㈠ 数学活动经验的来源有哪些
思维是数学的核心,解决问题时多动脑,平时多思考。
㈡ 对于获得“数学的基本活动经验”您有哪些困惑
。“数学活动经验”是从孩子的角度提出的,是孩子在数学活动的一种所得,对学生的数学学习有着不可替代的作用,教学中不仅要关注孩子的这部分经验,而且要有目的的积累,适当的转化和提升,才能让学生经验的“根”上长出更多的“枝”。 赞同1
㈢ 数学课标中“基本思想”和“基本活动经验”具体指什么
课标中的数学思想
《课标》(修订稿)把“双基”改变“四基”,即改为关于数学的: 基础知识、基本技能、基本思想、基本活动经验。
“基本思想”主要是指演绎和归纳,这应当是整个数学教学的主线, 是最上位的思想。 演绎和归纳不是矛盾的,其教学也不是矛盾的, 通过归纳来预测结果,然后通过演绎来验证结果。 在具体的问题中,会涉及到数学抽象、数学模型、等量替换、数形结合等数学思想, 但最上位的思想还是演绎和归纳。 之所以用“基本思想”而不用基本思想方法,就是要与换元法、递归法、配方法等具体的数学方法区别。 每一个具体的方法可能是重要的,但它们是个案,不具有一般性。 作为一种思想来掌握是不必要的,经过一段时间,学生很可能就忘却了。 这里所说的思想,是大的思想, 是希望学生领会之后能够终生受益的那种思想方法。
史宁中教授认为:演绎推理的主要功能在于验证结论,而不在于发现结论。 我们缺少的是根据情况“预测结果”的能力;根据结果“探究成因”的能力。而这正是归纳推理的能力。
就方法而言,归纳推理十分庞杂,枚举法、归纳法、类比法、统计推断、因果分析,以及观察实验、比较分类、综合分析等均可被包容。与演绎推理相反,归纳推理是一种“从特殊到一般的推理”。 借助归纳推理可以培养学生“预测结果”和“探究成因”的能力,是演绎推理不可比拟的。从方法论的角度考虑,“双基教育”缺少归纳能力的培养,对学生未来走向社会不利,对培养创新性人才不利。
一、什么是小学数学思想方法
所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。
所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。
数学思想是宏观的,它更具有普遍的指导意义。而数学方法是微观的,它是解决数学问题的直接具体的手段。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。
二、小学数学思想方法有哪些?
1、对应思想方法
对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、集合思想方法
集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法:
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法:
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法:
他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法:
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。
14、化归思维方法:
把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。
15、变中抓不变的思想方法:
在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?
16、数学模型思想方法:
所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。
17、整体思想方法:
对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。
三、怎样教给学生数学的思想方法:
1、深入钻研教材,认真挖掘教材中渗透的数学思想方法因素。
2、在知识的发生、形成、发展过程中,适时地进行数学思想方法的渗透。
3、注意在知识的小结、复习过程中运用对比、归类的方法,帮助学生整理出比较清晰的、常用的一些数学思想方法。
4、引导学生应用数学的思想方法去解决一些生活中的实际问题。
5、考试时要适当设计一些题目,考查学生对数学思想方法理解、应用的能力。
㈣ 什么是“数学基本活动经验”
