A. 小学数学教学设计重难点一般怎么写
数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.
(同学们开讲)
学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.
B. 小学数学怎样确定教学重难点
解决问题,即应用题的教学,贯穿整个小学阶段,历来是小学数学教学的重点和难点。那么在新课改下如何进行解决问题的教学呢?下面谈一下自己学习后的粗浅见解。
一、要理解解决问题的基本过程。
数学问题解决,指的是按照一定的思维对策进行的一个思维过程,一步一步地接近目标,最终达到目标。也就是说,数学领域中的解决问题,不只是关心问题的结果,更重要的是关心求得结果的过程。要解决问题,就要搞清问题的求解目标和已知条件、未知条件,这是问题解决的第一步。它对思维的敏捷性和深刻性提出了很高要求,也为思维敏捷性和深刻性创造了极好的训练机会。问题解决的第二步是设计求解计划,这要求大量的分析综合,尝试与猜测、类比与联想,这对训练思维的灵活性和独创性大有益处。问题解决的最后一步,就是对所得结果作检验和回顾。这时训练思维的批判性和深刻性是具有十分重要的作用。
二、具体建议。
1、注意对“好”的问题的正确理解。
问题应当具有一定的探索性,解决这个问题没有现成的方法和程序,而需要发挥学生的各种思考和创造;问题应当成具有一定的现实性和趣味性,既非人为编造的,又能激发每个学生的好奇心;解决问题的途径和策略往往是多种的,需要学生综合应用所学知识,并发挥多种的数学思考;问题应当具有一定的启示意义,有利于学生掌握重要的数学思想方法和解决问题的策略,而不是所谓的“偏题”、“怪题”;同时,问题应具有适当的开放性,这种开放并不一定表现在答案的多样性上,更为重要的是问题能使所有的学生都尝试解决,不同的学生在解决问题的过程中都能获得发展。
2.帮助学生读懂题。
对于解决问题,学生的困难,一是读懂题,二是分析数量关系。而只有读懂题,才能为后面分析数量关系奠定基础。怎样是读懂题呢?我们可以要求学生:一遍读,搞清楚是什么事;二遍读,进行筛选,捕捉有用的数学信息,谁和谁有关系,有什么关系。三遍读,告诉我们解决什么问题。这样只有我们读懂了题,才能更好地进行解决问题。教师在指导学生读题时可用手势、情景再现等方式帮助学生读懂题。
3、在理解运算意义的基础上,分析数量关系。
解决问题首先需要学生具有数学的眼光,能识别存在于日常生活、自然现象与其他学科等中蕴涵的数量关系,并把它们提炼出来,运用所学的知识对其进行分析,然后综合应用所学的知识和技能加以解决。其次我们要重视对运算意义的教学。加、减、乘、除运算的意义是核心概念,只有学生真正理解了加、减、乘、除的意义,才知道在什么时候该用什么运算来解决问题。再次要注重对数量关系的分析。在解决具体问题时,教师要鼓励学生通过实际操作、思考讨论,寻找问题中所隐含的数量关系,强调对问题实际意义和数学意义的真正理解。
4、注重用方程解决问题。
方程是一种很好的数学思维,它能帮助人们用顺向思维解决问题,思维过程比较简单。用方程有意义,对于逆向思维有帮助。有些学生不愿意用方程,觉得它格式繁琐。教学中教师不要死抠格式,要有简化意识,明白教学的目的在于培养学生应用方程的思想解决问题。
5.形成解决问题的一些基本策略,体验解决问题策略的多样性。
解决问题活动的价值不只是获得具体问题的答案,更重要的是学生在解决问题过程中获得的发展。其中重要的一点在于使学生学习一些解决问题的基本策略,体验解决问题策略的多样性,并在此基础上形成自己解决问题的某些策略。教学中要重视对学生解决问题策略的指导,将“隐性”的解决问题的策略“显性化”。如在具体求解问题前,教师可以鼓励学生思考需要运用哪些解决问题的策略;在解决问题的过程中,教师可以根据具体情况,适时使学生注意是否要调整解决问题的策略;在解决问题之后,教师要鼓励学生反思自己所使用的策略,并组织全班交流。总之,教师要将解决问题的策略作为重要的目标,有意识地加以指导和教学。另外,对学生所采用的策略,在老师的眼中也许有优劣之分,但在孩子的思考过程中并没有好坏之别,都反映出学生对问题的理解和所作出的努力。只要学生的解题过程及答案具有合理性,就值得肯定,因为这为树立学生的自信心和培养他们的创新精神提供了很有价值的机会。
C. 初中数学教学中如何落实重难点
1、初中 数学教学中如何落实重难点
初中数学教学中如何落实重难点?教师的教服务于学生的学,我们教师在备课时,都要认真研究课程标准,深钻教材内容,并结合学生实际,把握教材内容,弄清难点所在,深刻理解教材意图,合理安排教学环节,精心设计课堂形式,方可找出突破难点的方法和技巧。今天,朴新小编给大家带来数学教学的技巧.
