数,而百分数只能表示两个数之间的关系。
四、常用的的求“率”的公式:
(课堂上已经做了笔记要求记熟,并会举一反三说出相应的数量关系式。如:合格率=合格的人数÷总人数×100% 合格的人数=总人数×合格率
总人数=合格的人数÷合格率)
数学复习提纲(二)
★百分数(补充添加)
1.求一个数比另一个数多或少百分之几的问题:
(1)甲比乙多百分之几的问题解题规律:
(甲—乙)÷乙=百分之几 或 甲÷乙—1=百分之几
(2)求乙比甲少百分之几的问题的解题规律:
(甲—乙)÷甲=百分之几 或 1—乙÷甲=百分之几
2. (1)求一个数的百分之几是多少的应用题的规律:
一个数(单位“1” )×百分率=部分量
(2)已知一个数的百分之几是多少,求这个数的应用题的解题规律:
部分量÷百分率=一个数(单位“1”)
这里的部分量与百分率要相对应。
3. 折扣:商品按原定价格的百分之几出售,叫折扣。
4. 纳税:
(1)应纳税额:就是缴纳的税款。
(2)税率:应纳税额与各种收入的比率叫税率。
(3)应纳税额=总收入×税率
5. 利率
三个概念:本金、利息、利率
利息=本金×利率×时间
★分数乘法
1、 分数乘整数的意义与计算法则:分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算;分数乘整数用分数的分子和整数相乘的积作分子,分母不变。
2、 一个数乘分数的意义与计算法则:一个数与分数相乘,可以看作是求这个数的 几分之几是多少。一个数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3、 分数乘加、乘减混合运算的运算顺序和整数的运算顺序相同。
4、 整数乘法的运算定律(乘法交换律、结合律、分配律)对分数乘法同样适用。运用乘法的运算定律可以使一些计算简便。
5、 求一个数的几分之几是多少的问题的解题规律:
一个数(单位“1”)×几分之几=部分量(与几分之几相对应的量)。
6、 倒数的意义:乘积是1的 两个数互为倒数。
7、 求一个数(0除外)的倒数的方法:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
★分数除法
1、 分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、 分数除法的计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(1) 分数除以整数(0除外)、等于分数乘这个整数的倒数。
(2) 一个数除以分数,等于这个数乘以分数的倒数。
3、 已知一个数的几分之几是多少,求这个数的问题的解题规律:
部分量÷几分之几=一个数(单位“1”)
(这里的部分量与几分之几要相对应。)
4、 比的意义:两个数相除又叫做两个数的比。
5、 比、分数、除法三者之间的关系:
(1)内在联系:a:b=a÷b=a/b(b≠0)
(2)区别:
①意义不同:比是表示两个数(或量)的一种关系,除法是一种运算,分数是一个数;
②读法不同;
③表示方法不同;
④结果表示不同。
6、 比的基本性质:比的前项和后项同时乘或者同时除以相同的数(0除外),比值不变。
7、 化简比的意义:把两个数的比化成最简单的整数比。应用比的基本性质可以把比化成最简单的整数比。
8、 按比例分配应用题的解题规律:
(1) 按比例分配解法,先求出份数,再求各部分量占总数的几分之几,最后用总数(单位i“1”)乘各部分量占总数的几分之几求出各部分量。
(2) 归一解法,先求出每份是多少,再用每份数乘各部分量所占的份数,求出各部分量。
② 七年级上册数学第三章测试题及答案
第三章《 一元一次方程》检测题
一 、选择题(每小题3分,共24分)
1、下列四个式子中,是一元一次方程的是( )
A、2x-6 B、x-1=0 C、2x+y=5 D、
2、下列方程中,解为x=4的方程是( )
A. B. C. D.
3、解方程3x-2=3-2x时,正确且合理的移项是( )
A、-2+3x=-2x+3 B、-2+2x=3-3x
C、3x-2x=3-2 D、 3x+2x=3+2
4.已知x=-3是方程k(x+4)-2k-x=5的解,则k的值是()
A.-2B.2 C.3 D.5
5. 如果 与 是同类项,则 是( )
A.2 B.1 C. D.0
6. 某试卷由26道题组成,答对一题得8分,答错一题倒扣5分。今有一考生虽然做了全部的26道题,但所得总分为零,他做对的题有( ).