基本活动经验是在学生参与数学学习的活动中积累起来的.如果把数学基础知识和丛本技能的学习看作是显性的话,那么基本活动经验的积累就具有隐性的特征.\x0d首先,数学基本活动经验的积累要和过程性目标建立联系.《标准(2011年版)》确定的目标有两类,一类是结果性目标,一类是过程性目标.一般来说,结果性目标是指向基础知识与基本技能的.过程性目标更多地指向数学基本思想和基本活动经验,而数学基本活动经验主要是过程性目标的体现.如《标准(2011年版)》规定,经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能;经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能;经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能;参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验.在具体的课程内容中,也有一些过程性的描述:结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性;经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画表格等)呈现整理数据的结果.这些过程性目标和内容实现的主要标志就是学生形成活动经验,学生在经历相关的数学活动中,了解数学知识发生发展的过程,体会数学知识和方法的探究.\x0d其次,数学基本活动经验的积累依靠丰富多样的数学活动的支撑.这里的数学活动是指伴随学生相应的数学知识学习而设计的观察、试验、猜测、验证、推理与交流、抽象概括、数据搜集与处理、问题反思与建构等.数学活动的设计与相应的知识技能有关,但其目的不只是为了完成数学知识技能的学习,还是学生数学活动经验积累的重要途径.以数据的搜集整理和分析相关的活动设计为例.《标准(2011年版)》在第一、二、三学段分别用了3个相似的例子说明如何设计和组织有关的活动.第一学段的例19,对全班同学的身高进行调查分析;第二学段的例38,对全班同学的身高数据进行调查分析;第三学段的例70,比较自己班级与别的班级同学的身高状况.这几个例子的设计,一方面让教师结合不同学段学生的发展和学习内容的深入,用具有一定连续性的例子,使学生体会数据搜集整理的过程;另一方面使学生在这个过程中不断积累获得数学信息、整理与分析数据的活动经验,了解到统计的知识与方法主要是从现实的问题中产生的,具有现实意义.同时,在这个过程中逐步形成数据分析观念.设计有效的数学活动是学生积累活动经验的保障.数学知识的探索、数学建模的设计与组织、数学探究活动等都是很好的数学活动.如,探索物体长度的测量和长度单位的建立过程,探究不同的树叶长宽之比,探索小数点的移动使数值发生的变化,探索三角形的三边关系等都可以设计成数学活动.学生通过自己的操作、猜测、验证,发现问题、研究问题和解决问题.在这个过程中,学生获得的不仅仅是认识相关的知识,得出相应的结论,而且积累了如何去探索、发现,如何去研究的经验.\x0d第三,数学基本活动经验的积累是一个长期的过程.活动经验要靠积累,积累需要一个过程,不能指望一两次活动就能完成.因此,应当把活动经验的积累看作是一个长远的目标,持续不断地组织学生参与数学探究的过程,逐步形成数学活动经验.
㈤ 新课标提出数学基本活动经验内涵是什么它包括哪些内容
基本活动经验是在学生参与数学学习的活动中积累起来的.如果把数学基础知识和丛本技能的学习看作是显性的话,那么基本活动经验的积累就具有隐性的特征.\x0d首先,数学基本活动经验的积累要和过程性目标建立联系.《标准(2011年版)》确定的目标有两类,一类是结果性目标,一类是过程性目标.一般来说,结果性目标是指向基础知识与基本技能的.过程性目标更多地指向数学基本思想和基本活动经验,而数学基本活动经验主要是过程性目标的体现.如《标准(2011年版)》规定,经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能;经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能;经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能;参与综合实践活动,积累综合运用数学知识、技能和方法等解决简单问题的数学活动经验.在具体的课程内容中,也有一些过程性的描述:结合生活实际,经历用不同方式测量物体长度的过程,体会建立统一度量单位的重要性;经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画表格等)呈现整理数据的结果.