引导学生动手操作实验突破难点
由于学生数学知识的局限和思维能力的局限,有些数学问题,尤其是几何问题,单凭纸上谈兵,学生还是很难明白。我们可以让学生动手操作实验,寓教学于活动之中。例如在“勾股定理”教学中,教师可让学生操作实验:用四个直角三角形拼成一个正方形。学生在动手操作活动中,显然已经明确了勾股定理的发生过程,同时又掌握了证明方法;又如教学“镶嵌”时,当学生弄清了“镶嵌”的概念后,我就让学生以学习小组形式,用几种正多边形纸片来拼图,得到哪几种正多边形可以单独镶嵌,哪几种正多边形可以一起镶嵌,有什么规律。在剪、折、拼中,难点的神秘面纱随之荡然无存,教师的教和学生的学都感觉轻松愉快,何乐而不为呢?
导入的有效性是实现有效课堂的开端
课堂导入是指在讲解新知或数学教学活动开始之时,教师有意识、有目的的引导学生进行数学学习的一种方式。有效的导入能营造浓厚的学习氛围,提高学生参与学习的热情,化解学习内容的难度,实现由旧知向新知的自然过渡,从而达到优化数学教学的目的。例如“巧设悬念法 ”就是一种有效的导入法。巧设问题留下悬念,能够引起学生对课堂教学的兴趣,使学生产生刨根问底的急切心情,在探究的心理状态下接受教师发出的信息。上课伊始,可根据所教内容的性质及教学目标,把所要讲授的问题设为悬念,把学生的注意力引导到教学目标上来。
例如在教学初一数学“用字母表示数”一课,我先组织猜年龄的游戏:“同学们,老师能猜中你们中每一个人的年龄。”学生们异口同声地说:“我不信!”“那就试试看,只要你们把自己的年龄除以2再减去4,把计算后的结果告诉我,老师就能猜出你们的年龄是多少。”一位同学很快说出一个数字3,我马上猜出这位同学的年龄是14岁,这位同学马上说:“老师猜得对!”另一位学生报上一个数字2.5,我脱而出:“是13岁!”这时同学们议论开了,“老师是怎么猜出来的呢?”接着让同学们相互试着猜,很快他们找到了“诀窍”。
3、培养学生数学学习兴趣
要了解学生,尊重学生,平等、民主的对待学生
辨证唯物主义告诉我们,事物变化的决定因素是内因,外因只能通过内因才能起作用。培养学生的学习兴趣,必须首先弄清学生的实际,懂得学生在想什么、干什么,希望老师为他们做些什么;必须弄清学生现有认知水平、对基础知识的掌握程度;通过座谈、提问、检测、问卷调查等渠道了解学生的知识现状和学法现状,根据学生现有的能力和水平进行教学;必须掌握学生的思想动态,帮助他们树立起学习数学的信心,培养起他们热爱学习、酷爱学习的品格;让他们充分认识到学习是自己的权利,把自己培养成为有理想、有道德、有文化、有纪律的一代新人更是每一个青年学生的光荣义务;
要关心和爱护每个学生,培养学生对老师的亲近感,建立融洽、亲密、和谐、平等、朋友式的师生关系。调查表明,学生对课程是否感兴趣,老师的因素是其它诸多因素之首。[2]一些学生之所以对数学课程不感兴趣是因为老师曾有意或无意地伤害过他,他感受不到老师的关爱,因而疏远了数学老师也疏远了数学课程。而对于哪些备受学生尊敬的老师,学生是永远不会忘记的,们带着惟恐不能取得好成绩而有负于老师培养的心理,会自觉学好数学课程。
用和谐师生关系,调动学习情感
作为数学教师,在教数学知识的同时,更应教会学生学习数学的方法。引导学生养成良好的学习习惯。人常说,习惯决定性格,性格决定人生,没有好的学习习惯是造成初中数学后进生的一个重要原因。后进生多半不会学习,对数学概念、公式、定理、法则死记硬背,不愿动脑筋,一遇到问题就靠别人,甚至扔在一边不管。因此,在教学实践中,教师应注重培养学生自觉学习、善于探讨、善于观察、善于小结等方面的好习惯。如在解答问题时,要注重启发引导学生思考,教师只是随时纠正他们在分析解答中出现的错误,逐步培养他们自觉思考的能力。