A、10道 B、15道 C、20道 D、8道
7. 甲、乙两工程队开挖一条水渠各需10天、15天,两队合作2天后,甲有其他任务,剩下的工作由乙队单独做,还需多少天能完成任务?设还需x天,可得方程 ( )
8.某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩( ).
A.不赚不赔 B. 赚9元 C.亏18元 D. 赚18元
二.填空题(每小题3分,共24分)
9.若 是关于 的一元一次方程,则 的值可为______.
10.当 =______ 时,式子 的值是-3.
11.关于x的两个方程5x-3=4x与ax-12=0的解相同,则a=_______.
12.某商店将彩电按成本价提高5 0%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是___________.
13.当 ______时, 的值等于- 的倒数.
14.如果代数式 与 的值互为相反数,则 =
15.如果方程 的解是 ,则 的值是_____________。
16. 某幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个;问有多少个苹果?设有x个苹果,则可列方程为 .
三.解下列方程.(每题4分,共16分)
① ②
③ ④3x-1.50.2 +8x=0.2x-0.10.09 +4
四、解答题。(共36分)
1、(6分)2010年广州亚运会,中国运动员获得金、银、铜牌共413枚,金牌数位列亚洲第一。其中金牌、银牌、铜牌的比为4:2:1,问得金牌多少枚?
2、(6分)一艘船从甲码头到乙码头顺流行驶用2.4小时,从乙码头返回甲码头逆流行驶,用了3.2小时,已知水流的速度为3千米/小时,求船在静水中的速度?
3、(7分)雅丽服装厂童装车间有40名工人,缝制一种儿童套装(一件上衣和两条裤子配成一套)。已知1名工人一天可缝制童装上衣3件或裤子4件,问怎样分配工人才能使缝制出来的上衣和裤子恰好配套?
4、(7分)某自来水公司按如下规定收取水费:每月用水不超过10吨,按每吨1.5元收费;每月用水超过10吨,超过部分按每吨2元收费。小明家9月份的水费是22.8元,小明家9月份用水多少?
5、(10分)周末小明爸爸去陶瓷商城购买一些茶壶和茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同:茶壶每把定价30元,茶杯每只定价5元,且两家都有优惠:甲店买一把茶壶赠送茶杯一只;乙店全场9折优惠。
小明爸爸需茶壶5把,茶杯若干只(不少于5只)。
(1)设购买茶杯x只,若在甲店购买则需付 多少元?若在乙店购买则需付元?(用含x的代数式表示并化简。)
(2)当购买15只茶杯时,请你去办这件事,你打算去哪家商店购买?为什么?
(3)当购买茶杯多少只时,两种优惠办法付款一样?
文章
③ 七年级数学上学期期末考试测试题(3)答案
11。-8°
12。x=5
-5
13。8.794×10
14.。3
15。69.89
16。5/-3
④ 新人教版七年级上数学第一单元测试卷及答案
七年级上学期数学第一章测试题
(满分100分,时间45分钟)
一、认真选一选(每题5分,共30分)
1.下列说法正确的是( )
A.有最小的正数 B.有最小的自然数
C.有最大的有理数 D.无最大的负整数
2.下列说法正确的是( )
A.倒数等于它本身的数只有1 B.平方等于它本身的数只有1
C.立方等于它本身的数只有1 D.正数的绝对值是它本身
3.如图 , 那么下列结论正确的是( )
A.a比b大 B.b比a大
C.a、b一样大 D.a、b的大小无法确定
4.两个有理数相除,其商是负数,则这两个有理数( )
A.都是负数 B.都是正数 C.一正数一负数 D.有一个是零
5.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交水稻平均亩产820千克.某地今年计划栽插这种超级杂交水稻3 000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是( )
A.2.5×106千克 B.2.5×105千克
C.2.46×106千克 D.2.46×105千克
6.若|2a|=-2a,则a一定是( )
A.正数 B.负数 C.正数或零 D.负数或零
二、认真填一填(每空2分,共30分)
7. -23 的相反数是 ;倒数是 ;绝对值是 .
8.计算:19972×0= ; 48÷(-6) = ;
-12 ×(-13 ) = ; -1.25÷(-14 ) = .
9.计算:(-2)3= ;(-1)10= ;--32= .