㈥ 根据2011版数学课程标准,谈谈你是这样理解数学活动经验的数学活动经验包括什么
我觉得要多看书
㈦ 简述基本数学活动经验的涵义及其特征。
一、数学基本活动经验的涵义
首先是“数学”的,所从事的活动要有明确的数学目标,没有数学目标的活动不是“数学活动”。小学数学是研究最基本的数量关系、图形关系、随机关系(主要是统计关系)的。
其次是“经验”的,经验是一种感性认识,包含双重意义,一是经验的事物,二是经验的过程。数学经验是数学的感性认识,是在数学活动中积累的。
再次是“活动”的,苏联着名数学教育家斯托利亚尔认为:数学教学是数学活动的教学,也是思维活动的教学。那么包括抽象思维、数学证明、数学解题在内的整个数学教学活动都是“数学活动”,这样就过于泛化。我理解的“数学活动经验”所指的“活动”其特定含义主要是对数学材料的具体操作和形象操作探究活动。
至于“基本”,《数学课程标准》把数学知识、数学技能、数学思想、数学活动都冠以“基本”,称作“四基”。
“获得数学基本活动经验”作为教育目标指出,是基于“动态的数学观”,把数学看成是人类的一种活动,是一种充满情感、富于思考的经历体验和探索的活动。这样的数学观必然影响着数学教育观。
首先,数学教学的目标,并非单纯体现于学生接受的数学事实,而更多的是通过对数学思想方法的感悟,对数学活动经验的积累,将“经验材料组织化”“数学材料逻辑化”。数学知识不仅包括定义、公式、法则、定理等数学事实的“客观性知识”,而且包括从属于学生自己的“主观性知识”,即带有个体认知特点的个人知识和数学活动经验,它是经验性的、感性的、不那么严格“隐性知识”。
其次,数学教学不仅是结果的教学,更重要的是过程的教学。数学课堂教学必须结合具体内容让学生在数学学习活动中去“经历过程”。
再次,数学课堂教学应该是开放的。数学活动经验不像事实性知识那样“看得见、摸得着”,而且表述是唯一的。学生在数学活动中对某一数学对象的认识是有个性特征的,在认识的过程中所获得的经验又是多样的,学生的发展也因此而不同。这就决定了数学课堂教学不能封闭式灌输,而要开放式地组织活动。每个学生在学习过程中都有一定的自主性,老师应给各种不同意见以充分表达的机会,积极拓展学生的学习空间。
二、数学基本活动经验的特征:
1 主体性。经验是存在于个体头脑中而无法直接观察的心智表征或心智结构。学生作为主体,参与到社会生活实际或教师创设的情境当中,亲身体会形成自己个体的经验。因此数学基本活动经验是基于学习主体的,属于特定的学习者自己,它带有明显的主体性特征。例利用画画、剪剪、拼拼、凑凑、量量的办法,让学生去发现关于“三角形内角和等于1800”命题的学习,就是一种学生积极主动获取知识的发现学习。学生通过动脑、动手、洞口,充分调动多种感官协同活动,从多个渠道有效得获得数学活动经验。比如在教学中教师合理地运用操作性的教具与学具,通过实物操作、观察、体验来建立对数学的感觉,形成对学习对象的数学经验。由于经验是在主客体相互作用的基础上,主体反映客体时所产生的主观产物,因此,经验的接受和占有不能像接受实物那样,在既不改变性质也不改变存在形式的状态下进行。经验的接受过程是主体重建经验结构的过程,也即是一个主体心理结构的构建过程,主体必须处于一种十分主动的状态,积极地进行一系列复杂的心理运作,才能完成构建过程,真正地“接受”相应的经验。因此,学生的学习,从结果看是“接受”了已有经验,而从过程看则是一个积极主动的经验建构过程。
2 实践性。经验离不开活动,数学活动是经验产生的源泉,因此离开了数学活动,就根本不会形成有意义的数学活动经验,只有亲身经历体验了才能形成经验,经验具有明显的实践性。中小学生学习形式化的数学时,基本上与自己的生活实际结合起来进行学习。例如小学生学习小数,很自然地联系到自己购物时的商品标价;学到百分数,就会联想到本班同学体育锻炼达标的合格率。低年段学生的生活阅历浅,实践能力弱,只有切实经历有效的实践活动,才能掌握活动的步骤、方法,才能逐步积累活动经验,形成积极的情感体验。如在《角的认识》中,教师有意创设了这样一个情境,给每个同学一个不口袋,口袋里面放了一些物品,让学生从中摸出一个角。在学生纷纷举着自己摸出的角之后,老师说:“看看你们摸得这么好,我也想摸摸。你们能给我说说是怎么摸出来的吗?”孩子们说,“角有一个尖点,扎得慌。”教师伸手摸出一个图钉;孩子们又说,“角还有两边”。教师伸手摸出的确实一支削得很间尖的铅笔;孩子们急忙又补充说,“角是平的”。教师摸出一片树叶,“尖尖的,平平的,怎么没有角?”孩子们回答说,“两条边应该是直的”,这回教师摸出了一个三角板,教师真诚地对同学们说,“谢谢你们帮助我找到了摸角的感觉。”明显看到教师是在有意识引导学生进行体验,使学生认识并抓住角的关键特征。