在布置作业时,给后进生设计较简单的题目,使后进生经过思考能独立完成,养成他们认真独立完成作业的好习惯。还要求后进生每周末将本周学习的内容总结一次,使所学知识系统化。建立一种稳定和谐的师生关系是调动学生学习兴趣的关键。在建立良好的师生关系基础上,课堂教学要充分发挥"情感场"的作用。正如德国教育学家第斯多惠所说:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞。试想:没有生气勃勃的精神怎么能鼓舞人呢?没有兴奋的情绪怎么能激励人?每一个人都渴望成功,渴望别人和社会对自己的承认。后进生也不例外,他们有强烈的上进心,渴望学习进步,渴望得到教师的表扬。因此,教师更应关注后进生的学习状况,从教学目标、教学内容、课后练习、辅导、检测等方面分层设计,实施差异教学;对后进生降低目标要求,教学内容由易到难,缓步上升,课堂上把简单问题留给后进生回答;当后进生通过自己的独立思考做出数学题时,教师要及时地给于肯定和鼓励,使后进生体会到成功的喜乐,从而增强学习数学的自信心,渐渐从"要我学"变成"我要学",达到自觉学习的目的。
4、数学思维能力的培养
一、利用学生好奇心,激发学习兴趣。
好奇心是对新异事物进行探索的一种心里倾向,是创造思维的内部动力,是个体遇到新奇事物或处在新的外界条件下所产生的注意、操作、提问的心理倾向。是个体学习的内在动机之一、个体寻求知识的动力,是创造性人才的重要特征。当这种好奇心转化为求知欲时就可产生积极的思维。有助于点燃思维的火花。例如:进行三角形的内角和是180°一节教学时,首先让每个学生都用纸片剪好一个三角形,量出每个内角的度数并标好,然后让学生报出一个三角形任意两个内角的度数,教师就能回答出另外一个内角的度数。学生开始有些怀疑,但当教师的回答准确无误时,学生十分好奇,老师怎么这么快就能知道第三个内角的度数呢?课堂很活跃,学生都被吸引住了,开始产生要探索问题的迫切愿望。
二、精心设计课堂练习,发展学生的思维能力
培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系的。培养思维能力的有效的办法是通过解题的练习来实现的。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学中往往要根据具体情况做一些调整或补充,在课堂练习中努力创造活跃思维的条件。因为材料是训练思维能力的必要条件,能引起学生去思考,所以在学习的过程中要给学生创造灵活解题的情境,教给学生正确的思维方法,引导正确的思维方向,使学生逐步形成从多方面、多角度的认识事物、解决问题的能力,培养学生数学的创造思维能力。
三、注意沟通联系,形成知识网络。
在教学实践中,注意沟通知识联系、形成知识网络是培养学生创造思维能力的重要条件,因此每学完一部分知识,都要安排和上好复习课和综合练习课,以沟通知识的内在联系,使知识系统化、深刻化,从不同角度来加深对概念的理解,并使新旧知识逐步形成紧密的锁链,形成知识网络。如分数的意义与除法和比有着密切的联系。分数的基本性质与比的基本性质、商不变的性质有许多相似之处。教师在讲完比的基本性质后,就可以把这些知识沟通起来,加以练习,使学生了解它们之间的内在联系。
D. 小学数学教学中如何抓住重点突破难点
数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.
(同学们开讲)
学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.