10.在近似数6.48中,精确到 位,有 个有效数字.
11.绝对值大于1而小于4的整数有 个;冬季的某日,上海最低气温是3oC,北京最低气温是-5 oC,这一天上海的最低气温比北京的最低气温高 oC.
12.如果x<0,y>0且x2=4,y2 =9,那么x+y=
三、计算下列各题(每小题6分,共24分)
13.(-5)×6+(-125) ÷(-5) 14.312 +(-12 )-(-13 )+223
15. (23 -14 -38 +524 )×48 16. -18÷(-3)2+5×(-12 )3-(-15) ÷5
四、应用题(每题8分,共16分)
17.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)这10名同学中最高分是多少?最低分是多少?
(2)10名同学中,低于80分的所占的百分比是多少?
(3)10名同学的平均成绩是多少?
18.一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为160单位.
星期 一 二 三 四 五
收缩压的变化(与前一天相比较) +30 -20 +17 +18 -20
问:(1)本周哪一天血压最高?哪一天最低?
(2)与上周日相比,病人周五的血压是上升了还是下降了?
七年级上学期数学第一章测试题
一、 1. B 2. D 3. B 4. C 5. C 6. D
二、 7. 23 ;-32 ; 23 . 8. 0;-8 ; 16 ; 5.
9. -8 ;1 ; -9 . 10.百分, 三. 11. 四; 8 12. 1
三、13.5 14.6 15.1 16.38
四、17.(1)最高分是:80+12=92(分)最低分是:80-10=70(分) (2)510 ×100%=50%
(3)[80×10+(8-3+12-7-10-3-8+1+0+10)]÷10=80(分)
18.(1)周一最高,周二和周五最低(2)周五的血压为:160-20=140是下降了
⑤ 七年级(上)数学单元学习评价试题(三) 第三章 一元一次方程(请写出过程及解释!3Q!答得好加分!)
一、选择题
1、甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x,可列方程( A没什么过程可说就是根据题意“甲班人数是乙班的2倍”列方程 )。
A、54+x=2(48-x) B、48+x=2(54-x) C、54-x=2×48 D、48+x=2×54
2、某文化商场同时卖出两台电子琴,每台均卖960元。以成本计算,第一台盈利20%,另一台亏本20%,则本次出售中,商场(D,第一台原价960÷(1+20%)=800元;第二台原价960÷(1-20%)=1200元,1200+800-960×2=80元
要列方程就在求原价上(1+20%)x=960和(1-20%)Y=960 )。
A、不赚不赔 B、赚160元 C、赚80元 D、赔80元
3、一个两位数,个位数字与十位数字的和是9。如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为(D,设十位上的数字是X, 10X+(9-X)=10(9-X)+X-9 )。
A、54 B、27 C、72 D、45
4、的绝对值若a,b相等(a≠0),则一元一次方程ax+b=0的解是(C,若a,b相等(a≠0),有2种可能a=b时。方程的解是-1,或a=-b方程的解是1 )。
A、1 B、-1 C、-1或1 D、任意有理数
二、填空题
1、某同学在解方程5x-1=◎x+3时,把◎处的数字看错了,解得x=
,该同学把◎看成了__8__(把x=-4/3代入方程,解得)。
2、某商品标价1375元,打八折(按标价的80%)售出,任可获利10%,则该商品的造价是_____元。
1375×80%÷(1+10%)=1000
3、有一个密码系统,其原理为:输入x→x+6→输出,当输出为10时,则输入的x=__4___。
解X+6=10 得
4、已知(2a+2)²+|3b-6|=0,则(3a)的b次方-ab的值是__11___。
根据(2a+2)²+|3b-6|=0可得:2a+2=0即a=-1,3b-6=0即b=2
(3a)的b次方-ab=(-3)²-(-1)×2=11
5、足球比赛的积分规则是:胜一场得3分,平一场得1分,负一场得0分。一个队进行了14场比赛,其中负6场,共得18分,那么这个队胜了__5__场。
设胜x场3x+(14-x-6)=18 x=5⑥ 初一数学上册各个单元的概念各是什么
1常见的几何体有:长方体、正方体、圆柱体、圆锥体、棱柱和球体。
