导航:首页 > 物理学科 > 矿岩有哪些基本物理性质

矿岩有哪些基本物理性质

发布时间:2022-06-19 02:31:19

⑴ 地球上常见的100多种矿物是哪些 主要的物理性质是什么

长期以来,人们根据物理性质来识别矿物。如颜色、光泽、硬度、解理、比重和磁性等都是矿物肉眼鉴定的重要标志。
作为晶质固体,矿物的物理性质取决于它的化学成分和晶体结构,并体现着一般晶体所具有的特性——均一性、对称性和各向异性。
⑴矿物的颜色
矿物的颜色多种多样。呈色的原因,一类是白色光通过矿物时,内部发生电子跃迁过程而引起对不同色光的选择性吸收所致;另一类则是物理光学过程所致。导致矿物内电子跃迁的内因,最主要的是:色素离子的存在,如Fe3+使赤铁矿呈红色,V3+使钒榴石呈绿色等;是晶格缺陷形成“色心”,如萤石的紫色等。矿物学中一般将颜色分为3类:自色是矿物固有的颜色;他色是指由混入物引起的颜色;假色则是由于某种物理光学过程所致,如斑铜矿新鲜面为古铜红色,氧化后因表面的氧化薄膜引起光的干涉而呈现蓝紫色的锖色,矿物内部含有定向的细微包体,当转动矿物时可出现颜色变幻的变彩,透明矿物的解理或裂隙有时可引起光的干涉而出现彩虹般的晕色等。
⑵条痕
指矿物在白色无釉的瓷板上划擦时所留下的粉末痕迹。条痕色可消除假色,减弱他色,通常用于矿物鉴定。
⑶光泽
指矿物表面反射可见光的能力。根据平滑表面反光的由强而弱分为金属光泽(状若镀克罗米金属表面的反光,如方铅矿)、半金属光泽(状若一般金属表面的反光,如磁铁矿)、金刚光泽(状若钻石的反光,如金刚石)和玻璃光泽(状若玻璃板的反光,如石英)四级。金属和半金属光泽的矿物条痕一般为深色,金刚或玻璃光泽的矿物条痕为浅色或白色。此外,若矿物的反光面不平滑或呈集合体时,还可出现油脂光泽、树脂光泽、蜡状光泽、土状光泽及丝绢光泽和珍珠光泽等特殊光泽类型。
⑷透明度
指矿物透过可见光的程度。影响矿物透明度的外在因素(如厚度、含有包裹体、表面不平滑等)很多,通常是在厚为0.03毫米薄片的条件下,根据矿物透明的程度,将矿物分为:透明矿物(如石英)、半透明矿物(如辰砂)和不透明矿物(如磁铁矿)。许多在手标本上看来并不透明的矿物,实际上都属于透明矿物如普通辉石等。一般具玻璃光泽的矿物均为透明矿物,显金属或半金属光泽的为不透明矿物,具金刚光泽的则为透明或半透明矿物。
⑸断口、解理与裂理
矿物在外力作用如敲打下,沿任意方向产生的各种断面称为断口。断口依其形状主要有贝壳状、锯齿状、参差状、平坦状等。在外力作用下矿物晶体沿着一定的结晶学平面破裂的固有特性称为解理。解理面平行于晶体结构中键力最强的方向,一般也是原子排列最密的面网发生,并服从晶体的对称性。解理面可用单形符号(见晶体)表示,如方铅矿具立方体{100}解理、普通角闪石具{110}柱面解理等。根据解理产生的难易和解理面完整的程度将解理分为极完全解理(如云母)、完全解理(如方解石)、中等解理(如普通辉石)、不完全解理(如磷灰石)和极不完全解理(如石英)。裂理也称裂开,是矿物晶体在外力作用下沿一定的结晶学平面破裂的非固有性质。它外观极似解理,但两者产生的原因不同。裂理往往是因为含杂质夹层或双晶的影响等并非某种矿物所必有的因素所致。
⑹硬度
是指矿物抵抗外力作用(如刻划、压入、研磨)的机械强度。矿物学中最常用的是摩氏硬度,它是通过与具有标准硬度的矿物相互刻划比较而得出的。10种标准硬度的矿物组成了摩氏硬度计,它们从1度到 10度分别为滑石、石膏、方解石、萤石、磷灰石、正长石、石英、黄玉、刚玉、金刚石。十个等级只表示相对硬度的大小,为了简便还可以用指甲(2.5)、小钢刀(5~5.5)、窗玻璃(5.5)作为辅助标准,粗略地定出矿物的摩氏硬度。另一种硬度为维氏硬度,它是压入硬度,用显微硬度仪测出,以千克/平方毫米表示。摩氏硬度 H m与维氏硬度H v的大致关系是(kg/mm2),矿物的硬度与晶体结构中化学键型、原子间距、电价和原子配位等密切相关。
⑺比重
指矿物与同体积水在 4℃时重量之比。矿物的比重取决于组成元素的原子量和晶体结构的紧密程度。虽然不同矿物的比重差异很大,琥珀的比重小于 1,而自然铱的比重可高达22.7,但大多数矿物具有中等比重(2.5~4)。矿物的比重可以实测,也可以根据化学成分和晶胞体积计算出理论值。
⑻弹性、挠性、脆性与延展性
某些矿物(如云母)受外力作用弯曲变形,外力消除,可恢复原状,显示弹性;而另一些矿物(如绿泥石)受外力作用弯曲变形,外力消除后不再恢复原状,显示挠性。大多数矿物为离子化合物,它们受外力作用容易破碎,显示脆性。少数具金属键的矿物(如自然金),具延性(拉之成丝)、展性(捶之成片)。
⑼磁性
根据矿物内部所含原子或离子的原子本征磁矩的大小及其相互取向关系的不同,它们在被外磁场所磁化时表现的性质也不相同,从而可分为抗磁性(如石盐)、顺磁性(如黑云母)、反铁磁性(如赤铁矿)、铁磁性(如自然铁)和亚铁磁性(如磁铁矿)。由于原子磁矩是由不成对电子引起的,因而凡只含具饱和的电子壳层的原子和离子的矿物都是抗磁的,而所有具有铁磁性或亚铁磁性、反铁磁性、顺磁性的矿物都是含过渡元素的矿物。但若所含过渡元素离子中不存在不成对电子时(如毒砂),则矿物仍是抗磁的。具铁磁性和亚铁磁性的矿物可被永久磁铁所吸引;具亚铁磁性和顺磁性的矿物则只能被电磁铁所吸引。矿物的磁性常被用于探矿和选矿。
⑽发光性
些矿物受外来能量激发能发出可见光。加热、摩擦以及阴极射线、紫外线、X 射线的照射都是激发矿物发光的因素。激发停止,发光即停止的称为萤光;激发停止发光仍可持续一段时间的称为燐光。矿物发光性可用于矿物鉴定、找矿和选矿

⑵ 1、矿物有哪些主要的物理性质常见的造岩矿物有哪几种 2、什么是岩石简述矿物和岩石的关系

矿物的物理性质依矿物不同而不同;常见的造岩矿物:石英,钾长石,斜长时,黑云母,白云母等。岩石:天然产出的、有一种或多种矿物或其他物质(如火山玻璃、生物残骸、地外物质等)构成的固态集合体。矿物组成岩石。

⑶ 矿物的物理性质有哪些

矿物的物理性质有颜色、条痕、透明度、光泽、解理与断口和硬度。

1、颜色

颜色是矿物对不同波长可见光吸收程度不同的反映,是矿物最明显、最直观的物理性质。据成色原因可分为自色、他色和假色。自色是矿物本身固有的成分、结构所决定的颜色,具有鉴定意义。