E. 数学教学重难点
教学重点
所谓教学重点,就是教学的最重要之处。称得上最重要的,就是指一节课的教学中,某个(或几个)教学目标的实现,能在学生知识体系建构、数学技能形成、思维能力发展、活动经验积累等一个(或几个)方面,发挥至关重要的作用。这样的教学目标达成点,就可以叫做教学重点。
比如,“长方体的认识”一课中,“掌握长方体面、棱、顶点的特征”是“长方体和正方体”整个单元的基础——后续的棱长总和、表面积计算、体积计算等,都离不开这个最基础的知识。因此,它就是“长方 体的认识”这节课的教学重点。再如,“乘法分配律”一课,学生在四年级学了这个运算定律之后,无论是在五、六年级还是初、高中的数学学习,无论是在将来的生活中还是工作中,相关的计算情境会经常遇到,而这一定律则将随时随地帮助他们解决问题。同时,学生学习这一定律时所感悟到的数学建模的思想方法,更能够在他们今后思维能力的发展过程中发挥重要的作用。因此,“经历数学建模的过程,掌握乘法分配律的结构”,自然就是该课的教学重点。(注:对乘法分配律的灵活运用是下一课时的重要目标)
所以,更直接地讲,一个教学目标点是否应确定为教学重点,我们只要对照以下标准:它是不是单元教材的核心,是不是学生后继学习的基础,是不是将来要被学生经常运用,是不是在学生思维发展中起重要作用……
从上也可见,教学重点可从不同的层面来阐述,有些指向于双基(如掌握长方体的特征),有些指向于思想方法(如经历数学建模的过程),这样的情况在实际教学中很常见。再举一例。“平行四边形面积”一课,“面积计算公式的理解和运用”就是教学的重点——双基层面;“转化思想的渗透”——思想方法层面,毫无疑问也是教学的重点。我们在制定教案时,不同层面的教学重点都应该予以呈现,并以此来指引教学的具体实施。
需要说明的是,教学的重点是教材根据课标的要求,根据学生的能力,有意识地、科学地分置于整个教材体系中。因此,教学重点的形成,跟教材体系和数学知识内在的逻辑结构有关,是客观存在的,对每一位学生而言都是一致的。
教学难点
所谓教学难点,是指对于大多数学生来说,理解和掌握起来比较困难的知识点,或是容易出现混淆、错误的问题。大而言之,如数论的知识、代数的知识;小而言之,如抽屉原理的理解、三角形画高方法的掌握等。
教学难点的形成与学生的认知紧密相关。我们知道,在学习中,要把新知识纳入原有的认知结构,从而扩大原有的认知结构,这个过程叫做同化(即以旧的观点处理新的情况)。如面对三位数乘两位数笔算的新问题,学生可调用两位数乘两位数笔算方法的老经验来应对,这就是同化,能同化的内容往往不难。但是,在学习中,经常会遇到新知识不能被原有认知结构同化的情况,此时,我们就要调整乃至改造原有的认知结构,以适应新的学习内容的需要,这就叫做顺应(即改变旧观点以适应新的情况)。
比如,学生在学习“除数是一位数的笔算除法”时,因为以前的经验是依据口诀直接想到商(如25÷3),“造一层楼”(竖式只有一步)就可完成竖式计算。因此,当遇到42÷3,需要先算十位再算个位,竖式要“造两层楼”(分两步计算)时,学生就束手无策了。他们要么只写一步就难以写下去(图1),要么没有过程就直接写出了答案(图2)——这就是他们原有认知结构的直观体现。此时,若要学习顺利进行下去,学生唯有改变已有的认知结构,以顺应新的情况。
可见,需要通过顺应来学习的内容,跟学生已有认知结构冲突比较大,学生往往需要费周折来应对,这样的内容就应当作为教学的难点,如上例中算法的掌握。
因此,要找教学难点,一般我们可以对某个知识(技能)加以分析,看学生是否有可能用已有经验来解决。如果是学生不可能(或很难)用已有经验来解决的,这个知识(技能)通常就是教学的难点。
当然,有些知识、技能,包括思想方法,不一定是学生要改变认知结构来学习的,但也会是教学的难点,因为这个知识、技能或者思想方法,实在是比较复杂。比如,除数是两位数除法中的试商,“植树问题”中各种实际问题的解决等。
需要我们注意的是,有些课不一定有教学难点,因为它的知识(技能)并没有符合上述的特征。实际上,教学的重点也不是每节课都有的,有些课内容非常简单,那就谈不上教学重点。另外可以想见,教学重点和难点有时会发生重叠,即教学的重点也就是教学的难点,如前面讲到的“掌握乘法分配律的结构”。这时,我们就可以用“教学重难点”一并表述。