2、几何体的分类标准不唯一:一种是按柱、锥、球分类。长方体、正方体、圆柱体、棱柱是柱体;圆锥、棱锥是锥体;球是球体。一种是按组成几何体的表面是平面还是曲面来分。长方体、正方体、棱柱、棱锥是一类,组成它们的面都是平面;圆柱、圆锥、球是一类,组成它们的面中有曲面。
3、棱柱和圆柱的相同点和不同点:相同点是圆柱和棱柱都有两个底面。不同点是:(1)圆柱的底面是圆形,棱柱的底面是多边形。(2)圆柱的侧面是一个曲面,棱柱的侧面是四边形。
4、图形的构成元素及其关系:图形的构成元素有点、线、面,面有平面,也有曲面;线有直线,也有曲线。它们之间的关系是:点动成线,线动成面,面动成体。面与面相交得到线,线与线相交得到点。 5、多面体的顶点、棱数和面数之间的关系式:顶点数+面数—棱数=2
6、棱柱的有关概念:任何相邻的两个面的交线都叫做棱,其中相邻两个侧面的交线叫做侧棱。
7、棱柱的三个特征:一是棱柱的所有侧棱长都相等;二是上下底面是相同的图形,都是多边形;三是侧面都是长方形。
8、棱柱的分类:根据底面多边形的边数将棱柱分为三棱柱、四棱柱、五棱柱„„
9、棱柱中各项的关系:底面是N边形的棱柱,有2N个顶点,3N条棱,其中有N条侧棱,有(N+2)个面,N个侧面。
10、棱柱的展开图是由两个相同的多边形和一些长方形组成的。正方体展开图需要剪开7条棱,相连5条棱。正方体的展开图有11种。
11、关于截一个几何体:用平面去截一个几何体,截面形状通常为三角形、正方形、长方形、梯形、圆、椭圆等,截面的形状既与被截的几何体有关,还与截面的角度和方向有关。N面体的截面图形最多是(N+2)个边的图形。 12、从不同方向看物体,可能看到不同的图形,所能看到的图形是正面对的平面图形。
13、三视图指:主视图(从正面看到的图形)左视图(从左面看到的图形)和俯视图(从上面看到的图形)。 14、主视图反映了物体的长和高,俯视图反映了物体的长和宽,左视图反映了物体的宽和高。由此可根据三视图想象出视图反映的立体图形。主视图和俯视图的长度相等;主视图和左视图的高度相等;俯视图和左视图的宽度相等。 15、生活中的平面图形:1)多边形:一些不在同一直线上的线段依次首尾相连组成的封闭平面图形叫做多边形。根据组成多边形的线段的条数将其分为三角形、四边形、五边形、六边形„„ 2)圆:一条线段绕着它的一个端点旋转一周形成的图形是圆。
16、每个多边形都可以分成若干个三角形:一个N边形从一个顶点出发有(N-3)条对角线,可以分割成(N-2)个三角形。从多边形的一条边上的一点,分别连接这个点与所能顶点,可以把多边形分割成(N-1)个三角形,可以有(N-2)条对角线。
17、弧:圆上两点之间的部分叫做弧。
18、扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章 有理数及其运算
1、正数:像3,1。2,325等比0大的数叫做正数。
2、负数:像-1,-278,-2。3等在正数前面加上“-”号的数叫做负数,负数比0小。 3、0既不是正数也不是负数,0是-正数和负数的分界。
4、有理数:整数与分数统称为有理数。整数包括正整数、零、负整数。分数包括正分数和负分数。
5、有理数的分类:1)按符号分:正有理数(包括正整数、正分数)、零、负有理数(包括负整数、负分数)。2)按定义分:1)整数(正整数、负整数、零)和分数(正分数和负分数)。
6、在研究问题时,通常把有理数分为正有理数、0、负有理数三类进行讨论。通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0统称为非负整数(也叫自然数),负整数和0统称为非正整数。
7、正数和负数表示具有相反意义的量,若正数表示某种意义的量,负数就表示其相反意义的量。但必须有“基准”,可根据需要来确定。
8、容易进入的误区:并不是所有带有“-”号的数就是负数,带有“+”号的数就是正数。如:-A不一定表示负数,当A=-1时,-A是正数;当A=0时,它既不是正数也不是负数。 9、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴。
10、数轴的画法:1)画一条水平直线。2)在直线上先取一点为原点,并用这点表示零(在原点下边标上“0”)。3)确定正方向(一般规定向右为正),用箭头表示出来。4)选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3,4„;从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3„ 11、数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点表示;但反过来,不能说数轴上所有的点都表示有理数。