他色是矿物混入了某些杂质所引起的。假色则是由于矿物内部裂隙或表面的氧化膜对光的折射、散射引起的。

2、条痕

条痕比矿物的颜色更固定,但只适用于一些深色矿物,对浅色矿物无鉴定意义。

3、透明度

肉眼鉴定矿物时,一般可分为透明、半透明、不透明三级。

4、光泽

根据矿物表面反光程度的强弱,用类比方法常分为四个等级:金属光泽、半金属光泽、金刚光泽及玻璃光泽。由于矿物表面不平,内部裂纹,或成隐晶质和非晶集合体等,可形成某种独特的光泽,如丝绢光泽、油脂光泽、蜡状光泽、珍珠光泽、土状光泽等。

5、解理与断口

据解理产生的难易程度,可将矿物的解理分成五个等级:①即极完全解理、②完全解理、③中等解理、④不完全解理。不同种类的矿物,其解理发育程度不同,有些矿物无解理,有些矿物有一组或数组程度不同的解理。

6、硬度

在鉴定矿物时常用一些矿物互相刻划比较其相对硬度,一般用10种矿物分为10个相对等级作为标准。

(3)矿岩有哪些基本物理性质扩展阅读

常见矿物以及矿物用途:

已知矿物有4000多种,但绝大多数不常见,最常见的不过200多种,重要矿产资源的矿物也就数十种,地壳中常见的造岩矿物只有20到30种,其中石英以及长石,云母等硅酸盐矿物占92%,而石英和长石含量高达63%。

按矿物的化学成分与化学性质,通常将矿物划分为五类,每一类矿物都具有相似的化学性质和物理性质。一自然元素矿物如自然金,自然铜,自然硫,金刚石与石墨等。二硫化物及其类似化合物矿物,如黄铁矿,毒砂。

常见矿物,石墨,黄铁矿,黄铜矿,辉锑矿,方铅矿,闪锌矿,石英,刚玉,赤铁矿,磁铁矿,褐铁矿,硬锰矿,萤石,方解石,白云石,孔雀石,硬石膏,石膏,重晶石,磷灰石,橄榄石,16级石,红柱石,蓝晶石,矽线石,绿帘石,海绿石,硅灰石,透辉石,普通辉石,普通角闪石。

矿物用途一是作为原料用来提取有用的成分,或者直接用以生产其他产品,二是利用矿物的某种特殊性能直接作为材料使用。 以工业矿物原料工业原料可分为金属和非金属两种。金属原料构成常见的贵金属原料的矿物主要有自然金,自然银和富含铂族元素的矿物。

构成常见的金属原料的矿物主要有磁铁矿,赤铁矿,黄铜矿,方铅矿,闪锌矿,黑钨矿,白钨矿,软锰矿,硬锰矿,锡石,铝土矿等。

⑷ 岩土体的一些基本物理、热物理性质

1.岩石的主要物理性质

天然岩石受地质环境的制约,常常表现为不均一性和各向异性的特点,在分析判别岩石的热物理性质时岩石的物理性质是基础。

(1)比重:岩石的固体颗粒重量与其同体积水在4℃时的重量之比称为岩石的比重(Δ)。

北京浅层地温能资源

式中:W——绝对干燥时岩石的重量;

Vs——岩石干燥重为W时其中固体颗粒的体积;

rω——水在4℃时的容重。

(2)容重:

岩石单位体积的重量称为容重,容重在不同的含水状态分为干容重、天然容重和饱和容重三种。

常用干容重(rd)作为容重的评价指标(单位:kg/m3):

北京浅层地温能资源

式中:V——岩石体积;

G——岩石的重量。

(3)孔隙度:

岩石的孔隙体积与岩石的总体积的百分率(n):

北京浅层地温能资源

式中:Vδ——岩石孔隙体积;

V——岩石总体积。

(4)孔隙比:

岩石中孔隙体积和岩石固体颗粒体积之比称孔隙比(ξ)。孔隙比ξ可由孔隙度直接计算求得:

北京浅层地温能资源

2.土的主要物理性质

(1)土的重量和含水量:常常要测试土的比重△s,天然容重γ,干容重rd和天然含水量ω。

(2)土的颗粒组分。

(3)土的水理性质:土与水相互作用显示的一系列性质,包括土的塑性、膨胀性、收缩性等。

表1-1碎石土分类

表1-2砂土与粘性土分类

注:①对砂土定名时,应根据粒径分组,从大到小由最先符合者确定;当其粒径小于0.005mm的颗粒含量超过全重的10%时,按混合土定名,如“含粘性土细砂”等。

② 砂质粉土的工程性质接近粉砂。

③ 粘质粉土的定名(或Ip<12的低塑性土),当按Ip定名与颗分定名有矛盾时,应以颗分定名为准。

④ 塑性指数的确定,液限以76g圆锥仪入土深度10mm为准;塑限以搓条法为准。

⑤对有机质含量Q>5%的土,可定名为:5%<Q≤10%时,定为有机质土;10%<Q≤60%时,定名为泥炭质土;Q>60%时,定名为泥炭土。

一般来讲,影响岩石物理性质的因素有两大类:①内部因素;②外部因素。内部因素是指岩石的矿物成分、结构构造以及孔隙充填物的物理性质。外部因素主要是指岩石所处环境的温度、压力、埋深等。

3.岩石的主要热物理性质

目前,关于岩土体的热物理性质的研究尚缺乏系统的资料,通常由岩石的热物理性质代替,而岩土体通常比单一岩石要复杂得多。在地壳岩石的各种热物理性质中,最重要的是岩石的导热系数或热导率(λ)、岩石热阻系数或热阻率(ξ)、岩石比热(C)、岩石热容量(Cp)及岩石温度传导系数或热扩散系数(a)。

(1)岩石的导热系数或热导率(λ)。

表示岩石导热能力的大小,即沿热流传递的方向单位长度(l)上温度(e)降低一度时单位时间(T)内通过单位面积(s)的热量(Q)。按傅里叶定律,在热流量一定的条件下,通过热传导作用所流经的物质的热导率与温度梯度成反比,可用下式表示:

北京浅层地温能资源

岩石的热导率[λ,W/m·℃]在数值上等于单位温度梯度下,单位导热面积上的导热速率。它表征物质导热能力的大小(热阻力的倒数),通常用实验测定。

岩石的热导率取决于岩石的成分、结构、湿度、温度及压力等条件,即热导率是密度、温度、压力等的函数,其表达式为λ=λ(ρ,t,P……)。

一般情况下,岩石的热导率随压力、密度、湿度的加大而增高,随温度的增高而减小,但地壳上部的温度和压力对岩石的热导率的影响极小。除矿物成分外,岩石的孔隙度和湿度对其热导率有较大影响,一般随孔隙度的增加而降低,随湿度的增加而增加。对于各向同性的均质材料来说,热导率可以用一个单一的数值来表征;对于各向异性的岩石而言,不同方向的热导率差别较大,在从事浅层地温能资源开发利用过程中,第四系松散沉积物各向异性的特点应引起足够重视。

在致密的岩石中,造岩矿物的性质对岩石的热导率起主要控制作用,如果岩石中具有高热导率的矿物含量越高,岩石的热导率也越高。近年来,为计算大地热流值,世界各地岩石热导率的实测数据日益增多,致密坚硬的岩石一般在实验室测量,而松散层沉积物主要是深海沉积及湖底沉积,多为就地测量。土壤热导率(λ)大小同样由土壤组成成分和比例决定。土壤水分热导率居中,土壤空气热导率最小,土壤固体导热率最大。

在所有的固体中,金属是最好的导热体。一般对纯金属热导率是温度的函数,用λ=λ(t)表示,并且随温度的升高热导率降低。对于金属液体,热导率也是随温度的升高热导率降低。

