导航:首页 > 数字科学 > 数学16个概念是什么意思

数学16个概念是什么意思

发布时间:2022-06-15 05:03:50

Ⅰ 16"表示什么意思

16"表示英寸,1英寸=25.4毫米,所以16"相当于1.6毫米。

英寸(吋)是使用于联合王国(UK,即英国(英联邦)及其前殖民地的长度单位,一般为1in=2.54cm,在英制里,12英寸为1英尺,36英寸为1码。

在建筑材料中,对管材的称法用英寸这个单位,为2.54cm,而不是用市寸。

在液晶显示器中,规格一般有17寸、19寸、22寸等。在手机中,屏幕尺寸现在一般有4.0寸、4.2寸、4.5寸、4.7寸、4.8寸、5.0寸、5.2寸、5.5寸、5.7寸、6.44寸等。

在平板电脑中,屏幕尺寸一般有7.9寸、9.7寸、12.9寸。显示屏的大小通常以对角线的长度来衡量,以英寸单位。

(1)数学16个概念是什么意思扩展阅读:

转换

1mil=1/1000inch=0.00254cm=0.0254mm

1inch=1000mil=2.54cm=25.4mm

在英制里,12英寸(吋)为1英尺(呎),36英寸为1码.

1英寸=25.4mm(数码感应器)

Ⅱ 什么是数学概念

众所周知,概念是思维的基本形式之一,是对一切事物进行判断和推理的基础.数学概念是构成数学知识的基础,是基础知识和基本技能教学的核心,正确地理解数学概念是掌握数学知识的前提.因此数学概念的教学是数学教学的一个重要方面,但数学概念的抽象性使得数学概念的教学相对棘手.

概念的产生都有其必然性,我们要抓住概念产生的背景,让学生了解数学概念的产生、发展、演变的原因以及在这些原因中所隐藏着数学概念间的内在联系,将数学概念在数学思想的整体连贯性中的作用体现出来.

因此,教师在讲授新的概念时,可以分析概念产生的背景.找出合适学生理解的、有趣而生动的切入点,让学生更容易理解新概念,更容易对新知识找到共鸣,才能让学生有更多的机会参与发现需要建立新概念的时机并加入到这一创造活动中去,从中感受和谐、连贯、严密、有用的数学之美.下面浅谈一下在概念教学中用到的几种方法.

一、从概念的产生背景着手,层层深入

对数这一概念就是学生在数学学习中遇到的一个非常抽象的概念,直接讲授的方式会使学生难于理解.其实我们分析一下对数产生的背景,可以发现这是数学运算发展到一定的阶段后,必然产生的一种新运算.加法发展到一定程度必然要引入减法,乘方发展到一定阶段必然要出现开方一样,对数也是为了生产生活中的计算需要而必然产生的.如果把这些概念的背景、运算方式列成表格,在对比过程中自然而然形成新的概念,使学生轻松地接受并理解它.

教师可以设置了一个这样的教学引入过程: 首先提出两个问题1、1个细胞一次分裂成两个细胞,请问1个细胞需要分裂多少次以后才能分裂成128个?2、某人原来年薪为a万元,假设他的工资以每年10%的速度增长,请问经过多少年以后他的年薪增长为原来的2倍?

这两个例题中,运用的运算都是解指数方程:1、,2、.但第一题答案是特殊值,不需要引入新运算;第二题答案则不是特殊值了,在现有的运算中,答案算不出来.如何让解决这一问题?

紧接着,教师再提出了几种具有互逆关系的运算进行对比,如:3+x=10 x=10-3、5=8 x=、 .

在接下来的教学中,我们就可以自然的将指数式化成对数式x=,引入新的运算概念.并且指出:指数式与对数式的关系(1)是等价的(2)它们只是写法不一样,读法不一样,a、b、N的名称不一样,所在位置不一样,但代表的数一样,含义一样,数的范围也是一样,只要牢牢记住指数式和对数式中的字母a、b、N交换的方式、交换的位置,就可以自由的将指数式和对数式进行互化.在这个过程中,指数对数与加减、乘除、乘方开方之间关系是相类似的,这些概念之间的对比要贯穿教学始终,以便于学生的理解.