3 内隐性(缄默知识)。人作为一个个体是通过日常生活、与人交往或其他活动形成大量的个体经验,拓展最近发展区,并通过意义建构把最近发展区变成现实的发展。通过建构获得经验,同时凭借经验也获得建构。经验是属于个体的,依赖于特定的活动,离开了活动,何谈经验。所有的知识都是在个体与经验世界的对话中建构起来的,都必须以个体的认知过程为基础。经验是不能传递的,譬如说“60°的水是热的”,那么就是作为知识传递下来的,如果说“60°的水是烫的”,那么就是个经验问题,如果没有体验过,不会形成烫的经验。建构主义认为知识不是通过感觉或交流而被个体被动地接受的,而是由认知主体主动地建构起来的,建构是通过新旧经验的相互作用而实现的。认识的技能是适应自己的经验世界,帮助组织自己的经验世界,而不是去发现本体论意义上的现实。经验作为一种心理现象,是属于个人的,是隐藏在一个人的内心深处的。数学活动经验反映的是学习者在特定的学习环境中或某一学习阶段对学习对象的一种经验性的认识,这种经验性认识更多的时候是内隐的。正是因为经验的内隐性,使得我们难于把握,难以琢磨。
4 多样性。对同一个数学活动,即使外部条件相同,针对同一对象,每一个学生仍然可能具有不同的理解,形成不同的经验。学生通过动脑、动手、洞口,充分调动多种感官协同活动,从多个渠道有效得获得数学活动经验。比如在教学中教师合理地运用操作性的教具与学具,通过实物操作、观察、体验来建立对数学的感觉,形成对学习对象的数学活动经验。正是由于经验的多样性,才产生了数学学习的差异性。作为一名学生的学习是基于经验而又超越经验,就是说他们具有了超越经验、超越实践的眼光、能力和素养,他们有更高的追求和理想,具有更高的品位与境界,通过不断地阅读自我、认识自我、超越自我而成为真正的教育教学的主宰者。真正的经验不能传授,经验是个情绪体验,只有多经历,才能辨别真伪。水是热的,水是烫的,烫是经验,热是知识,只有你亲手经历体验才能知道。数学教育活动是作为一种实践活动,必须非常重视“经验”的作用。教育研究指向实践,在相当程度上就是在研究“经验”,或是一种以“经验”为对象的研究。研究“经验”本身确实需要“经验”,没有“经验”无法研究“经验”,这就要求研究者深入教育教学第一线,以形成亲身经历和体验,这也是有成就的教育研究者获得研究成功的基本经验之一。
5 指导性。凡是有学习的地方都存在着经验。学生通过基本数学活动,获得的经验要能进行反思提炼,形成对以后类似情境与活动的指导作用。指导性可以这样理解“学生头脑中已有的认知结构对新的数学学习活动的影响。”经验能在现实基础上预料以后情况的发生,并做出适当的安排计划。如围棋能手一下子能看出五步甚至更多步的棋来,这就需要他的前四步棋完全如他所料的那样出现,依靠经验。经验成为沟通学生已有的认知结构和新的数学学习活动的桥梁。再如在数论中有时候根据经验来猜测的结果,比如哥德巴赫猜想、费马大定理等等。面对新的情境、新的问题,学生需要调动自己已有的、适当的经验去同化这个新的情境与新的问题,把它与自己原有的知识形成合理和本质的联系。情境认知理论认为知识是通过经验而情景化的。学生在A活动中所得到的最新经验,并不是直接同现在的B活动的刺激——反应成分发生相互作用,而只是由于它影响原有的认知结构的有关特征,从而间接地指导活动B的解决。学习了“数”的运算规则可以有效指导学习“式”的运算规则;学习了平面上求轨迹的方法可以有效地指导空间求轨迹。
6 过程性。从知识的角度上讲,经验是一种过程性知识,是在实践活动中所形成的一种“活动图式”。它主要由三种成分组成,一是知识性成分,是指在活动过程中所建构的关于活动主客体的个人意义,包括操作的直观感知、建立的新旧知识之间的联系以及对活动过程的感悟等,是人们在活动过程中所悟出的道理,是对活动过程的直观把握,其合理性主要由活动的有效性来保证,如“老马识途”;二是体验性成分,是指在活动过程中所产生的情绪体验,包括成就感与失败感、自我调节心态的体会等,如“大赛经验”;三是观念性成分,是指活动过程所形成的意识和信念,如应用意识、创新意识、做事的信心与信念等等。[6]经验注重过程,启发思考。使学生探究的过程、思考的过程、抽象的过程、预测的过程、推理的过程、反思的过程等都可能成为经验的组成部分。实际上当学生参与某项数学活动会形成的某种图式是建立在他的认知结构中进行登记,然后开始考虑其逻辑依据,与先前的相关内容发生联系,使得与本人的数学认知结构趋于和谐,当到一定阶段,经验会在他面临不同具体情境时逐步获得反馈消息,以加深经验的体验。
希望能对你有所帮助!