对于非金属的热导率可以表述为是组成、结构、密度、温度、压力等的函数,表示为λ=λ(组成,结构,密度,温度t、压强P……)。一般情况下,非金属的热导率随温度的升高和压力的提高而增大。

对大多数均质的固体,热导率与温度成线性关系:

北京浅层地温能资源

式中:λ——t℃值;

αt——温度系数,金属为负,非金属为正;

λ0——0℃值。

应予指出,在热传导过程中,物体内不同位置的温度各不相同,因而热导率也不同,在工程计算中,热导率可取平均温度下的数值,视作常数。

液体的导热系数一般0.1~0.7W/(m·℃),随温度升高而降低。气体的导热系数真空最小,是良好的绝热体,有利于保温,绝热,如热水瓶夹层抽真空保温。再如非金属保温材料,空气夹层的双层玻璃,弹松的棉被等具有良好的保温功能的实质是含有大量的空气。气体的导热系数随气体密度和温度的升高而增大。在相当大的压强范围内(P>2000at或p<20mmHg),压强对导热系数无明显影响。

综上所述,金属的热导率值最大,非金属次之,液体的较小,气体的最小,常见的岩石热导率值可从手册中查得。

(2)岩石热阻系数或热阻率(ξ)

是岩石导热系数或热导率的倒数(单位:m·℃/W),即

北京浅层地温能资源

由傅里叶热传导方程可推出以下关系式:

北京浅层地温能资源

当热流(q)不变时,地温梯度(ΔT/ΔZ)与热阻率(ξ)成正比。

岩石热阻率一般呈现如下规律:随着岩石密度的增大(随着埋深加大,同一类沉积物的密度会变大),岩石和某些矿层的热阻减小;岩石热阻随总湿度的增加而减小,其原因是水的热阻(2.00)大大小于空气的热阻(46.00),由于干岩石孔隙中充满着空气,故热阻大,对未胶结的松散岩石,当湿度增加到20%~40%时,热阻大致可降低6~7倍;岩石热阻随着岩石透水性的增强而显着减小,因含水层中热的传递方式除传导作用外,还有对流现象发生;在具有层状构造的岩石中,可以观测到各向异性现象,即沿层理方向的热阻比垂直于层理方向的热阻要低;岩石热阻随温度增高而略微增大。

(3)岩石比热(C):加热一千克物质使其上升摄氏一度时所需的热量,即

北京浅层地温能资源

式中:C——岩石的比热,J/g·℃;

ΔQ——加热p克物质温度升高△t时所需要的热量(J/g·℃)与容重(kg/m3)的乘积,即

Cp=C·ρ

Cp单位为J/m3·℃。大部分岩石和有用矿物的比热,其变化范围都不大,一般介于0.59~2.1J/g·℃之间。由于水的比热较大(15℃时为4.2J/g·℃),因此,随着岩石湿度的增加,其比热也有所增加。沉积岩如粘土、页岩、砂岩、灰岩等在自然埋藏条件下,一般都具有很大的湿度,其比热稍大于结晶岩,前者为0.8~1.0J/g·℃,后者为0.63~0.84J/g·℃。

土壤的热容量(Cv)分重量热容量和容积热容量。气象常用容积热容量。1g物质温度升高(或降低)1℃所吸收(放出)的热量,称重量热容量(J/g·℃);1cm3的物质温度升高(或降低)1℃所吸收(放出)的热量,称容积热容量(J/cm3·℃)。

土壤的热容量大小由土壤组成成分和比例决定。土壤水分热容量最大,温度不易升、降,如潮湿土壤。土壤空气热容量最小,温度易升、降,如干燥土壤。土壤固体热容量,居中。

(4)岩石温度传导系数或导温率(a):又称热扩散系数,表示在非稳定热态下岩石单位体积在单位时间内温度的变化,即岩层中温度传播的速度,其关系式如下:

北京浅层地温能资源

式中:a——岩石温度传导系数,m2/h;

λ——岩石热导率,J/m·℃;

ξ——岩石热阻率,m·℃/W;

C——岩石比热,J/g·℃;

ρ——岩石的容重,g/m3;

Cp——岩石的单位热容量,J/m3·℃。

岩石温度传导系数或温度传导率是一个综合性参数,主要反映岩石的热惯性特征,在分析钻孔内温度平衡的形成条件和用人工场方法研究钻孔剖面时具有重要意义。岩石温度传导系数主要与岩石的热阻及其容重有关,并与它们成反比关系。同时,岩石温度传导系数随岩石湿度增加而增加,随温度的增高而略微减小。对层状岩石来说具有各向异性特点,岩石温度传导系数顺岩石层理方向比垂直层理方向要高。

综上所述,为了获得有关地球温度场的量的相关参数,除在野外进行地温、热传导等测量、采取原状样品外,还必须开展实验室工作,以测定岩石热导率、比热及温度传导系数等热物理性质。

⑸ 岩石的物理性质

岩石的物理性质主要包括密度、磁性(包括磁化率、磁化强度、剩余磁化强度以及剩余磁化强度同感应磁化强度的比值等)、电性(包括电导率、电容率、极化率等)、孔隙度、渗透率、弹性波速度、导热性、放射性、热学性质(热导率、热容)、硬度等。这里仅介绍几种对理解岩石过程和深部地质最重要的物理性质。

(一)密度

岩石的密度是岩石基本集合相(固相、液相和气相)的单位体积质量。岩石的密度取决于它的矿物组成、结构构造、孔隙度和它所处的外部条件。大多数造岩矿物如长石、石英、辉石等具有离子型或共价型结晶键,密度为2.2~3.5g/cm3(极少数达4.5g/cm3)。结晶键为离子-金属型或共价-金属型的矿物,如铬铁矿、黄铁矿、磁铁矿等密度较大,为3.5~7.5g/cm3

侵入岩从长英质到超镁铁质,随着SiO2含量的减少和铁镁氧化物含量的增加,岩石的密度逐渐增大。岩石中金属矿物的含量增高,岩石的密度就增大。矿区花岗岩的密度有的高达2.7g/cm3以上。喷出岩的孔隙度比侵入岩大因而与相应的侵入岩相比密度要小。另外,沉积岩的密度是由组成沉积岩的矿物密度、孔隙度和填充孔隙气体和液体的密度决定的。变质岩的密度主要决定于其矿物组成。密度在重力勘探、油气储层中岩性识别、测井解释等方面应用广泛,此外对理论研究也很重要。

(二)磁性

岩石磁性是由岩石所含铁磁性矿物产生的磁性。常用的岩石磁性参数是磁化率、磁化强度、剩余磁化强度矢量,以及剩余磁化强度同感应磁化强度的比值。岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。一般说,橄榄岩、辉长岩、玄武岩等超基性、基性岩浆岩的磁性最强;变质岩次之;沉积岩最弱。火成岩的磁性取决于岩石中铁磁性矿物的含量。结构构造相同的岩石,铁磁性矿物含量愈高,磁化率值愈大。铁磁性侵入岩的天然剩余磁化强度,按酸性、中性、基性、超基性的顺序逐渐变大;沉积岩的磁性主要也是由铁磁性矿物的含量决定的;变质岩的磁性是由其原始成分和变质过程决定的。

图4-15 火成岩的热导率与温度的关系(转引自Williams et al.,1979)