二、从概念的生活背景出发,创设学习情境

很多数学概念是人们在长期的现实生活中对事物进行高度抽象概括的产物,有具体的素材为基础,有生动的现实原型,教师要善于结合生活实际,通过多种方式创造良好的学习情境激发学生的学习兴趣,使学生觉得这些抽象的数学概念仿佛就在自己的身边,伸手可摸.

等比数列这样的概念就是直接源于生活的概念,在讲授的过程中,现实生活中的实例随手可得,如常见的细胞分裂问题,商店打折问题,放射性物质的重量问题,银行利率,为自己家选择合适的还贷方式等等实例可以信手拈来穿插在概念的讲解、巩固的过程中.

为了让学生积极性充分发挥出来,我还设计了一个有趣的问题情境引入等比数列这一概念:

阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当他追到1里处时,乌龟前进了里,当他追到了里,乌龟前进了里;当他追到了里,乌龟又前进了里……

(1)分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;

(2)阿基里斯能否追上乌龟?

让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,积极性和主动性高涨,课堂气氛也十分活跃.

三、从概念的历史背景出发,激发兴趣

复数和虚数的概念有悠远的历史背景,是数发展到一定的阶段的必然产物.在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,在学生的有限的知识结构中也找不到虚数的生活原型,所以学生很难完全理解它.因此,在讲解这两个概念时,可以将数的发展史、虚数与复数的出现历程作简单阐述,为了表述得清晰而有趣,教师可以把这过程制作成动画短片:

从原始人分配食物开始,首先是自然数的出现,然后到分数的出现.接下来经过漫长的数的发展,人们又发现了很多不能用两整数之比写出来的数,如圆周率等.人们把它们写成π等形式,称它们为无理数.到19世纪,由于运算时经常需要开平方,如果被开方数是负数,比如,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁.这样,可以让学生融入教学中,跟着故事的结尾一起思索,然后引入新概念:数学家们就规定用符号"i "表示"-1"的平方根,即=-1,虚数就这样诞生了.实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数.种引入概念的过程新颖别致,一开始就能抓住学生的眼球,吸引他们的注意力,使课堂教学轻松有趣.

四、从概念的专业背景出发,讲求实用

许多数学概念在其他的专业领域应用也非常广泛.把数学知识和其他专业知识有机结合在一起,可以让学生充分认识到数学学习的重要性.

三角函数这一概念在很多专业领域都有重要的应用.在物理方面,简单的和谐运动,星体的环绕运动,峰谷电;在心理生理方面,情绪周期性波动、智力体力的周期性变化、一天内的血压状况;天文地理方面,气温变化规律,月缺月圆、潮涨潮汐的规律;日常生活中,车轮的变化,这一切的研究都离不开三角函数.

因此三角函数的应用课里,可以设计一些有周期性变化规律的实际问题,让学生建立简单的三角函数模型,培养学生数学建模,分析问题、数形结合、抽象概括等能力,体验数学在解决实际问题中的价值和作用,培养学生勤于思考、勇于探索的精神.

学生对新概念的学习只有在已有知识的基础上才能构建,所以教师在教学时一定要注意教材所设计的知识结构.要做到既不脱离课本,又不拘泥于课本,要有大胆的创新精神.要根据学生实际情况,设计好每一堂概念课.

