导航:首页 > 数字科学 > 数学有哪些问题

数学有哪些问题

发布时间:2022-01-31 07:29:16

‘壹’ 数学上有哪些存在的问题

高考导数压轴题有很多,可以看看。

‘贰’ 哪些有数学问题

您可以前往书店或文具店购买相关数学书,或直接在网上查找数学问题
现在有世界三大数学猜想,即费马猜想、四色猜想和哥德巴赫猜想。

‘叁’ 生活中存在哪些数学问题

现实生活中存在大量的数学问题,老师可以结合教学内容的特点将其引入课堂。如:我从生活中全家的休息日入手设计了这样一个生活情境:“5月份,圆圆的爸爸隔三天休息一天,妈妈每隔一天休息一天,圆圆周六、周日休息。三人要一走去看望外婆,选择哪些日子比较合适?”学生对这样的数学问题倍感亲切,因而兴趣大增,纷纷主动寻求答案。这时教师可以提议与学生一起玩涂色游戏,把爸爸、妈妈和圆圆的休息日涂上不同的颜色。在涂色的过程中,学生发现一些特殊的日子涂上了两种颜色,甚至有些日子涂上了三种颜色。强烈的好奇心和求知欲促使学生去思考和探索。通过观察,学生很快找出原因所在,原来这些特殊的日子是他们其中两个人或三个人的共同休息日。由共同的休息日就能轻而易举的引出“公倍数”这一数学问题。看似深奥的道理,就这样春风化雨般的慢慢融入了学生的心中,更重要的是使学生感受到数学来自生活实际。
望采纳,谢谢啦。

‘肆’ 小学数学教学中常出现哪些问题

一、学生学习积极性的问题
现在的学生在课堂内外主动学习的能动性差,课堂上老师怎么说,他就怎么做,一旦离开了教室,知识就抛之脑后。这样的学习不仅效率低,而且师生双方都容易产生教学疲劳。或许有的教室懂得通过一些笑话、情境来提高学生的学习兴趣,但这也不是长久之计,久而久之学生也会习惯,甚至专注于此而忘记学习本身。这样的问题屡见不鲜,也是大多数老师所困惑的地方。
二、教师教学理念上的问题
许多老一辈教师,教了几十年书,用的同一套方法,也许曾出过优秀的学生,但在如今,却很有可能是行不通的。他们的教学手段相对陈旧,教学方式也很封闭,甚至仍有教师使用“填鸭式”教学,这与课改初衷相悖,也不适用于现代全面的素质教学。又或许有的教师是给出题目让学生自己求答案,自己动脑解决问题,但从本质上来说,这并没有改变一个思路上的桎梏,学生依然是按着老师的路子来走,这样的教学是走不出发散性、创新性思维的。
三、学习过程中“会学不会做”的问题
老师讲的时候明白,一旦换一种形式就不会做了,这样的问题是普遍存在的。相信很多教师都面临过这样的烦心事,明明自己在课堂上讲的十分清楚,却偏偏有一些学生在课后练习的时候面对题目无从下笔。这样的问题有学生反映过,也有老师专门思考过,但真正碰到的时候,往往就让人感到棘手。究竟该如何让学生既能听懂,又能举一反三,学会做题呢?
四、“优差生”分级造成的问题
有的班上同学成绩好,有的成绩差。分数的差异造成了学生之间分成两派——“优等生”和“差等生”。这也是许多教师所默认的,认为“优等生”就该聚在一起讨论学习,而“差等生”则随便教教就算了,千万不要影响了“优等生”。
这样的分化是扭曲、错误的。新课改的教学实践中,教师以及学生是一个整体,相互之间都不存在着优和差的隔阂,课堂上师生平等,教学上民主同思,才是能使教师与学生相互受益的良好氛围。

‘伍’ 生活中有哪些有趣的数学问题

还是比较多的。
1烙饼问题:妈妈烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最少用几分钟?
2.袜子问题,抽屉里有5双不同颜色的袜子,没开灯,要拿出一双同色的袜子,从中最多需要摸出多少只?
3.鸡蛋问题:小张卖鸡蛋,一篮鸡蛋,第一个人来买走一半,
再送他一个。第二个人又买走一半,小张又送他一个鸡蛋。第三个人又买一半的鸡蛋,小张再送他一个。第四个人来买一半,小张再送他一个,鸡蛋正好买完!小张总共有几个鸡蛋?
4桌子问题,一张方桌,砍掉一个角还有几个角?
5.切豆腐问题: 一块豆腐切三刀,最多能切几块
6切西瓜问题:三刀切7瓣,吃完剩下8块皮,怎么切?
7.竹竿问题:5米长的竹竿能不能通过一米高的门?
8,纸盒问题:边长一米的方盒子能不能放下1.5米的木棍?
9.时钟问题:12小时,时钟和分针重复多少次?
10.折纸问题:一张1毫米厚的纸,对折1000次,厚度有多高?
……