(三)热导率

热导率是物质导热能力的量度,是一个重要的物理量。符号为λ或k。其定义为:在物体内部垂直于导热方向取两个相距1m,面积为1m2的平行平面,若两个平面的温度相差1K,则在1s内从一个平面传导至另一个平面的热量就规定为该物质的热导率,它既控制着稳态条件下地壳各层的地温梯度,又决定着诸如侵入体的冷却等非稳态的时间尺度。热导率定义为在稳态热传导条件下,热流密度(即通过单位面积的热流量)除以一维导热体中的温度梯度所得的商。硅酸盐熔体是热的不良导体,它们的热导率(图15)与两种传热体制有关,即正常晶格热传导和辐射热传递。随温度升高和晶格结构膨胀,前一种机制的作用降低,而后一种的增大。到达熔融范围内,两种效应趋于平衡,但在高温下基性岩浆的热导率通常以一个不断增大的速率降低,这种情况待续到1200℃。温度更高时,晶体或流体的暗度快速降低,辐射热传递增强,总的热导率就要高得多。更酸性的岩石,如安山岩和流纹岩,暗度较低,因而在低得多的温度范围内就显示了热导率的增大。

岩石的热导率取决于组成岩石的矿物和固体颗粒间的介质如空气、水、石油等的绝热性质。火成岩和变质岩的热导率相对于沉积岩来说变化范围不大,数值较高。侵入岩中,超基性岩的热导率较高,花岗岩次之,中间成分的侵入岩又次之。喷出岩的热导率比相应的侵入岩小。沉积岩的热导率变化范围大是热导率较低的孔隙充填物造成的。岩石和矿物的热导率与温度、压力有关系。一般说来,温度升高,热导率降低。

(四)热容

岩浆和火成岩的最具特色的热学性质之一是,它们比热容小,而熔融热或结晶热很大。热容(heat capacity)C的定义为C=△Q/△T(δ-17)。即当一系统接受一微小热量△Q而温度升高△T时,比值△Q/△T即为该系统的热容C。比热容(specific heat capacity)c,则是单位质量的热容,亦即单位质量物质升高一度所需的热量,c=C/m=△Q/(m·△T)。熔融热或结晶热△HF是在液相、固相共存的温度下,使单位质量物质熔融或结晶所需增加或移出的热量。对大多数火成岩,常压下的比热容cp约为1255J/(kg·K)(Mcbirney,1984)。例如,玄武岩浆cp可取1214J/(kg·K),而酸性岩浆的cp可取1340J/(kg·K)(马昌前等,1994)。而熔融热或结晶热△HF的典型值约介于(2.5×105~4.2×105)J/kg之间。可见在相变温度下,使岩石熔融所需吸收(或放出)的热量,在其他温度时则能使这些岩石(或岩浆)温度改变200~300℃。

(五)弹性波速

横波(S)是指振动方向与传播方向相垂直的波,纵波(P)是指振动方向与传播方向相同的波。在岩石和矿物中传播的速度vP和vS是地球物理勘探中常用的两个参数。岩石中的波速取决于其矿物成分和孔隙充填物的弹性。对固体矿产、油气、工程中的地震勘探、垂直地震剖面(Vertical Seismic Profiling,VSP)等非常重要。

火成岩和变质岩的弹性波速度与岩石密度的关系接近于线性关系,密度越大,速度越高。火成岩和变质岩的含水饱和度增大时,vP变大,vS也变大,但不如vP的变化那样显着。气饱和岩石的vP比相应的水饱和岩石的vP小。片麻岩等片理发育的岩石,沿片理面测量的波速大于垂直片理面测量的波速,有时相差1倍以上。与结晶岩相比,沉积岩中的弹性波速度受孔隙度的影响很大,变化范围很宽。表4-11列出了一些火成岩的P波速资料,可见,在未蚀变的火成岩中,速度是比较高的,但火山碎屑岩和蚀变的火成岩,波速就变化很大。

表4-11 火成岩的波速

(据Schutter,2003)