Ⅲ 数学是什么意思

数学

数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。


数学分支

1:数学史

2:数理逻辑与数学基础

X轴Y轴(4张)

a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
3:数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
4:代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
5:代数几何学
6:几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科

7:拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
8:数学分析

a:微分学 b:积分学 c:级数论 d:数学分析其他学科
9:非标准分析
10:函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
11:常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
12:偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
13:动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
14:积分方程
15:泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
16:计算数学
a:插值法与逼近论b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科
17:概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
18:数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
19:应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
20:应用统计数学其他学科
21:运筹学
a:线性规划b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
22:组合数学
23:模糊数学

24:量子数学

25:应用数学 (具体应用入有关学科)

26:数学其他学科

发展历史

数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意.古希腊学者视其为哲学之起点,“学问的基础”.另外,还有个较狭隘且技术性的意义——“数学研究”.即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的.

其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.

现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).[1]

数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.

具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学).

就纵度而言,在数学各自领域上的探索亦越发深入.

图中数字为国家二级学科编号.

结构

许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示.此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统.把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗理论解决了,它涉及到域论和群论.代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法.

空间

空间的研究源自于欧式几何.三角学则结合了空间及数,且包含有非常着名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.

基础

旋转曲面(8张)

主条目:数学基础

为了弄清楚数学基础,数学逻辑和集合论等领域被发展了出来.德国数学家康托尔(1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的思想,为以后的数学发展作出了不可估量的贡献.

集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具.20世纪初,数学家希尔伯特在德国传播了康托尔的思想,把集合论称为“数学家的乐园”和“数学思想最惊人的产物”.英国哲学家罗素把康托的工作誉为“这个时代所能夸耀的最巨大的工作”

逻辑

主条目:数理逻辑

数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果.就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果.现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性.

符号

主条目:数学符号

也许我国古代的算筹是世界上最早使用的符号之一,起源于商代的占卜.

我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的.在此之前,数学是用文字书写出来,这是个会限制住数学发展的刻苦程序.现今的符号使得数学对于人们而言更便于操作,但初学者却常对此感到怯步.它被极度的压缩:少量的符号包含着大量的讯息.如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码.

严谨性

数学语言亦对初学者而言感到困难.如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思.数学术语亦包括如同胚及可积性等专有名词.但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性.数学家将此对语言及逻辑精确性的要求称为“严谨”.

严谨是数学证明中很重要且基本的一部分.数学家希望他们的定理以系统化的推理依着公理被推论下去.这是为了避免依着不可靠的直观,从而得出错误的“定理”或"证明",而这情形在历史上曾出现过许多的例子.在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨.牛顿为了解决问题所作的定义,到了十九世纪才让数学家用严谨的分析及正式的证明妥善处理.今日,数学家们则持续地在争论电脑辅助证明的严谨度.当大量的计算难以被验证时,其证明亦很难说是有效地严谨.

数量

数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的有理和无理数.

另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较.

简史

西方数学简史

数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术.第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破.除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了.

更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统.

古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究.

西欧从古希腊到16世纪经过文艺复兴时代,初等代数、以及三角学等初等数学已大体完备.但尚未出现极限的概念.

17世纪在欧洲变量概念的产生,使人们开始研究变化中的量与量的互相关系和图形间的互相变换.在经典力学的建立过程中,结合了几何精密思想的微积分的方法被发明.随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等领域也开始慢慢发展.

中国数学简史

主条目:中国数学史

数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合.

Ⅳ 什么是数学,数学的概念

数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。
-------选自<普通高中数学新课程标准>

Ⅳ 数学的概念是什么

数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。 数学属性是任何事物的可量度属性,即数学属性是事物最基本的属性。可量度属性的存在与参数无关,但其结果却取决于参数的选择。例如:时间,不管用年、月、日还是用时、分、秒来量度;空间,不管用米、微米还是用英寸、光年来量度,它们的可量度属性永远存在,但结果的准确性与这些参照系数有关。 数学是研究现实世界中数量关系和空间形式的科学。简单地说,是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。 基础数学的知识与运用总是个人与团体生活中不可或缺的一块。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。 今日,数学被使用在世界上不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家亦研究没有任何实际应用价值的纯数学,即使其应用常会在之后被发现。 创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯粹数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。 词源 数学(mathematics;希腊语:μαθηματικά)这一词在西方源自于古希腊语的μάθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭意且技术性的意义-“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意义为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式les mathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。 (拉丁文:Mathemetica)原意是数和数数的技术。 我国古代把数学叫算术,又称算学,最后才改为数学。

知道了吗???