‘陆’ 小学数学解决问题有哪些

手脑并用是提高创新意识的有效方法。学生的实际动手能力是衡量人才的重要重要指标,是从小学会学习、学会生活的重要内容。在教学中,可以引导学生利用实际操作这项活动来帮助学生掌握知识,具有创造性、开拓性。符合国家关于活动课开设的目的和意义。有利于数学教学的辅助过程,有利于创新能力的培养。在教学活动中,教师要注重提供各种机会让学生参与活动,使学生在参与过程中掌握方法,促进思维的发展。教学中,经常设置一些悬念性的问题,鼓励学生探索,唤起学生创新意识,改变教师的主体。学生的创新潜能得到挖掘,逐步形成创新能力。
优化教学模式,深化创新意识培养:传统意义上教学的几个重要的环节一般是:导入新课—新授—巩固练习—布置作业。经过多年的改进,形式虽然有变化,但实质却没有什么改动。其实,课堂不必套用这个模式,对小学来说,一本正经的像对成人那样传授知识,未免太呆板了些。活动教学、游戏教学、发现教学、探究教学、数学建模教学、竞赛教学,根据不同的教学内容,都是可以采取的。比如:导入这一环节,完全可以用昀新的教学词汇—创设情境来表示和演绎,情境是教师和学生共同面对的,它必然会起到导入的作用,但更重要的是面对着一个问题,借以引起学生的兴趣,激发学生的求知欲望,培养寻求解决问题的不同方法的意识。再比如:新授这一环节,完全可以改成探索与讨论,而巩固环节可以换成实践与反思等等,这些改变并不是换换词语那样简单,更重要的是教学观念的改变与教学方式的更新,通过这些改变增强学生的主动性,从而更好的提高学生创新意识。
3
小学数学方法二
动手操作的策略:例如:教学四年级下册第五单元《三角形》中《三角形边的关系》时,我让学生自己探索任意三根小棒能否围成三角形,先猜想,再让学生动手操作试围,验证自己的猜想。实验结果有所不同,这样使学生在具体的操作过程中产生思维冲突,从而提出数学问题“为什么有的能围成,有的围不成呢?”,有效地激发了学生进一步探究的欲望,在进一步的探索交流中得出结论,即较短两条边的和等于或小于第三边时不能围成三角形,只有较短两边的和大于第三边时才能围成三角形。
再如:教学《三角形的内角和》一课时,根据学生已有的知识经验和生活经验,课前有一部分学生就能说出三角形内角和是180°这一知识点。但是如何让学生明白为什么三角形的内角和是180°,而不是仅仅知道这个结论而已。教学中我引导学生通过量一量、算一算、剪一剪、拼一拼、折一折等一系列操作活动,找到了几种验证三角形内角和是180°的方法,学生通过动手操作,自主探究得出结论后,体验到了成功的喜悦。还有我在教《梯形的面积》时,引导学生探究“怎样计算梯形的面积?”这一问题时,我给学生提供了硬纸片的梯形学具,把实际操作策略的选择权留给学生,学生将这个问题转化为一个已知的问题进行推导研究。学生在自主探索实现操作策略的多样化:有的学生将它剪为两个三角形;有的通过割、补将它转化为长方形;或者把两个完全一样的梯形拼成一个平行四边形。这种开放性的操作策略,不仅有可能获得问题解决,而且还能培养学生的创造性思维。

‘柒’ 数学问题有哪些分类

植树问题 高斯问题 找规律 路程问题 流水问题 百分比问题 进制问题 抽屉问题 统计学 立体 几何代数 解析几何 数独 进制

‘捌’ 数学有哪些未解难题

美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。

“千僖难题”之二: 霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

“千僖难题”之三: 庞加莱(Poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

“千僖难题”之四: 黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。着名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

“千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想

数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

试试吧,说不定你就是下一个天才。

阅读全文

与数学有哪些问题相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:700
乙酸乙酯化学式怎么算 浏览:1369
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1007
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1366
中考初中地理如何补 浏览:1256
360浏览器历史在哪里下载迅雷下载 浏览:668
数学奥数卡怎么办 浏览:1346
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1020
大学物理实验干什么用的到 浏览:1445
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:818
武大的分析化学怎么样 浏览:1209
ige电化学发光偏高怎么办 浏览:1299
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1384
化学理学哪些专业好 浏览:1449
数学中的棱的意思是什么 浏览:1015