12、相反数的几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。 13、相反数的代数定义:只有符号不同的两个数,我们说其中一个数是另一个数的相反数,也称这两个数互为相反数。0的相反数是0。
14、相反数的表示方法:一般地,数A的相反数-A,这里A表示任意的一个数,可以是正数、负数、或者是0,A还可以代表任意一个代数式。
15、多重符号的化简:多重符号的化简,只考虑数中的负号的个数,而不必考虑有几个正号。
16、利用数轴比较有理数的大小:在数轴上,右边的数总比左边的数大。正数都大于0,负数都小于0,正数大于一切向数。
17、比较两个数的大小里,当这两个数不能确定是何数时,一般要按正数、负数、0来分类讨论。
18、绝对值的几何定义:一个数A的绝对值就是数轴上表示数A的点与原点的距离,数A的绝对值记作/A/。 19、绝对值的代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。绝对值的重要性质是非负性。
20、有理数的比较大小的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数比较大小,绝对值大的反而小。
21、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,绝对值相等时和
为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。(3)一个数同0相加,仍得这个数。
22、实际计算中的灵活应用:1)把互为相反数的数相加;2)符号相同的数相加;3)几个数相加能得整数的数相加;4)分母相同的数相加。
23、有理数减法的意义:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。 24、有理数的减法法则:减去一个数等于加上这个数的相反数。即A-B=A+(-B)
25、有理数的加减混合运算的方法和步骤:一是运用减法法则把混合运算中的所有减法转化为加法;二是运用加法法则和加法交换律和结合律进行简便运算。
26、有理数的乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘,积仍为0。
27、重点记忆:几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正。然后把绝对值相乘。几个数相乘,有一个因数是0,积为0。反之,如果积为0,那么至少有一个因数为0。
28、乘法交换律、乘法结合律、乘法交换律同样在有理数的乘法中应用。
29、有理数的除法法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何非0的数都得0。 30、重点记忆:0没有倒数。负数的倒数为其绝对值倒数的相反数。正数的倒数为正数。负数的倒数为负数。若两个数互为倒数,则这两个数的积为1。
31、有理数的除法法则二:除以一个不等于0的数等于乘上这个数的倒数。
32、乘方:一般地,求N个相同因数A积的运算叫做乘方。其中乘方的结果叫做幂,A叫做底数,N叫做指数。 33、乘方需注意的三个问题:1)一个数可以看做是它本身的1次方,指数1通常省略不写。2)当底数是负数或分数时,必须用括号将底数括起来。3)负数的乘方与乘方的相反数不同。
34、乘方运算的符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂是负数,负数的偶次幂是正数。3)0的正数次幂都是0。1的任何次幂都是1,-1的奇次幂是-1,-1的偶次幂是1。
35、有理数混合运算的运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号里面的。 36、有理数混合运算注意的问题:1)有理数的运算,加减法叫一级运算,乘除法叫做第二级运算,乘方和开方(以后学)叫做第三级运算,一个式子中如果含有几级运算时,先做第三级运算,再做第二级运算,最后做第一级运算。同一级运算按照从左到右的先后顺序进行运算;有括号时,按照小括号、中括号、大括号(或相反)的顺序进行运算。2)题中有带分数和小数的要先化成假分数和分数再计算,减法要先变成加法再运算,除法要先变成乘法再运算。
37、利用绝对值和平方结果的非负性求字母的值的应用。
38计算器的分类:按照功能,计算器可分为简单计算器、科学计算器、图形计算器等几种类型。