㈧ 初中数学活动经验有哪些类型
张奠宙与赵小平给我们大致把数学基本经验分为:日常生活中的数学经验,社会科学文化情境中的数学经验,以及纯粹数学活动累积的数学经验。
二、日常生活中的数学经验
(一)含义
经验,是指由过去的实践得来的知识或技能。它是个体立足于客观世界,建立在感官知觉上的对事物的认识和反映,是人类和个体认识成果的积累。儿童的生活经验是指学生在生活中通过亲身经历、体验而获得的对事物的认识和反映,具有自然性、生成性、发展性等特点。自然性是指学生生活在瞬息万变的社会中,各种各样的生活现象都会毫无阻拦地进入他们的认知领域,从而形成他们“自己的经验”。当然这种经验很大程度上是原始的、粗浅的、局部的、零散的,甚至是不准确的、不科学的,但却是十分难得和可贵的。生成性是指学生在生活和学习的过程中,存在着对自己已有的经验进行调用、调整、提升或者重新确立的过程,也存在着对活动中新的认识不断接受、理解和内化的过程。这些过程实质上就是新的经验建立和生成的过程。发展性是指经验的建立和运用是一个动态的、不断积累、丰富发展的过程,这也是人的内在素质和能力提高的过程。任何学习都是在先前经验基础上的主动建构,这种建构的结果又会导致经验系统的变化,在这种螺旋上升的发展过程中,学生的经验得以进一步丰富和发展,学习的质量进一步提高。
生活中的数学经验,就是生活中的与数、形、位置、大小有关的经验。
(二)分类
第一类:可以直接拿来促进学生数学学习的生活经验。这样的生活经验有许许多多。例如在学习长方体和正方体、认识人民币等内容时,学生便有不少生活经验可以直接促进他们的数学学习。我们应当充分地加以挖掘和利用,很好地把握住学生认知的起点。
第二类;可以通过类比来促进学生数学学习的生活经验。这样的生活经验,从表面上看,似乎不能与数学知识的学习构成什么直接联系,但却可以通过类比来促进学生的数学学习。比如,在学习线段、角的加法运算时,我随后拿起一只粉笔,折成两段,“得到整体=部分之和”这个生活经验,用它去理解图形的加减就很容易了。很多时候应用这种方式可以使抽象的知识变得更形象、更易于理解。
第三类:可能对学生的数学学习产生负面影响的生活经验。比如,生活中对角的概念经验,就会对平角、周角的概念学习产生负面影响。生活经验的丰富性也必然导致有些生活经验会对学生的数学学习产生负面影响,甚至有些经验本身便是错误的。对于这一类的生活经验我们也必须正视,因为经验无论是正确的、错误的,它往往都是根深蒂固的,想强制性地加以取代必然会影响学生主体性和创造性的发挥,应当允许学生在学习过程中逐步加深认识。
第四类:包含着一搬规律的生活经验。我们能从中提取出一般性的学习方法,问题解决的方法,提高学习效率的方法。
(三)关注学生生活经验
《标准》说,数学教学应该是从学生的生活经验出发,向他们提供充分从事数学活动与交流的机会,帮助他们在自主探索的过程中,真正理解和掌握基本的数学知识与技能、数学思想与方法,同时获得广泛的数学活动经验,成为学习数学的主人。小学数学具有现实的性质,所以教学要基于学生的生活现实,基于学生的生活经验。学生学习的是与他们生活实践、活动经验有着密切联系的数学。对小学生来说,数学是现实的、有趣的、有用的,小学数学是学生在生活与活动中产生的数学。学生并不是入学后才接触数学,也不仅仅在学校中才接触数学。他们在上小学之前,已经遇到许多数学,积累了一些初步的经验。他们玩过各种形状的积木,比过物体长短、大小、轻重、厚薄、宽窄,他们知道几点起床几点睡觉,他们随着父母一起外出购物等等。所有的活动都使他们获得了数量和几何形体的最初步的观念,尽管这些往往是非正规的、不系统的,甚至是模糊的,或许还有错误隐藏其中,我们有必要对他们的生活经验即日常数学进行数学化,进行经验提升,以生成新的经验,促进学生的经验从一个水平上升到更高水平,实现经验改造或重新改组。