F. 小学数学课如何突出重点突破难点
1.把握好重点和难点是突出重点、突破难点的前提。通过上文的分析,我们可以得出这样的结论:要想在教学中做到突出重点、突破难点,首先是深钻教材,从知识结构上,抓住各章节和每节课的重点和难点。其次是备足学生,根据学生实际的认知水平,并考虑到不同学生认知结构的差异,把握好教学重点和难点。课前的精心准备、准确定位,就为教学时突出重点和突破难点提供了有利条件。
2.找准知识的生长点是突出重点、突破难点的条件。
小学数学是系统性很强的学科。数学教学就是要借助于数学的逻辑结构,引导学生由旧人新,组织积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的联系,不断完善认知结构。因此,新知识的形成都有其固定的知识生长点,找准知识的生长点,才能突出重点、突破难点。我们可依据以下3点找准知识生长点:(1)有的新知识与某些旧知识属同类或相似,要突出“共同点”,进而突破重、难点;(2)有的新知识由两个或两个以上旧知识组合而成,要突出“连接点”,进而突破重、难点;(3)有的新知识由某旧知识发展而来的,要突出“演变点”,进而突破重、难点。如教学“解决问题的策略”,虽然每个策略都有其适用的题目,但是在形成新策略的过程中要综合应用已有的策略,如学习替换与假设策略时要用到画图、列表等策略,且综合法与分析法贯穿始终。所以这一单元的教学,是数学认知结构改造的过程,要突出“演变点”,进而突破重、难点。
3.采用合适的教学方式是突出重点、突破难点的关键。
《全日制义务教育数学课程标准(修改稿)》指出:教师的教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。认真阅读这段话,可以知道:根据学生实际,采用合适的教学方式是突出重点、突破难点的关键。如教学“解决问题的策略”时,合适的教学方式是独立思考——尝试解题——合作交流——比较归纳——反思小结——形成体验。这样的教学方式,能使学生在经历问题解决的过程中,感悟解题策略,形成解题策略,体会策略价值,自觉应用策略解决问题,真正做到突出重点和突破难点。
4.积累基本的数学经验是突出重点、突破难点的基础。
基本数学经验是指在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。数学经验源于日常生活经验,高于日常经验。小学数学活动可分为4类:直接来源于生活的数学活动;间接来源干生活的数学活动;为数学学习设计的纯粹数学活动;意境连接性的数学活动。“解决问题的策略”教学属于间接来源于生活的数学活动,因此教师要设计有层次的数学学习活动,引导学生经历解题过程,进行体验和反思,把解决问题中的体验加以整理,对获得的数学经验进行反思,对学生的认知过程再认知,从而掌握解题策略,感受策略价值,积累数学经验,有效突破教学重、难点。以五年级上册“解决问题的策略——列举”为例,教学例1要让学生经历无序到有序的过程,学会用列表的方法有条理地列举;教学例2要引导学生用列举的策略解决问题,要不重复、不遗漏地进行思考,感受用列表、打“?”法列举的简洁、有序;教学例3要启发学生从不同的角度分析问题,进一步感受列举策略的特点。 教学每道例题,都要引导学生回顾和反思,积累数学经验,树立主动用策略解决问题的意识。
5.信息技术的合理应用是突出重点、突破难点的保障:
现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。现代信息技术已经成为学生学习数学和解决问题的强有力工具。因此,在突出教学重点和突破教学难点的过程中,要充分发挥现代信息技术的优势,化动为静,化隐为显,化难为易,化抽象为直观,并通过与传统技术的联合与互补,有效促进教学重难点的突破。如:教学六年级上册“解决问题的策略——替换、假设”时,利用信息技术,通过画图直观演示用替换和假设法解决问题的过程,使学生会用这两种策略分析数量关系,保证了重难点的顺利突破。
G. 如何做好中学数学教学设计
做好课前准备,优化教学设计