39计算器的构成:计算器面板由键盘和显示器组成。在计算器键盘上,ON键是开机键,每次运算前,要按一下以清零;DEL键是删除键,当发现输入数据有误时可按此键清除;停止使用时,要先按SHIFT键,再按AC键,关闭电源。
第三章 字母表示数
1、用字母表示数的优点:用字母表示数解决了特殊与一般的关系,用字母表示数更具有一般性和简明性。 2、在同一问题中,同一字母只能表示同一种数量,不同的数量要用不同的字母表示,表达式可以有多种表示形式,但结果是相同的。
3、用字母表示运算律和公式和用字母表示数量关系的应用。要熟练掌握各公式和运算定律,要分析题意具体问题具体解决。
4、牢记的规律式:用若干点围成正方形,总点数与边上点数的关系式为:S(总点数)=(4N(边上的点数)-4);用若干点数围成三角形,每条边N与总点数S之间的关系式为:S=(3N-3);用火柴搭正方形,利用已有边逐渐增加正方形的个数时所需火柴数A与正方形的个数B之间的关系式为:A=(3B+1);
5、代数式:像4+3(χ-1),χ+χ+(χ-1),5χ,MN,A2
等式子都是代数式,像这样,用运算符号把数和表示数的字母连接而成的式子,叫做代数式。注意的问题:1)单独的一个数或字母也是代数式;2)只要不含有等号或不等号的式子而有运算符号的式子就是代数式。
6、代数式的书写格式:1)字母与字母或数字与字母相乘时乘号通常省略不写,且数字要写在字母的前面;2)带分数与字母相乘时,应先把带分数化成假分数后与字母相乘;3)代数式中的除法运算,一般按照分数的写法来写,被除数作分子,除数作分母,除号转化成分数线;4)在实际问题中,如果代数式有单位名称的,如果代数式是积或商的形式,就将单位名称写在式子的后面即可。如果代数式是和或差的形式,则必须把代数式用括号括起来,再将单位名称写在式子的后面。
7、列代数式:是指把问题中用文字语言叙述的数量关系,用含有字母和运算符号的式子表示出来,叫做列代数式。 8、列代数式的注意事项:1)认真审题,将问题中表示数量间关系的词,正确地转换为对应的运算。如:和、差、积、商、平方、倒数、大、小、多、少、增加、增加到、扩大、缩小、倍、几分之几、比、除、除以等,都是表示数量关系的常用词。2)注意语言叙述所表示的运算顺序,一般先读先写。3)在复杂的问题中,弄清数量关系的运算顺序,正确使用表明运算程序的括号,分出层次,逐步列出代数式。4)注意区分“平方和”与“和的平方”及“立方和”与“和的立方”还有“除”和“除以”的差异。
9、代数式的实际意义:就是将代数式中的字母及运算符号赋予具体的含义,要注意实际问题中的数量关系必须与代数式所表示的相吻合。
10、各类实际问题的关系式:1)设一个三位数的个位数字为χ,十位数字为у,百位数字Z,则这个三位数可表示为:100Z+10у+χ。2)两个两位数相乘,且两个数的十位上的数字相同,若个位上的数字之和为10,则有(10A+B)(10A+C)=100A(A+1)+BC。
11、代数式求值:用数值代替代数式里的字母,按照代数式指明的运算,计算出结果的过程,叫做代数式求值。 12、代数式的值:一般不是某一个固定的量,它是随着代数式中字母的取值的变化而变化的,另外,求代数式的值时,一定要按照代数式指明的运算进行。
13、代数式求值的方法:1)用数值代替代数式里的字母,简称为“代入”。2)按照代数式指明的运算,计算出结果,简称为“计算”。
14、绝对值、倒数、相反数、平方及绝对值的非负性及代换求值法在代数式求值中的应用。 15、代数式的项:代数式中每个运算符号分隔开的各部分叫做代数式的项。
16、代数式的项的系数:每一项字母前的数字因数叫做这一项的系数。系数包括它前面的符号。如果代数式中的某一项只含有字母因数,它的系数是1或-1。 17、常数项:代数式中不含有字母的项叫做常数项。
18、同类项:含有相同字母,并且相同字母的指数也相同的项,叫做同类项。
19、判断同类项的注意事项:1)判断几个项是否是同类项有两个条件:一是所含字母相同;二是相同字母的指数分别相同,这两个条件必须同时具备,缺一不可。2)同类项与系数无关,与字母的排列顺序无关。3)特别注意:几个常数项也是同类项。
20、合并同类项:把同类项合并成一项就叫做合并同类项。合并同类项时,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
21、合并同类项的步骤:1)准确地找出同类项;2)利用法则,把同类项的系数加在一起,字母和字母的指数不变;3)利用有理数的加法计算出各项系数的和,写出合并后的结果。4)合并同类项的结果要按某一字母的降幂或升幂排列。