Ⅵ 小学数学概念有哪些

小学数学知识概念公式汇总

小学一年级 九九乘法口诀表。学会基础加减乘。
小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。

必背定义、定理公式
三角形的面积=底×高÷2。 公式 S= a×h÷2

正方形的面积=边长×边长 公式 S= a×a

长方形的面积=长×宽 公式 S= a×b

平行四边形的面积=底×高 公式 S= a×h

梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2

内角和:三角形的内角和=180度。

长方体的体积=长×宽×高 公式:V=abh

长方体(或正方体)的体积=底面积×高 公式:V=abh

正方体的体积=棱长×棱长×棱长 公式:V=aaa

圆的周长=直径×π 公式:L=πd=2πr

圆的面积=半径×半径×π 公式:S=πr2

圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

读懂理解会应用以下定义定理性质公式

一、算术方面

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。

简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

数量关系计算公式方面

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

4、工效×时间=工作总量

5、加数+加数=和 一个加数=和+另一个加数

被减数-减数=差 减数=被减数-差 被减数=减数+差

因数×因数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=商×除数

有余数的除法: 被除数=商×除数+余数

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

6、 1公里=1千米 1千米=1000米

1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米

1平方厘米=100平方毫米

1立方米=1000立方分米 1立方分米=1000立方厘米

1立方厘米=1000立方毫米

1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

1公顷=10000平方米。 1亩=666.666平方米。

1升=1立方分米=1000毫升 1毫升=1立方厘米

7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3

比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。

8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18

9、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18

11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y

12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y

百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)

17、互质数: 公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)

20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)

21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。

31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414

32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3. 141592654

33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……

34、什么叫代数? 代数就是用字母代替数。

35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c

一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数

2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3 速度×时间=路程路程÷速度=时间 路程÷时间=速度

4 单价×数量=总价总价÷单价=数量 总价÷数量=单价

5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6 加数+加数=和和-一个加数=另一个加数

7 被减数-减数=差被减数-差=减数 差+减数=被减数

8 因数×因数=积积÷一个因数=另一个因数

9 被除数÷除数=商被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1 正方形 C周长 S面积 a边长

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2 正方体 V:体积 a:棱长

表面积=棱长×棱长×6 S表=a×a×6

体积=棱长×棱长×棱长 V=a×a×a

3 长方形 C周长 S面积 a边长

周长=(长+宽)×2 C=2(a+b)

面积=长×宽 S=ab

4 长方体 V:体积 s:面积 a:长 b: 宽 h:高

表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

体积=长×宽×高 V=abh

5 三角形 s面积 a底 h高

面积=底×高÷2 s=ah÷2

三角形高=面积 ×2÷底三角形底=面积 ×2÷高

6 平行四边形 s面积 a底 h高

面积=底×高 s=ah

7 梯形 s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8 圆形 S面积 C周长 ∏ d=直径 r=半径

周长=直径×∏=2×∏×半径 C=∏d=2∏r

面积=半径×半径×∏

9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长

侧面积=底面周长×高表面积=侧面积+底面积×2

体积=底面积×高体积=侧面积÷2×半径

10 圆锥体 v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数

奉上,望采纳!