⑹ 矿物的主要性质包括哪些

矿物的概述
在科学发展史上,矿物的定义曾经多次演变。按现代概念,矿物首先必须是天然产出的物体﹐从而与人工制备的产物相区别。但对那些虽由人工合成﹐而各方面特性均与天然产出的矿物相同或密切相似的产物﹐如人造金刚石﹑人造水晶等﹐则称为人工合成矿物。早先﹐曾将矿物局限于地球上由地质作用形成的天然产物。但是﹐近代对月岩及陨石的研究表明﹐组成它们的矿物与地球上的类同。有时只是为了强调它们的来源﹐称它们为月岩矿物和陨石矿物﹐或统称为宇宙矿物。另外还常分出地幔矿物,以与一般产于地壳中的矿物相区别。其次﹐矿物必须是均匀的固体。气体和液体显然都不属于矿物。但有人把液态的自然汞列为矿物;一些学者把地下水﹑火山喷发的气体也都视为矿物。至于矿物的均匀性则表现在不能用物理的方法把它分成在化学成分上互不相同的物质。这也是矿物与岩石的根本差别。此外﹐矿物这类均匀的固体内部的原子是作有序排列的﹐即矿物都是晶体。但早先曾把矿物仅限于“通常具有结晶结构”。这样﹐作为特例﹐诸如水铝英石等极少数天然产出的非晶质体﹐也被划入矿物。这类在产出状态和化学组成等方面的特征均与矿物相似﹐但不具结晶构造的天然均匀固体特称为似矿物(mineraloid)。似矿物也是矿物学研究的对象﹐往往并不把似矿物与矿物严格区分。每种矿物除有确定的结晶结构外﹐还都有一定的化学成分﹐因而还具有一定的物理性质。矿物的化学成分可用化学式表达﹐如闪锌矿和石英可分别表示为ZnS和 SiO2。但实际上所有矿物的成分都不是严格固定的﹐而是可在程度不等的一定范围内变化。造成这一现象的原因是矿物中原子间的广泛类质同象替代。例如闪锌矿中总是有Fe2+替代部分的Zn2+﹐Zn﹕Fe(原子数)可在1﹕0到约6﹕5间变化﹐此时其化学式则写为(Zn﹐Fe)S﹐石英的成分非常接近于纯的SiO2﹐但仍含有微量的Al3+或Fe3+等类质同象杂质。最后﹐矿物一般是由无机作用形成的。早先曾把矿物全部限于无机作用的产物﹐以此与生物体相区别﹐后来发现有少数矿物﹐如石墨及某些自然硫和方解石﹐是有机起源的﹐但仍具有作为矿物的其馀全部特征﹐故作为特例﹐仍归属于矿物。至于煤和石油﹐都是由有机作用所形成﹐且无一定的化学成分﹐故均非矿物﹐也不属于似矿物。绝大多数矿物都是无机化合物和单质﹐仅有极少数是通过无机作用形成的有机矿物﹐如草酸钙石[Ca(C2O4)‧2H2O]等。编辑本段矿物的形态
矿物千姿百态﹐就其单体而言﹐它们的大小悬殊﹐有的肉眼或用一般的放大镜可见(显晶)﹐有的需借助显微镜或电子显微镜辨认(隐晶)﹔有的晶形完好﹐呈规则的几何多面体形态﹐有的呈不规则的颗粒存在于岩石或土壤之中。矿物单体形态大体上可分为三向等长(如粒状)﹑二向延展(如板状﹑片状)和一向伸长(如柱状﹑针状﹑纤维状) 3种类型。而晶形则服从一系列几何结晶学规律。 矿物单体间有时可以产生规则的连生﹐同种矿物晶体可以彼此平行连生﹐也可以按一定对称规律形成双晶﹐非同种晶体间的规则连生称浮生或交生。 矿物集合体可以是显晶或隐晶的。隐晶或胶态的集合体常具有各种特殊的形态﹐如结核状(如磷灰石结核)﹑豆状或鲕状(如鲕状赤铁矿)﹑树枝状(如树枝状自然铜)﹑晶腺状(如玛瑙)﹑土状(如高岭石)等。编辑本段矿物的物理性质
概述
长期以来﹐人们根据物理性质来识别矿物。如颜色﹑光泽﹑硬度﹑解理﹑比重和磁性等都是矿物肉眼鉴定的重要标志。 作为晶质固体﹐矿物的物理性质取决于它的化学成分和晶体结构﹐并体现着一般晶体所具有的特性──均一性﹑对称性和各向异性。
矿物的颜色
矿物的颜色多种多样。呈色的原因﹐一类是白色光通过矿物时﹐内部发生电子跃迁过程而引起对不同色光的选择性吸收所致﹔另一类则是物理光学过程所致。导致矿物内电子跃迁的内因﹐最主要的是﹕色素离子的存在﹐如Fe3+使赤铁矿呈红色﹐V3+使钒榴石呈绿色等﹔是晶格缺陷形成“色心”﹐如萤石的紫色等。矿物学中一般将颜色分为3类﹕自色是矿物固有的颜色﹔他色是指由混入物引起的颜色﹔假色则是由于某种物理光学过程所致﹐如斑铜矿新鲜面为古铜红色﹐氧化后因表面的氧化薄膜引起光的干涉而呈现蓝紫色的锖色﹐矿物内部含有定向的细微包体﹐当转动矿物时可出现颜色变幻的变彩﹐透明矿物的解理或裂隙有时可引起光的干涉而出现彩虹般的晕色等。
条痕
指矿物在白色无釉的瓷板上划擦时所留下的粉末痕迹。条痕色可消除假色﹐减弱他色﹐通常用于矿物鉴定。
光泽
指矿物表面反射可见光的能力。根据平滑表面反光的由强而弱分为金属光泽(状若镀克罗米金属表面的反光﹐如方铅矿)﹑半金属光泽(状若一般金属表面的反光﹐如磁铁矿)﹑金刚光泽(状若钻石的反光﹐如金刚石)和玻璃光泽(状若玻璃板的反光﹐如石英)四级。金属和半金属光泽的矿物条痕一般为深色﹐金刚或玻璃光泽的矿物条痕为浅色或白色。此外﹐若矿物的反光面不平滑或呈集合体时﹐还可出现油脂光泽﹑树脂光泽﹑蜡状光泽﹑土状光泽及丝绢光泽和珍珠光泽等特殊光泽类型。
透明度
指矿物透过可见光的程度。影响矿物透明度的外在因素(如厚度﹑含有包裹体﹑表面不平滑等)很多﹐通常是在厚为0.03毫米薄片的条件下﹐根据矿物透明的程度﹐将矿物分为﹕透明矿物(如石英)﹑半透明矿物(如辰砂)和不透明矿物(如磁铁矿)。许多在手标本上看来并不透明的矿物﹐实际上都属于透明矿物如普通辉石等。一般具玻璃光泽的矿物均为透明矿物﹐显金属或半金属光泽的为不透明矿物﹐具金刚光泽的则为透明或半透明矿物。
断口﹑解理与裂理
矿物在外力作用如敲打下﹐沿任意方向产生的各种断面称为断口。断口依其形状主要有贝壳状﹑锯齿状﹑参差状﹑平坦状等。在外力作用下矿物晶体沿着一定的结晶学平面破裂的固有特性称为解理。解理面平行于晶体结构中键力最强的方向﹐一般也是原子排列最密的面网发生﹐并服从晶体的对称性。解理面可用单形符号(见晶体)表示﹐如方铅矿具立方体{100}解理﹑普通角闪石具{110}柱面解理等。根据解理产生的难易和解理面完整的程度将解理分为极完全解理(如云母)﹑完全解理(如方解石)﹑中等解理(如普通辉石)﹑不完全解理(如磷灰石)和极不完全解理(如石英)。裂理也称裂开﹐是矿物晶体在外力作用下沿一定的结晶学平面破裂的非固有性质。它外观极似解理﹐但两者产生的原因不同。裂理往往是因为含杂质夹层或双晶的影响等并非某种矿物所必有的因素所致。
硬度
是指矿物抵抗外力作用(如刻划﹑压入﹑研磨)的机械强度。矿物学中最常用的是摩氏硬度﹐它是通过与具有标准硬度的矿物相互刻划比较而得出的。10种标准硬度的矿物组成了摩氏硬度计﹐它们从1度到 10度分别为滑石﹑石膏﹑方解石﹑萤石﹑磷灰石﹑正长石﹑石英﹑黄玉﹑刚玉﹑金刚石。十个等级只表示相对硬度的大小﹐为了简便还可以用指甲(2-2.5)﹑小钢刀(6-7)﹑窗玻璃(5.5-6)作为辅助标准﹐粗略地定出矿物的摩氏硬度。另一种硬度为维氏硬度﹐它是压入硬度﹐用显微硬度仪测出﹐以千克/平方毫米表示。摩氏硬度 H m与维氏硬度H v的大致关系是(kg/mm2)﹐矿物的硬度与晶体结构中化学键型﹑原子间距﹑电价和原子配位等密切相关。
比重
指矿物与同体积水在 4℃时重量之比。矿物的比重取决于组成元素的原子量和晶体结构的紧密程度。虽然不同矿物的比重差异很大﹐琥珀的比重小于 1﹐而自然铱的比重可高达22.7﹐但大多数矿物具有中等比重(2.5~4)。矿物的比重可以实测﹐也可以根据化学成分和晶胞体积计算出理论值。
弹性﹑挠性﹑脆性与延展性
某些矿物(如云母)受外力作用弯曲变形﹐外力消除﹐可恢复原状﹐显示弹性﹔而另一些矿物(如绿泥石)受外力作用弯曲变形﹐外力消除后不再恢复原状﹐显示挠性。大多数矿物为离子化合物﹐它们受外力作用容易破碎﹐显示脆性。少数具金属键的矿物(如自然金)﹐具延性(拉之成丝)﹑展性(捶之成片)。
磁性
根据矿物内部所含原子或离子的原子本征磁矩的大小及其相互取向关系的不同﹐它们在被外磁场所磁化时表现的性质也不相同﹐从而可分为抗磁性(如石盐)﹑顺磁性(如黑云母)﹑反铁磁性(如赤铁矿)﹑铁磁性(如自然铁)和亚铁磁性(如磁铁矿)。由于原子磁矩是由不成对电子引起的﹐因而凡只含具饱和的电子壳层的原子和离子的矿物都是抗磁的﹐而所有具有铁磁性或亚铁磁性﹑反铁磁性﹑顺磁性的矿物都是含过渡元素的矿物。但若所含过渡元素离子中不存在不成对电子时(如毒砂)﹐则矿物仍是抗磁的。具铁磁性和亚铁磁性的矿物可被永久磁铁所吸引﹔具亚铁磁性和顺磁性的矿物则只能被电磁铁所吸引。矿物的磁性常被用于探矿和选矿。
发光性
些矿物受外来能量激发能发出可见光。加热﹑摩擦以及阴极射线﹑紫外线﹑X 射线的照射都是激发矿物发光的因素。激发停止﹐发光即停止的称为萤光﹔激发停止发光仍可持续一段时间的称为燐光。矿物发光性可用于矿物鉴定﹑找矿和选矿。编辑本段矿物的化学成分和晶体结构
化学组成和晶体结构是每种矿物的基本特征﹐是决定矿物形态和物理性质以及成因的根本因素﹐也是矿物分类的依据﹐矿物的利用也与它们密不可分。
矿物与地壳的化学组成
化学元素是组成矿物的物质基础。人们对地壳中产出的矿物研究较为充分。地壳中各种元素的平均含量(克拉克值)不同。氧﹑硅﹑铝﹑铁﹑钙﹑钠﹑钾﹑镁八种元素就占了地壳总重量的97%﹐其中氧约占地壳总重量的一半(49%)﹐硅占地壳总重的1/4以上(26%)。故地壳中上述元素的氧化物和氧盐(特别是硅酸盐)矿物分布最广﹐它们构成了地壳中各种岩石的主要组成矿物。其馀元素相对而言虽微不足道﹐但由于它们的地球化学性质不同﹐有些趋向聚集﹐有的趋向分散。某些元素如锑﹑铋﹑金﹑银﹑汞等克拉克值甚低﹐均在千万分之二以下﹐但仍聚集形成独立的矿物种﹐有时并可富集成矿床﹔而某些元素如铷﹑镓等的克拉克值虽远高于上述元素﹐但趋于分散﹐不易形成独立矿物种﹐一般仅以混入物形式分散于某些矿物成分之中。
矿物晶体结构中原子的堆积(排列)与配位数
共价键的矿物(如自然金属﹑卤化物及氧化物矿物等)晶体结构中﹐原子常呈最紧密堆积(见晶体)﹐配位数即原子或离子周围最邻近的原子或异号离子数﹐取决于阴阳离子半径的比值。当共价键为主时(如硫化物矿物)﹐配位数和配位型式取决于原子外层电子的构型﹐即共价键的方向性和饱和性。对于同一种元素而言﹐其原子或离子的配位数还受到矿物形成时的物理化学条件的影响。温度增高﹐配位数减小﹐压力增大﹐配位数增大。矿物晶体结构可以看成是配位多面体(把围绕中心原子并与之成配位关系的原子用直线联结起来获得的几何多面体)共角顶﹑共棱或共面联结而成。
矿物成分和晶体结构的变化
一定的化学成分和一定的晶体结构构成一个矿物种。但化学成分可在一定范围内变化。矿物成分变化的原因﹐除那些不参加晶格的机械混入物﹑胶体吸附物质的存在外﹐最主要的是晶格中质点的替代﹐即类质同象替代﹐它是矿物中普遍存在的现象。可相互取代﹑在晶体结构中占据等同位置的两种质点﹐彼此可以呈有序或无序的分布(见有序-无序)。 矿物的晶体结构不仅取决于化学成分﹐还受到外界条件的影响。同种成分的物质﹐在不同的物理化学条件(温度﹑压力﹑介质)下可以形成结构各异的不同矿物种。这一现象称为同质多象。如金刚石和石墨的成分同样是碳单质﹐但晶体结构不同﹐性质上也有很大差异。它们被称为碳的不同的同质多象变体。如果化学成分相同或基本相同﹐结构单元层也相同或基本相同﹐只层的叠置层序有所差异时﹐则称它们为不同的多型。如石墨2H 多型(两层一个重复周期﹐六方晶系)和3R 多型(三层一个重复周期﹐三方晶系)。不同多型仍看作同一个矿物种。
矿物的晶体化学式
矿物的化学成分一般采用晶体化学式表达。它既表明矿物中各种化学组分的种类﹑数量﹐又反映了原子结合的情况。如铁白云石 Ca(Mg﹐Fe﹐Mn)[CO3]2﹐圆括号内按含量多少依次列出相互成类质同象替代的元素﹐彼此以逗号分开﹔方括号内为络阴离子团。当有水分子存在时﹐常把它写在化学式的最后﹐并以圆点与其他组分隔开﹐如石膏Ca[SO4]‧2 H2O。