长期以来,我们在分析学生的数学学习基础时往往只关注学生己经学过哪些相关的知识,而忽视了知识之外学生还具有哪些相关的生活经验。学生生活在信息丰富的社会里,无处不在的生活现象时时刻刻地进入他们的认知领域,成为他们的生活经验,并作为学习者原有经验的一部分构成进一步学习新知的"数学现实"。小学生尽管已经有了一定的生活经验,但他们仍对周围的各种事物、现象有着很强的好奇心。因此,有必要紧紧抓住这份好奇心,结合教材的教学内容,创设情境,设疑引思,用学生熟悉的生活经验作为实例,例如,“汉字中的‘几何变换’”、“汉字、字母与轴对称图形”、“数学成绩与近视眼镜片度数的关系”、“银行存款与购买保险哪个收益更高”等,使这些生活问题数学化,通过这些问题的探究,引导学生利用自身已有的经验探索新知识,掌握新本领。把教学的关注点放在促进学生的认识从模糊趋向清晰,从形象趋向抽象,提升数学活动经验。并经常在解决问题后的反思中,进一步体验生活经验对数学问题解决的好处,积极鼓励学生有意识地去积累生活中的数学经验。
三、积累生活中的数学活动经验
围绕新课程下的数学教学,我们要帮助学生积累生活中数学活动经验,应该依据学生生活经验、利用学生生活经验、提升学生生活经验。
(一)依据学生生活经验
在数学教学中要加强数学与生活的联系,但这个联系必须是自然贴切、合乎学生的情趣。由此可见,在先进的教学理念下,教师不仅仅是为了设计与生活相关的资源,更注重的是学生的生活情趣、生活体验、生活经验、生活实际。
曾经看到这样一个案例:在教学“可能性”一课时,先让学生观看一段动画:在风和日丽的春天,鸟儿在飞来飞去。突然天阴了下来,鸟儿也飞走了。这一变化使学生产生强烈的好奇心,这时老师立刻抛出问题:“天阴了,接下来可能会发生什么事情呢?”学生就会很自觉地联系他们已有的经验,回答这个问题。学生认为:“可能会下雨”;“可能会打雷、打闪”;“可能会刮风”;“可能会一直阴着天,不再发生变化”;“可能一会儿天又晴了”;“还可能会下雪”……老师接着边说边演示:“同学们刚才所说的事情都有可能发生,其中有些现象发生的可能性很大,如下雨。有些事情发生的可能性会很小,如下雪。在我们身边还有哪些事情可能会发生?哪些事情根本不可能发生?哪些事情发生的可能性很大呢?”运用这一情境导入,使学生对“可能性”的含义有了初步的感觉。因为学习“可能性”,关键是要了解事物发生是不确定的,事物发生的可能性有大有小,而让学生联系自然界中的天气变化现象则为“可能性”的概念教学奠定了基础。
(二)利用学生生活经验
学生对知识的理解需要丰富有经验背景,如果脱离生活经验,让学生主动提出问题是难度很大,也难以提高学生解决实际问题的能力。我们应以学生身边的教学资源为载体,环环紧扣,教师为学生创设了积极主动地学习探究活动,学生的主体地位才能得以充分体现。教师只是教学活动的组织者和参与者,其指导作用体现在精心创设问题情境,使学生从自己喜爱的活动中、提出自己真正关心的、真正想知道的问题。因此,在教学中始终要把学生置于学习的主体,唤醒学生的生活经验,从而努力激发学生的学习兴趣,提高学生分析、解决实际问题的能力和创新意识。
如《时、分的认识》案例中,教师采用生活化的导入,多媒体出示班中某生的一天作息时间,每一时间有生活场景。这时,老师问:“这是我们班某同学一天的生活情况,你能说
一说吗?”学生很兴奋,认真看屏幕,抢着回答:她6点半起床!7点30分上学!教师追问:小朋友们,时间在我们生活中重要吗?多重要?学生举例回答。教师说:看时间需要钟来帮忙,老师请来了各种各样的小闹钟。出示小闹钟问学生:你们会看时间?学生争着说:会!会!接着教师就考考学生。
教师的例题也很生活化。
先问学生:想知道老师几时起床吗?(出示模型)这是老师起床的时间,谁知道?