课前准备工作主要指教师要精心备课,设定教学目标,以及教学中的重点和难点,课堂提问方式设计等。科学合理的设计能使课堂教学有序进行,这样不仅节省了课堂时间,同时也顺利的实现了教学目标,教学效果显着。
要确保教学设计的科学合理,要求教师在课前要做充足的准备工作,深入研究教材、了解学生学习需求、确定教学目标,这样才能清楚在教学中该怎么做,只有基于学生实际需求的教学活动才能被学生所接受,学生也更愿意参与到教学活动中。
以学生为主,开展教学活动
新课标提倡在教学中促进学生全面发展,教学中充分发挥学生的主体性,所以,教师要将备课重点转移到学生的发展上。教学活动的开展要始终围绕学生来开展,根据学生学习情况的不同,设计有针对性的教学活动,使全体学生都能够得到全面的发展。作为教师要充分掌握学生的知识掌握情况和发展情况,使教学内容与学生的学习需求是相符的。另外,教师在备课时要注意一下问题:
第一,学生对新学习的知识和技能是否掌握;第二,教学目标中明确规定的知识和技能学生是否已经掌握;
第三,有哪些内容是学生还没有掌握的;第四,能够全部掌握课上学习知识的学生有多少;第五,学生对于课上学习的知识掌握到什么程度;第六,哪些内容学生可以自主学习,哪些内容是需要教师引导和点拨的。只有对学生深入的了解,教师才能更准确的掌握应该辅导哪些知识点,哪些知识点是可以略讲的,从而更好的把握教学重点,使教学设计更合理化,更有针对性,突出教学重点,提高数学课堂教学效率。
H. 小学数学教学如何找准重难点
所谓教学重点,就是学生必须掌握的基本技能.如:意义、性质、法则、计算等等.如何在数学教学中突破重点和难点呢?这就需要我们每一位数学教师在教学实践中不断地学习、总结、摸索.通过自己十多年来的数学教学实践,对此问题有如下点滴体会和做法.
一、认真备课,吃透教材,抓住教材的重难点是突破重难点的前提
小学数学大纲指出:小学数学教学,要使学生不仅长知识,还要长智慧……,培养学生肯于思考问题,善于思考问题.做为一个数学教师,要明确这一目的,把我们的主要精力,放在发展学生智力上,着眼于培养和调动学生的积极性和主动性,引导学生学会自己走路,首先自己要识途.我感到,要把数学之路探清认明,唯一的办法就是深钻教材,抓住各章节的重点和难点,备课时既能根据知识的特点,又能根据学生认识事物的规律,精心设计,精心安排,取得事半功倍的效果.因此,有课前的充实准备,就为教学时突破重点和难点提供了有利条件.
二、以旧知识为生长点,突破重点和难点
小学数学是系统性很强的学科,每项新知识往往是旧知识的延伸和发展,又是后续知识的基础.知识的链条节节相连、环环相扣、旧里蕴新,又不断化新为旧,不仅纵的有这样的联系,还有横的联系,纵横交错,形成知识网络,学生能认识知识之间的联系,才能深刻理解,融汇贯通.数学教学就是要借助于数学知识的逻辑结构,引导学生由旧入新,组织积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的连结,用数学学科本身的逻辑关系,训练学生的思维.数学教学并没有固定模式,实际教学中还要考虑到教学内容的一些特点,当新旧知识之间有紧密的逻辑关系或所学知识与旧知识之间没有实质性的变化,只是认知结构中原有知识的特例时,教学时就以原有知识为生长点,直接由旧到新,即从学生已有的知识和经验出发.因为学生获取知识,总是在已有的知识经验的参与下进行的,脱离了已有的知识经验基础进行教学,其原有的知识经验就无法参与,而新旧知识连结纽带的断裂,必然会给学生带来理解上的困难,使其难以掌握所学的知识.正因如此,自己在教学中运用了迁移规律,来实现重、难点的突破.
1.若一个新知识可以看作是由某一个旧知识发展而来的,教学中则要突出“演变点”,达到突破重点难点的目的:
如“有余数除法的验算”这部分知识,要以前面能整除的除法验算为基础.两类验算都要用“商和除数相乘”,后者演变的是“还要加上余数”.教学时,不但复习能整除的验算方法,还以127÷6为例要复习有余数的除法,其中重点追问:“这道题中127÷6,商21是平均分的127吗?那么平均分了多少?验算时只用商和除数相乘行吗?应怎么办?这一系列问题,大家讨论”.这样就能顺利地掌握新规律和验算方法.