⑺ 岩石物理性质的介绍

指岩石的力学、热学、电学、声学、放射学等特性参数和物理量。矿物的物理性质包括:颜色、条痕、光泽、透明度、硬度、解理、断口、脆性和延展性、弹性和挠性、相对密度、磁性、发光性、电性、其它性质。在力学特征中包括渗流特性和机械特性。

⑻ 岩石物理性质和热物理性质评价

岩石物理性质包括岩石的结构、构造、矿物成分、密度、孔隙率、弹性波速、磁化率、电阻率、放射性等,岩石热物理性质包括岩石热导率、热容量、生热率。在浅层地温研究中关注更多的是密度、孔隙率和热物理性质。

(一)岩石密度、孔隙度、含水率

1.岩石密度

岩石密度是指单位体积岩石的质量,用ρ表示:

浅层地温能资源评价

式中:ρ———密度(g/cm3);

m———质量(g);

V———体积(cm3)。

岩石的密度与化学成分、矿物组成、结构构造、孔隙度以及它所处外部条件有关。

岩浆岩的密度与化学成分有直接关系,总体讲由基性岩到酸性岩密度减小。化学成分相同时,侵入岩密度大于喷出岩,这是由喷出岩中孔隙度比侵入岩大所致。

沉积岩的密度取决于沉积物矿物组成、孔隙度和孔隙内充填物的密度。沉积岩孔隙度变化范围较大,一般为2%~2.5%,高者达50%,松散沉积物孔隙度更大。因此,沉积岩密度变化大。随埋藏深度增加和成岩作用的加深,密度增大,形成了同种岩性埋藏深度越大则密度越大、地层成岩时代越老则岩石密度越大的规律。

变质岩的密度取决于矿物组成。变质岩中孔隙度很小,一般为0.1%~3%,极少达到5%,岩石密度受孔隙影响很小,而受变质作用性质影响较大。在区域变质岩中绿片岩相岩石密度小于原岩,角闪岩、麻粒岩、榴辉岩等中深度变质岩密度大于原岩,这是由于化学成分中镁铁元素集中的结果。在动力变质过程中有矿物重结晶者密度大于原岩,无重结晶者密度小于原岩,原因在于无重结晶者使岩石产生了裂隙。

2.岩石孔隙度

岩石孔隙度又称孔隙率,是岩石的孔隙体积与包括空隙体积在内的岩石总体积之比。孔隙度是表示岩石孔隙性的数量指标,反映岩石颗粒接触关系和成岩及后期淋滤作用的综合结果。

岩石的孔隙度取决于岩石的结构和形成条件。岩浆岩的孔隙度与形成环境相关,喷出岩孔隙度大于侵入岩。变质岩由于在变形条件下伴有组分变化,且在一定压力下孔隙度变小。沉积岩在不同的成岩阶段孔隙度变化很大,沉积物组成、结构中的支撑关系、成岩作用和成岩后淋滤作用都对孔隙度产生影响;沉积岩孔隙度不但影响油气迁移富集,而且对岩石热导率和热容量也有重要影响。

3.岩石含水率

岩石含水率是岩石中水的质量与岩石矿物或颗粒质量之比。含水率与孔隙度直接相关。孔隙是岩石充水的前提条件,岩石中孔隙都被水充填时岩石达到水饱和状态。

(二)岩石热导率、比热容、生热率

物质热传导都是物质内部微观粒子相互碰撞和传递的结果。不同物质处于不同状态时,结构不同,导热机理不尽相同。固体中的热传导机制主要由两部分组成:①电子传导(依靠电子相互作用和碰撞传递热量);②晶格原子传导(依靠晶体点阵和晶格振动传递热量)。一般金属中热量主要由电子传导,硅质物质中的传热主要由晶格原子完成。

岩石热导率(K)、热容(C)和生热率(A)是基本热物理参数,分别反映了岩石对热能量传输、储存和生热的能力。浅层岩石土壤热导率(K)、热容(C)、生热率(A)是影响浅层地温能资源质量的主要因素。

1.岩石热导率(K)

热导率是反映物质导热能力的性质参数,一般通过理论计算和实验测试来确定热导率,后者是获得物质热导率的主要途径。

岩石传热机理是通过造岩矿物晶格振动和矿物晶体点阵振动进行的,主要是传导方式。岩石热导率指沿热流传递方向单位长度(l)上温度(T)降低1℃时单位时间(t)内通过单位面积(S)的热量(Q)。根据傅里叶定律,物质热导率与热流密度成正比,与温度梯度成反比,用如下关系式表达:

浅层地温能资源评价

热导率受矿物成分(岩性)和矿物间接触关系即岩石结构影响,同时受外部环境影响,如岩石裂隙、孔隙及含水率、压力条件等(对于松散堆积物的热导率影响的因素更为复杂),一般情况下岩石热导率随压力、密度、湿度增大而增大。均质物质热导率可用一个数值表征,非均质材料热导率不能用一个数值来表征,岩石属非均质体,特别是具有层理、片理、叶理以断层等外部条件约束时,热导率就不可用简单关系描述。

总体上,结晶岩热导率数值高于沉积岩,且随岩石中镁铁组分增高而增大,表2-9是根据杨淑贞对华北地壳上部岩石热传导结构探讨,熊亮萍等对中国东南地区岩石热导率值分析,邱楠生对西北塔里木、准噶尔、柴达木三盆地岩石热导率研究和吴乾蕃对松辽盆地地热场研究资料汇总简化而成。由表2-9可见,岩浆岩、变质岩热导率普遍高于沉积岩,沉积岩热导率随颗粒粒径增大而增大,化学沉积岩热导率随成分而异并随结晶程度增高而增大。

表2-9 中国各地岩石热导率表

沉积岩热导率变化较大,沉积物颗粒成分、形状、接触关系、孔隙度、含水率等对热导率有直接影响。此外,热导率还受岩石所处构造环境影响。同一种岩性固态颗粒,由细到粗热导率增大,压力增大热导率升高,孔隙含水率增大热导率增大,温度升高热导率减小。对于松散沉积物来讲,其孔隙度大、含水率不同,热传输的影响因素不仅有传导形式,还有水参与下的对流和无水孔隙中的辐射,其热传输机理较复杂。

孔隙中含水程度不同,热导率不同,在成岩岩石中热导率与孔隙度呈指数关系,表2-10是杨淑贞等于1986年对砂岩与泥岩的研究成果,以图2-19表示;表2-11是对岩石不同含水率下的热导率的测试结果,显示当孔隙一定时,热导率随含水率增大而增大,呈线性关系。图2-20这种线性形式可用K=A+B·W表示,式中,K为热导率,A为初始热导率,B为变化系数,W为含水量。

表2-10 饱和水和风干状态孔隙岩石热导率表

注:K=A+Blogφ,回归系数r为0.9748或0.9660。(据杨淑贞,1986,略修改)

图2-19 砂岩(砂质泥岩)热导率与孔隙度关系图(据杨淑贞,1986)

南京大学肖琳对不同孔隙度与含水量的土体热导率进行了实验室热线法研究,得出不同土体热导率随含水量及孔隙度的变化规律是:孔隙度一定时,土体热导率随含水量增大而增大;含水量一定时土体热导率随孔隙度增大而减小。由图2-21可见,土体热导率随孔隙度、含水量变化规律在不同土体中表现形式不同。对于粉砂和粉土热导率与含水量呈对数关系,含水量增大至一定量时,热导率趋于稳定;粉质粘土热导率与含水量呈指数关系,热导率在较大含水量范围内增加急剧,达一定量时趋于稳定。土体热导率随孔隙度增大而减小,粉砂和粉土热导率与孔隙度呈指数函数,先急剧增大后趋稳定;粉质粘土热导率与孔隙率呈对数函数,随孔隙度增长先平缓减小后急剧增加。

表2-11 不同含水率时孔隙岩石热导率表

(据杨淑贞等,1985)

图2-20 孔隙岩石热导率与含水率的关系图(据杨淑贞,1986)

这项研究还表明,孔隙岩石中热导率随含水率变化是有临界值的,含水率增加到临界值时,热导率不再增加。究其原因是因为粘土颗粒的热传递依靠颗粒接触进行,水的加入使颗粒接触面积增大,热导率升高,当水量达到使颗粒充分接触时,水量再继续增加,颗粒有效接触面积不会增加。所以,热导率趋于稳定。北京地区实际测试岩土体热导率结果也支持这一结论。

图2-21 含水量对土样(不同孔隙率)热导率的影响图(据肖玉林等,2008)

沉积岩(物)热导率随压力增大、埋藏深度增大、岩石地层形成年龄增长而增大的根本原因在于岩石中孔隙度随上述因素增加而减小、颗粒质点接触面积加大。

沉积岩(物)热导率随温度升高而降低,但降低数量级在10-3上,影响很小。虽然这一数量级对热导率影响较小,但这一变化规律在地温场研究中非常重要。据张延军研究,在0℃以上,粘土和中细砂热导率与温度有以下线性关系:

粘土:k=-0.0016T+1.2269,β=1.30×10-3

中砂:k=-0.0057T+1.8819,β=3.03×10-3

细砂:k=-0.0099T+1.8957,β=5.22×10-3

式中:k———热导率(W/(m·K));

T———温度;

β———温度影响系数。

2.岩石比热容(C)

岩石比热容指使单位质量物质温度变化1K所必需的热量,单位为J/(kg·K)。

C=Q/(m·ΔT)

式中:C———比热容;

m———质量(kg);

ΔT———温度变化。

比热容是反映物质吸热或放热能力的物理量。任何物质都有自己的比热容,同种物质在不同状态下,比热容也不同。比热容与过程有关,可分为定压比热容和定容比热容。从工程手册上可以查阅的比热容为物质的平均比热容(表2-12)。

松散沉积物比热容是(颗粒)固态物质与孔隙及填充物比热容之和。不同物质成分、结构岩性层构成的堆积体比热容采用加权平均法计算;对同一岩性,饱和水状态与非饱和水状态、均质状态和非均质状态下,比热容有显着差别。

比热容是计算热量的主要参数之一,岩土体的比热容可以通过多种测试方法获得,也可查阅各种工程手册获得。

表2-12 几种岩石土壤比热容表

(据胡芃等,2009)

3.岩石生热率(A)

岩石生热率是指单位体积岩石在单位时间内生成热量的总和,是表征岩石自身生热能力高低的性质参数。一般认为,地壳浅部热源是由岩石中U,Th,K三种放射性元素衰变产生的,可以用下式来求取岩石热量:

浅层地温能资源评价

式中:A———岩石生热率(μW/m3);

w(U),w(Th),w(K)———U,Th,K在岩石中的质量分数(10-6)。

岩石生热率与岩性密切相关,岩浆岩由基性到酸性生热率增高;沉积岩随颗粒减小生热率增高;变质岩生热率变化较大,为0.3~10.9μW/m3,以变粒岩最大。三大岩类的生热率排列为岩浆岩>沉积岩>变质岩。

岩石生热率随深度(z)分布呈指数递减,表达式为

A(z)=A(0)·exp(-z/H)

式中:A(z)———岩石生热率随深度变化值;

A(0)———地表岩石生热率;

H———对数缩减量。

地球不同深度带生热率估计如下:0~100km大地热流为50%;100~200km为25%;200~300km为15%;300~400km为8%;>400km为2%。

岩石放射性是地壳温度场分布的主要控制因素,是地球内部驱动深部构造热过程的重要动力来源,在浅层地温场评价中应予高度重视。

表征岩石热物理性质的参数还有热阻率、热扩散率、不同传热形式的热流密度等。热导率、比热容和生热率是岩石最基本的热物理性质参数,以此为基础,利用其他物性参数和相应关系可以导出岩石的其他热物理性质参数。