生:是6点。
师:对,你是怎么看的?
生:时针指着6,分针指着12,所以是6点。
师:哪一枚是分针?它有什么特征?讨论分针的特征。
相同方法教学时针。
师:你能把这个时间写一写吗?一般有两种写法,一种是按照我们读的写下来(师演示),另一种怎么写呢?在哪里看到过?
生:在电视的右上角看到过,中间有2个小圆点的。
讨论小圆点左右的数字表示的意义。
(再出示一个时间)师:这是我晚上睡觉的时间,是几时?(哇,那么晚呀)
生:是10时?
师:你怎么看的?同桌讲一讲。
生:时针指着10,分针指着12,所以是10时。(指着钟面讲)
写时间,用两种方法。
师:这两个时间有什么共同特点?
讨论,总结看整点的方法。
师:是不是所有的时间都刚好几点整?你能举几个和你有关的生活的例子吗?(争先恐后地举手)
师:很多时间不是整点的,有几时几分,请举个例子?
根据生回答拨钟面:3时零5分
师:是这样吗,怎么看的?
生:时针超过3,分针指向1,所以是3时零5分。
师:你怎么知道是5分?
讨论分针指着除12外时是几分,分针走1圈时针走1大格。
师:(演示分针走一圈,时针走一大格)高个子和矮个子在赛跑,高个子因为腿长,所以总是走得比矮个子快。
师:用两种方法写这个时间。
反馈:重点讨论第二种写法的右边部分,0不能漏。。
师:是几时几分?(时间是一位学生举例的)
生:8时50分。
师:你是怎么看的?同桌轻轻讨论。
生:时针超过8,分针指向10,是50分,所以是8时50分。
写时间,并校对。
师:比较这两个时间时针有什么不同?
学生讨论。
师:能说说你自己一天中哪个时间类似这样,并在钟面模型上拨一拨吗?
指名回答,并上台演示。
教师充分估计了学生的起点,考虑到现在许多学生已有了看钟表的生活经验,整节课始终注重联系学生的生活实际,使课堂充满了浓浓的生活气息。不过利用学生的生活经验引入概念时,要注意学生的日常概念与所学习的概念的内涵是否一致。从前面的教学实例中我们已经看到了学生看钟表的生活经验无疑对“时、分的认识”一课的教学起了积极的作用。但学生头脑中的“数学”与成人的理解会有不同的含义,学生的日常生活概念与所学习的数学概念的内涵是否一致。由于日常生活概念受生活经验的限制,有时会忽略了本质属性,有时又会包含非本质属性,因此,在教学中教师既要充分利用学生生活经验所形成的表象作用,又要防止它的消极作用。
例如《三角形的认识》中,不断出现这样的问题:当一个三角形正着放的时候,学生很容易画出它的高(如图1);但是当三角形斜着放的时候,画这条底边上的高,往往就容易出错(如图2)。
㈨ 小学数学课堂教学有哪些数学活动经验的积累
正《2011版数学课程标准》 明确指出了数学活动经验的重要性,小学生在数学学习过程所开展的各式各类活动中,有体验、有感悟,形成的相关经验是后续学习的重要源泉,也能有效提升本身 的数学思维能力,带动数学素养的全面提升。因此,我们在课堂教学中,要创设更多的机会让学生"动"起来,让学生累积有效活动经验。具体可以从以下几个方面 加以尝试。一、将生活经验"引"进来"数学来源于生活",很多数学经验可以由生