22、去括号的意义:在代数式的运算中员有括号时,往往要先去掉括号,才能使运算得以顺利进行。
23、去括号的法则:1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。2)括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。24、比较两数(或整式)的大小时,可以采用作差与0比较大小,当差大于0时,被减数较大;当差小于0时,被减数比较小。 25、去括号的顺序:由内向外逐层去括号;由外向内逐层去括号;内外同时去括号。 26、探索规律所用到的数学方法有:分类讨论法;转化法;归纳法。
第四章 平面图形及其位置关系
1、线段:线段有两个端点。长度是可以度量的。
2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。长度不可以度量。 3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点,长度不可以度量。
4、线段的表示方法:(1)用线段上的两个端点字母表示一条线段。(2)用一个小写字母表示一条线段。 5、射线的表示方法:(1)以表示端点的字母和射线上点的字母表示一条射线。端点字母一定要写在前面。 6、直线的表示方法:(1)在直线上任取两点,用表示两点的大写字母表示这条直线。(2)用一个小写字母表示直线。
7、线段、射线、直线的联系与区别:联系是:线段、射线、直线都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,由此可知:射线、线段都是直线的一部分,线段是射线的一部分。这是三者的联系。区别是:直线可以向两方无限延伸,射线可以向一方无限延伸,线段本身不能延伸。直线没有端点,射线有一个端点,线段有两个端点。
8、直线的基本性质:经过两点有且只有一条直线(也可说成两点确定一条直线),这也是直线公理。
9、线段的性质(公理):两点之间的所有连线中,线段最短,可简称为两点之间,线段最短。
10、两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。距离是指线段的长度,是一个值,而不是指线段本身。
11、比较两条线段的长度:(1)叠合法:把它们放在同一条直线上比较。(2)度量法:用刻度尺量出线段的长度,再进行比较。
12、线段的中点:点M把线段AB分成相等的两条线段AM与BM,点M叫做线做AB的中点。线段的中点分线段所成的两条线段相等,等于原线段长的一半。原线段是所分成的两条线段的2倍。
13、角的定义:角是一条射线绕端点从起始位置旋转到终止位置所组成的图形。还或以说角是由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线叫做角的边。构成角的两个基本元素:一是角的顶点,二是角的边。
14、角的表示方法:(1)用三个大写字母表示。角的顶点的字母写在中间。角的边上的点的字母写在两边,可以交换位置。(2)用一个大写英文字母表示,用这种表示方法的前提是以一个点作顶点的角只有一个时,否则不能和这种方法表示。(3)用数字表示。(4)用小写希腊字母表示。
15、角的度量:度量角用量角器。要注意:(1)对中(顶点对中心)。(2)重合(一边与刻度尺上的零刻度线重合)。(3)读数(读出另一边所在线的读数)。
第五章 一元一次方程
1、方程:含有未知数的等式叫做方程。
2、方程必须满足的两个条件:一是等式,二是含有未知数,二者缺一不可。
3、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。一元一次方程的解也叫根。
4、一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1次,这样的方程叫做一元一次方程。 5、一元一次方程必须满足的三个条件:一是只有一个未知数,二是未知数的次数是1次,三是整式方程,缺一不可。
6、解应用题时列方程的一般步骤:1)设未知数,简单问题中一般求什么就设什么为×(设其它量也可以)。2)分析已知量和未知量的关系,找出等量关系。3)把等量关系的左、右两边的量用含有х的代数式表示出来。 7、等式的基本性质1:等式两边同时加上(或减去)同个代数式,所得的结果仍是等式。
8、等式的基本性质2:等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。