2.若一个新知识可以看作是由两个或两个以上旧知识组合而成的,教学中则通过突出“连接点”这一途径,从而突破重点难点:
如“异分母分数加减法”是由同分母加减法的计算方法和通分两个旧知识组成的,它的关键问题是因为分数单位不同不能直接相加减,教学新知识前复习同分母分数加减法:
这是旧知识,并提问:同分母分数加减法的法则是什么?为什么它们能 为什么?这时又可用旧知识——通分来代替,则成为两个旧知识的连接点,这就是今天要学习的新内容异分母分数加减法.并请同学们在此基础上讨论此题的计算步骤,抓住规律“化异为同”,沟通新旧知识,从而突破难点.
3.若一个新知识可以看作与某一些旧知识属同类或相似,教学时则要突出“共同点”,进而突破重点难点:
如除数是两、三位数的除法是多位数除法的重点和难点,在这部分知识教学中,教师的主要任务是以学生为主体,引导学生运用迁移规律,分层次逐步推进,突破各个难点,学好试商的方法.除数是两、三位数的除法,是以除数是一位数的除法为基础的,后者是除数由一位变为两位、三位,出现了从被除数的哪一位除起,先看被除数的前几位的问题.但无论除数是几位数,试商方法都是一致的,即有共同点,就是教学中应抓住的,教学时,先以除数是一位数的除法为例,复习一位数除法的计算法则及试商方法,从而启发学生明白除数是两位数的除法的计算法则及试商方法同一位数除法相同,进而再研究除数是三位数的除法,通过三个层次的教学,总结归纳出除数是一、二、三位数的除法都是从最高位除起,除数是几位数,就看被除数的前几位,除到哪一位够除,就把商写在哪一位的上面,每次除得的余数必须比除数小.这就抓住了一类知识的共同点,仿旧知识学习新知识,再把新知归为旧知识.学生容易理解记忆,为学好多位数的试商,达到正确地迅速地求出商,提高计算能力奠定了基础.因此,在数学教学过程中,要重视揭示和建立新旧知识的内在联系,从已有的知识和经验出发,找准知识的生长点,帮助学生建立新旧知识的联系,是教学中突破重点难点的又一途径.
三、依据教材内容的重点和难点选择板书内容,并以板书设计为突破口
板书是课堂教学的缩影,是揭示教学重点难点的示意图,也是把握重点、难点的辐射源,板书起着提纲挈领的作用,它是在吃透教学大纲的基础上,根据教学的要求、特点和学生的实际情况设计出来的,把提纲性、艺术性、直观性融为一体,既起到纲举目张的作用,又收到激发兴趣、启迪思维的效果.自己通过多年来的实践能够根据教学内容的特点,认真选择突出重点的板书内容,精心设计板书,并力求做到板书的形式新颖、布局合理、有层次、别具一格,突出重点.例如:在备“正反比例应用题对比练习课”时,为了突破本节课的重点难点,我把突破口放在板书设计上:如下:
正反比例应用题对比练习课
不同点:
2.等式:商=商 积=积
相同点:
1.意义:x变、y随x变
2.步骤:相同
从板书的内容上看体现了这节课的重点和难点,从板书的形式上看,比较直观,对比性强,学生便于比较,对学生能够起到引导的作用,于是老师提出问题:通过这节课的学习,谁能总结归纳正反比例应用题的异同点是什么?通过学生的思考与板书内容的沟通,学生便从正反比例的意义上、解题思路上、条件方法上总结出正反比例应用题的异同点.因此教师如何根据教材特点,选择板书内容,合理设计板书格局是突破重点难点的途径之一.
四、强化感知,突破重点、难点
几何部分中的概念及有关知识抽象,学生难以理解、难以接受,要突破这些难点,教学中必须遵循儿童的认知规律,用形象、鲜明的直观教学手段,强化感知,突破难点.
如圆柱与圆锥底面积、高、体积之间,在一定条件下的内在联系是六年级学生学习中的一个难点.因此教学时自己采用直观教学与代入求值相结合的方法进行教学,指导学生动手操作,反复观察分析,做法分为如下三步:
1.将橡皮泥捏成一个底面半径为2厘米(即底面积12.56平方厘米),高为5厘米的圆柱体.