⑼ 岩石物理性质的分类

矿物按其磁性的不同可分为3类:①反磁性矿物,如石英、磷灰石、闪锌矿、方铅矿等。磁化率为恒量,负值,且较小。②顺磁性矿物,大多数纯净矿物都属于此类。磁化率为恒量,正值,也比较小。③铁磁性矿物,如磁铁矿等含铁、钴、镍元素的矿物。磁化率不是恒量,为正值,且相当大。也可认为这是顺磁性矿物中的一种特殊类型。 岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强;变质岩次之;沉积岩最弱。
①岩浆岩的磁性取决于岩石中铁磁性矿物的含量。结构构造相同的岩石,铁磁性矿物含量愈高,磁化率值愈大。铁磁性侵入岩的天然剩余磁化强度,按酸性、中性、基性、超基性的顺序逐渐变大。铁磁性侵入岩的特点是Q值一般小于1。由接触交代作用而形成的岩石,Q值可达1~3,甚至更大。
②沉积岩的磁性主要也是由铁磁性矿物的含量决定的。分布最广的沉积岩造岩矿物,如石英、方解石、长石、石膏等,为反磁性或弱顺磁性矿物。菱铁矿、钛铁矿、黑云母等矿物之纯净者是顺磁性矿物;含铁磁性矿物杂质者具有强顺磁性。沉积岩的磁化率和天然剩余磁化强度值都比较小。
③变质岩的磁性是由其原始成分和变质过程决定的。原岩为沉积岩的变质岩,磁性一般比较弱;原岩为岩浆岩的变质岩在变质作用相同时,其磁性一般比原岩为沉积岩的变质岩强。大理岩和结晶灰岩为反磁性变质岩。岩石变质后,磁性也发生变化。蛇纹石化的岩石磁性比原岩强;云英岩化、粘土化、绢云母化和绿泥石化的岩石,磁性比原岩减弱。
岩石磁性的各向异性是岩石的层状结构造成的。磁化率高,变质程度深的岩石,磁各向异性很明显。褶皱区沉积岩的磁各向异性一般要比地台区的大。
岩石的天然剩余磁化强度矢量是在岩石形成过程中,按当时当地的地磁场方向“冻结”下来的。这个矢量的指极性与现代地磁场方向一致的称为正极性。岩石的年代愈古老,它的剩余磁化强度矢量的成分愈复杂。岩石剩余磁性由各种天然磁化过程形成。岩石在磁场中从居里点以上温度冷却时获得的剩余磁性称为热剩余磁性;岩石中的铁磁性物质在磁场中由于磁粘滞性而获得的剩余磁性称粘滞剩余磁性;沉积岩中的微小磁性颗粒在沉积过程中受磁场作用采取定向排列因而获得的剩余磁性称为沉积剩余磁性;沉积物中的铁矿物沉积后,在磁场中经化学变化而获得的剩余磁性称化学剩余磁性;还有等温剩余磁性是常温下磁性物质在磁场中获得的剩余磁性(见岩石磁性)。岩石的剩余磁性是古地磁学赖以建立的基础。
岩石和矿物的磁性与温度、压力有关系。顺磁性矿物的磁化率与温度的关系遵循居里定律。铁磁性矿物的居里温度一般为300~700℃,其磁化率一般随温度升高而增大(可达50%),至居里温度附近则迅速下降。铁磁性矿物的磁化率与温度的关系有两种类型:一为可逆型,即在矿物加热和冷却过程中温度相同时磁化率值相同,如纯磁铁矿、钛铁矿。另一种为不可逆型,即矿物加热和冷却过程中温度相同时磁化率值不同,如对升温不稳定的铁磁性矿物。岩石加热时,磁化率也逐步升高,至200~400℃迅速下降。岩石的磁化率和磁化强度值都随压力的增大而减小。

⑽ 矿石矿石物理力学性质是指什么

题目有错别字,正确的应该为:“矿物的矿石物理力学性质是指什么?”
矿物的物理性质,决定于矿物的化学成分和内部构造。由于不同矿物的化学成分或内部构造不同,因而反映出不同的物理性质。所以,矿物的 物理性质,是鉴别矿物的重要依据。

(一)光学性质:
1、颜色
矿物的颜色,是矿物对可见光波的吸收作用产生的。按成色原因,有自色、他色、假色之分。
自色: 矿物固有的颜色,颜色比较固定。 一般来说,含铁,锰多的矿物,如黑云母、普通角闪石、普通辉石等,颜色较深;含硅、铝、钙等成分多的矿物,如石英、长石、方解石等,颜色较浅。
他色:
矿物混入了某些杂质所引起的,与矿物的本身性质无关。他色不固定,对鉴定矿物没有很大意义。 假色:由于矿物内部的裂隙或表面的氧化薄膜对光的折射、散射所引起的。如方解石解理面上常出现的虹彩;斑铜矿表面常出现斑驳的蓝色和紫色。
2、光泽
矿物表面呈现的光亮程度,称为光泽。它是矿物表面的反射率的表现。 按其反射强弱程度,分金属光泽、半金属光泽和非金属光泽。 造岩矿物绝大部分属于非金属光泽。
玻璃光泽:反光如镜,如长石、方解石解理面上呈现的光泽。 珍珠光泽:象珍珠一样的光泽,如云母等。
丝绢光泽:纤维状或细鳞片状矿物,形成丝绢般的光泽,如纤维石膏和绢云母等。 油脂光泽:矿物表面不平,致使光线散射,如石英断口上呈现的光泽。 蜡状光泽:石蜡表面呈现的光泽,如蛇纹石、滑石等致密块体矿物表面的光泽。
土状光泽:矿物表面暗淡如土,如高岭石等松细粒块体矿物表面所呈现的光泽。
3、条痕
矿物在无釉瓷板上摩擦时所留下的粉末痕迹,它是指矿物粉末的颜色。对不透明矿物的鉴定很重要。
(二)力学性质
1.硬度
矿物抵抗外力刻划、研磨的能力,称为硬度。硬度是矿物的一个重要鉴定特征。 在鉴别矿物的硬度时,是用两种矿物对刻的方法来确定矿物的相对硬度。
摩氏硬度计: 硬度对比的标准,从软到硬依次由下列10种矿物组成,称为摩氏硬度计。 (1)滑石(2)石膏(3)方解石(4)萤石 (5)磷灰石(6)正长石(7)石英(8)黄玉(9)刚玉(10)金刚石
可以看出,摩氏硬度只反映矿物相对硬度的顺序,它并不是矿物绝对硬度的等级。 矿物硬度的确定,是根据两种矿物对刻时互相是否刻伤的情况而定。
野外工作中,常用指甲(2~2.5)、铁刀刃(3~5.5)、玻璃(5~5.5)、钢刀刃(6~6.5)鉴别矿物的硬度
矿物硬度,对岩石的强度有明显影响。风化、裂隙、杂质等会影响矿物的硬度。所以在鉴别矿物的硬度时,要注意在矿物的新鲜晶面或解理面上进行。
2. 解理、断口
矿物受打击后,能沿一定方向裂开成光滑平面的性质,称为解理。裂开的光滑平面称为解理面。不具方向性的不规则破裂面,称为断口。
不同的晶质矿物,由于其内部构造不同,在受力作用后开裂的难易程度、解理数目以及解理面的完全程度也有差别。
根据解理出现方向的数目,有一个方向的解理,如云母等; 有两个方向的解理,如长石等; 有三个方向的解理,如方解石等。 根据解理的完全程度,可将解理分为以下几种:
极完全解理极:易裂开成薄片,解理面大而完整,平滑光亮,如云母。
完全解理:沿解理方向开裂成小块,解理面平整光亮,如方解石。 中等解理:既有解理面,又有断口,如正长石。 不完全解理:常出现断口,解理面很难出现,如磷灰石。 矿物解理的完全程度和断口是互相消长的,解理完全时则不显断口。反之,解理不完全或无解理时,则断口显着。如不具解理的石英,则只呈现贝壳状的断口。

解理是造岩矿物的另一个鉴定特征。

阅读全文

与矿岩有哪些基本物理性质相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1422
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071