9、运用等式基本性质的注意事项:1)运用性质1时一定要注意等式两边同时加(或减去)同一个数或同一个等式,特别注意“同时”和“同一个”。2)运用性质2时除了要注意等式两边同时乘(或除以)同一个数,还必须注意等式两边不能都除以0,因为0不能做除数。
10、利用等式比较两个未知数的大小:可采用作差比较法,若A-B〉0,则A 〉B;若A-B〈0,则A 〈B;若A-B=0,则A =B。同时注意,利用等式性质1,两边同时减去一个代数式时,要注意将这个代数式用括号括起来。 11、移项法则:方程中的任何一项,都可以在改变符号后,从方程的一边移到另一边,这种变形叫移项,这个法则叫移项法则。
12、重点说明:1)移项的依据是:等式的基本性质1;2)移项必须是将方程中的某项从方程的一边移到另一边,而不是方程左边或右边的某些项交换位置;3)移项时要变号,不变号不能移项。
13、解一元一次方程的一般步骤:基本思路是通过对方程变形,把含有未知数的项归到方程的一边,把常数项归到方程的另一边,最终把方程“转化”成х=A的形式。步骤:1)去分母:在方程两边都乘各分母的最小公倍数(利用等式基本性质2);2)去括号:先去小括号,再去中括号,最后去大括号(利用分配律);3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(利用等式的基本性质1);4)合并同类项:把方程化成Aх=B(A≠0)的形式(利用合并同类项法则);5)系数化成1:在方程两边都除以未知数的系数A,得到方程的解х=B/A(利用等式基本性质2)。
14、解方程中常见的错误有三种:1)移项忘变号;2)去分母时不含分母的项漏乘;3)去分母时,分子不多项式时,忘记使用括号。
15、日历中存在的数量关系:每一横列相邻两个数字之间相差1,每一竖列相邻两上数字之间相差7;左上右下方向相邻两个数字之间相差8,右上到左下方相邻的两个数字之间相差6。
16、一元一次方程解的合理性:在列方程解决实际问题时,求出解后要注意验证所求得的解是还符合实际问题的情景,若符合,就是要求的解,若不符合,则说明这个问题无解。
17、形积变化问题:此类问题常见的有以下几种情况:1)形状发生了变化,而体积没变,此时相等关系为变化前后体积相等。2)形状、面积发生了变化,而周长没变。此时,相等关系为变化前后周长相等。3)形状、体积不同,但根据题意能找出体积之间的关系,把这个关系作为相等关系。
18、与打折销售有关的概念:成本价:即进价,商店里进货时的价格。标价:在商店出售时所标明的价格。售价:商品出售时的实际价格。利润率:商品的利润与成本价的比值。
19、与打折销售有关的公式:1)利润=售价-成本价(进价);2)利润率=利润/成本价*100%;3)售价=成本价+利润=成本价×(1+利润率);售价=标价×打折数;
20、用一元一次方程解决实际问题的一般步骤:(1)审:分析题中有什么、求什么,明确各数量之间的关系;(2)找:找出能够表示应用题全部含义的一个相等关系;(3)设:设未知数,一般求什么就设什么为х;(4)列:根据这个相等关系列出需要的代数式,从而列出方程;(5)解:解所列方程,求出未知数的值;(6)检:检验所求解是否符合题意;(7)答:写出答案(包括单位名称)。
21、相等关系式:1)路长=相邻两棵树间隔的长×(棵数-1);2)顺水航行速度=静水中的速度+水速;3)逆水航行的速度=静水中速度-水速;4)顺风速度=静风速度+风速;5)逆风速度=静风速度-风速。
22、环形跑道问题:1)甲、乙两人在环形跑道上同时同向出发:快的必须多跑一圈才能追上慢的;2)甲、乙两人在环形跑道上同时同地反方向出发:两人相遇时的总路程为环形跑道一圈的长度。
23、本金:顾客存入银行的钱叫本金;利息:银行付给顾客的酬金叫利息;本息和:本金与利息的和叫做本息和;利率:每个期数内的利息与本金的比叫利率。
⑦ 人教版七年级上数学第三章 一元一次方程 单元测试卷(3.4)答案,急需,答完追加悬赏
某粮食生产专业户去年计划生产小麦和玉米18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%,该专业户去年实际生产小麦,玉米各多少吨?
⑧ 七年级上册数学课本答案
火车长度为300米。
火车经过隧道完整理解是两部分:一是车头进隧道口到车头出隧道口,二是车头出后到车尾出隧道口,这两部分加在一起才能说是火车经过隧道。
火车经过隧道需要20S,是灯光照在车上时间的2倍,说明火车经过隧道行驶路程是两个车身长。
也就是说:隧道长+火车身长=两个火车身长
所以火车身长等于隧道长就是300米。
⑨ 读读通教学研究社第三单元试卷答案七年级上册数学
还是要把基础学好了,才可以把成绩提高的,在网上是问不到答案的哈
多背书,是有好处的 多思考,才会有进步
>