板书:已知:r=2 h=5 求S=?(12.56) V=?(62.8)
2.再将这个圆柱体捏成一个以12.56平方厘米为底的圆锥体(学生先想象这个圆锥体的形象,再按要求做)
想算结合:什么没变?什么变了?与原来圆柱体有什么关系?
(V不变、S不变、形变、H变)
板书:已知: V=62.8 S=12.56 求h锥=?(15)
15÷5=3
3.把圆锥体捏回圆柱体,再捏成以圆柱高5厘米为锥高的圆锥体;
想算结合:什么没变?什么变了?(V没变、H没变、S变)与原来圆柱体又有什么关系?
板书:已知:h=5 V=62.8 求S锥=?(37.68)
37.68÷12.56=3
通过直观教学和计算相结合,学生发现圆柱体和圆锥体之间的内在联系:
由于学生自己动手,直观教学,对所学内容,容易接受,记忆深刻,并通过教具、学具的应用,实际事例引导学生观察思考,使学生能够正确理解所学知识的含义,在理解的基础上从感知经表象到认识,从而突破教学难点.
五、以形式多样的课堂练习突出重点,突破难点
精心设计课堂练习是提高教学质量的重要保证,因为学生是通过练习来进一步理解和巩固知识的,也必须通过练习,才能把知识转化成技能技巧,从而提高综合运用知识的能力.所谓精心设计练习,关键在于“精”,精就是指在新课上设计的练习要突出重点——新知识点.围绕知识重点多层次一套一套地让学生练习.
例如:“三位数乘多位数”新课知识重点是用乘数百位上的数去乘被乘数,乘积是多少个百,乘得的积的末位要写在积的百位上.这一个新知识是在学生掌握一、两位数乘多位数计算法则的基础上来学习的,因此,设计新课练习,要紧紧围绕新课知识重点,在学生原有的知识基础上设计以下练习题:
1.完成下列各题计算:
① 314 ② 537
1570 2148
目的:集中时间和注意力放在本节课重点上.
2.计算下列各题:
(1)541×632 (2)712×431
目的:a:乘数个位、十位上数字小,节省时间
b:重点放在本节课上
c:独立完成三位数乘多位数的计算
3.选择教材上练习题:
目的:通过在前两套计算题目的基础上,总结
4.思考题:
(1)5379×8641 (2)735×1324
目的:a:起到知识渗透、迁移的作用
b:培养学生思维的灵活性
因而,要突出教学重点,还应在设计授新课的练习题上下功夫.
综上所述,教师的教服务于学生的学,教师每备一节课,要动一番脑筋,花一番心血,认真研究教学大纲,深钻教材内容,并结合学生实际,把握教材内容,弄清重点、难点,深刻理解教材意图,合理安排教学环节,精心设计课堂设问,方可找出突出重点,突破难点的方法和最佳途径.
I. 如何突破数学教学中的重难点举例说明
谈谈小学数学教学中重难点的突破方法
学习新的一课时,都有重难点,每课的重难点有难有简单,有的时候很容易就确定了,但是有的课就不同,课难上的,它的重难点就确定,难以把握,作为新的老师,我们面临的问题很多,首先就是在备课时确定重难点。下面我将说几点突破数学中重难点的方法。。 一、抓住教材,认真备课,突出重点,突破难点
我们知道小学数学教学必须使学生既长知识, 又长智慧。因此,我们在加强基础知识教学的同时,要着眼于学生智力的发展和能力的培养上,教给他们学习的方法。为此,教师在上课之前要充分钻研教材, 抓住教材中每一课的重点和难点,认真备课,根据数学本身的知识特点,结合学生的知识基础、年龄特征以及认知规律的实际,精心设计教学过程。有了充分合理的教学准备,才能为教学重点的突出和难点的突破提供有利件。
二、以旧知识为生长点,突出重点,突破难点
老师要重视从学生的生活经验和已有的知识中学习数学和理解数学,获得知识,掌握方法。小学数学是一门系统性很强的学科,每项新知识往往是旧知识的延伸和发展,又是后继知识的基础。这些新知识和旧知识节节相连,环环相扣,纵横交错,形成知识网络。学生只有认识新旧知识之间的联系,才能深刻理解,融会贯通。教学时,要引导学生以旧知识为生长点,从旧知识的复习中发现新问题。新知识总是在旧知识的参与下获取的,脱离旧知识去进行教学,会给学生在理解上带来很大的困难