Ⅶ 小学数学的所有概念

小学数学公式大全
一、小学数学几何形体周长面积体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽S=ab
正方形的面积=边长×边长S=a.a= a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r半径=直径÷2 r= d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd=2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2。公式S= a×h÷2
正方形的面积=边长×边长公式S= a×a
长方形的面积=长×宽公式S= a×b
平行四边形的面积=底×高公式S= a×h
梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=aaa
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
二、单位换算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1吨=1000千克1千克= 1000克=1公斤= 2市斤
(5)1公顷=10000平方米1亩=666.666平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月
平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分
1分=60秒1时=3600秒
三、数量关系计算公式方面
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
四、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
五、特殊问题
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或小数+差=大数)
植树问题
1非封闭线路上的植树问题主要可分为以下三种情形:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
(3)如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
(1)一般公式:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
工程问题
(1)一般公式:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
(2)用假设工作总量为“1”的方法解工程问题的公式:
1÷工作时间=单位时间内完成工作总量的几分之几
1÷单位时间能完成的几分之几=工作时间

Ⅷ 16数字暗示什么意思

1、代表棋子数目

16(十六),是15与17之间的自然数。16是4的平方。在国际象棋、中国象棋每方的棋子数目。

2、在古代代表重量

古代定秤,以天上的星星为准。北斗七星,南斗六星,福禄寿三星,总共16星。所以,古代一斤为16两,半斤既是8两。

3、代表一个偶数

16就是其中的一个偶数,偶数是能够被2所整除的整数。正偶数也称双数。若某数是2的倍数,就意味着是偶数,可表示为2n;若非,就是奇数,可表示为2n+1(n为整数),即奇数除以二的余数是一。

4、代表16进制

十六进制(简写为hex或下标16)在数学中是一种逢16进1的进位制。一般用数字0到9和字母A到F(或a~f)表示,其中:A~F表示10~15,这些称作十六进制数字。

5、乘法口诀结果之一

16这个偶数出现在乘法口诀当中,例如4乘以4等于16,2乘以8等于16,除此之外16与15可以组合成一对鲁斯·阿伦数对。

类似“16”数字的含义:

1、“233”:233是介于232与234之间的自然数,233来源于猫扑表情第233号,是一张捶地大笑的表情,因此不少网友就喜爱在贴吧和论坛发帖的时候加上一句“233”。

2、“666”:666是一个汉语词汇,谐音为牛牛牛,溜溜溜有一种本土化的意思,用来形容某人或某物很厉害很牛、令人折服(大多是指游戏玩的好)。而在西方,666指魔鬼,撒旦和灵数,是不吉利的象征。

Ⅸ 16是什么意思

1、16在数学领域的含义:

(1)唯一一个整数可以表示成mn和nm(当m、n均为整数),42=24。因为22=2×2,它才有此特性。它亦等于22²。

(2)第4个平方数。

(3)第3个中心五边形数。

(4)和15组成了一对鲁斯·阿伦数对。

(5)十六进制常用于电脑系统中。

2、16在生活领域的含义:

(1)国际象棋、中国象棋每方的棋子数目。

(2)香港的公共小巴的可载乘客数量。

(3)古代定秤,以天上的星星为准。北斗七星,南斗六星,福禄寿三星,总共十六星。所以,古代一斤为十六 两,半斤既是八两。

3、16在科学领域的含义:

(1)硫的原子序数

(2)c语言中16进制表示为0X 网络语言戏称xxoo为16

(3)氧的相对原子质量

(9)数学16个概念是什么意思扩展阅读

类似“16”数字的含义:

1、“233”:233是介于232与234之间的自然数,233来源于猫扑表情第233号,是一张捶地大笑的表情,因此不少网友就喜爱在贴吧和论坛发帖的时候加上一句“233”。

2、“666”:666是一个汉语词汇,谐音为牛牛牛,溜溜溜有一种本土化的意思,用来形容某人或某物很厉害很牛、令人折服(大多是指游戏玩的好)。而在西方,666指魔鬼,撒旦和灵数,是不吉利的象征。

Ⅹ 16数学什么意思

数字的意思吗?16可能指的是:
要溜?
要留
要溜
要喽
你溜
一路顺风
一路向前

阅读全文

与数学16个概念是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1422
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071