导航:首页 > 物理学科 > 大气的物理过程有哪些

大气的物理过程有哪些

发布时间:2022-06-19 16:30:29

㈠ 大气物理学与大气环境的介绍

大气物理学与大气环境:大气物理: 旨在研究大气中发生的宏微观物理过程,揭示它们之间的相互联系和制约的依存关系。掌握现代人工影响天气基本理论和技能,探讨人工影响天气的新途径和新方法。大气环境: 研究包括污染成分在内的气体与气是物质在大气层内扩散、输送和运动规律和它们在大气中经历的物理和化学过程以及大气中的二次污染物的形成机理及其影响。

㈡ 大气之间的非绝热过程有哪些

非绝热加热(diabatic heating)是系统和外界之间的热量交换过程。非绝热加热过程主要包括①辐射②感热输送③潜热释放,对中期和长期天气过程以及气候的形成和变化,都有重要的作用

系统和外界之间的热量交换过程。如把大气作为整体来考虑,非绝热加热过程主要包括:

(1)辐射:大气的最根本能源是太阳辐射。但它只有一小部分直接为大气所吸收;一部分被地表面吸收,使地面增温;其余则被地球和大气反射回宇宙空间(见大气环流的能量平衡和转换)。此外,大气还吸收地面的长波辐射,同时大气本身也放射长波辐射。通过辐射过程,大气可以获得或丧失能量。

(2)感热输送:通过传导、湍流和对流等过程,将地面的热量输送给大气。

(3)潜热释放:空气中水汽的凝结或凝华过程和水滴的冻结过程,都将有大量的潜热释放,这是对流层大气获得热能的重要方式之一。除上述非绝热加热之外,还有在高层大气中的化学和光化学效应释放能量(见大气化学、平流层和中层大气物理学、大气臭氧层)。非绝热加热过程对中期和长期天气过程以及气候的形成和变化,都有重要的作用。

非绝热加热对大气局地扰动位能的影响和机理

编辑

研究背景

在经典大气能量学框架下,全位能被分解为可以释放转化成动能的有效部分和不可释放的无效部分。对于这一能量有效性问题的研究,人们通常使用大气有效位能的基本概念,基于此来探讨位能与动能的转换、能量循环以及大气环流的维持,并将其拓展到海洋能量学的研究中。但以往这些研究中,有效位能的概念大多只具有全球平均意义,反映了大气或海洋系统的整体能量有效性。然而,大气系统内部的能量收支、分布与转化都具有明显的局地性特征,这种具有明显局地意义的能量异常变化必然会对局地大气环流的变化产生显着影响。因此,考察局地能量有效性问题对于了解局地大气环流的变动极为重要。

大气能量学的变化与作为大气外源的非绝热加热关系尤为密切。大气环流的异常变化与大气辐射强迫、潜热释放以及下垫面加热等非绝热过程紧密关联。非绝热加热对全球和局地的大气能量有效性均具有显着影响。因此,在前面研究基础上,进一步探讨非绝热加热对扰动位能的影响特征和相关机理,对于理解扰动位能与非绝热加热的关系以及扰动位能主模态的形成问题具有重要意义。考察扰动位能与代表非绝热加热的变量场之间的耦合相关特征,进而揭示非绝热加热对于代表局地能量有效性特征的扰动位能的影响机理。[1]

资料和方法

利用美国NCEP/NCAR(National Centers for Environment Prediction/National Center for Atmospheric Research)再分析资料,所用资料时段为1948--2004年,每年取冬季(11月一次年3月)作为研究对象;格点资料分辨率取为5°×5°,主要针对热带(南北纬30°之间)北半球热带外地区(20°N以北到极地)进行分析。所用变量分别为计算得到的整层积分的扰动位能,各标准气压层的三维大气温度场和风场,以及表面温度场和气压场。使用的海表温度(Sea Surface Temperature,SST)数据集为美国气候资料中心提供的扩展重构的海表温度资料。

大气中的非绝热加热是维持大气环流运转和发展天气系统的主要热力强迫因子。非绝热加热(冷却)过程构成了大气内能的源(汇)项,并在大多数天气现象(如对流、锋面、天气系统等)中起着决定性作用。非绝热加热率的估算一般有直接和间接的方法。对于直接方法,通过分别估计非绝热加热各分量,例如潜热释放可以从降水率来估计或从向外长波辐射来估算。然而,这样的估计通常不能反映非绝热加热的垂直分布特征,而且,一般也不可能对全球尺度的不同非绝热加热各分量有较为可信的估计。对于间接方法,它是利用热力学能量方程,从大气环流资料来计算作为剩余项的非绝热加热。其优点是完整的三维空间的大气环流资料可供利用,而这些资料的观测精度相对比较可靠,而且,如果非绝热加热是从现代数值天气预报模式提供的分析资料间接计算得到的,那么这种余差法是最为准确的。通过直接利用现有各个层次上再分析资料等计算非绝热加热率的方法,我们得到了全球三维空间非绝热加热(视热源)分布。扰动位能与非绝热加热场之间耦合关系通过奇异值分解(Singular Value Decomposition,SVD)分析技术加以实现。有关这一方法的说明详见文献[2]附录。

结论与讨论

天气和气候异常现象与大气系统内部的局地能量源(汇)密切相关,而这与非绝热加热是密不可分的。旨在考察非绝热加热对大气扰动位能的影响特征,并在此基础上初步探讨其机理问题。分析结果表明,海表温度和扰动位能二者主耦合型与ENSO变率关系密切,而海温异常对热带外扰动位能的影响模主要在太平洋一北美区域存在显着信号,此外,全球表面温度对大气扰动位能有很显着的影响特征。在进一步研究了大气中视热源与扰动位能的相关机理问题后,结果显示,低纬地区两场仍主要以ENSO模态为主要耦合型,而在热带外地区相关关系要弱一些,视热源异常耦合模态表现出与北半球环状模类似的特点。

热带非绝热加热对热带外地区大气环流异常的影响作用,可能是通过局地扰动位能的途径加以实现的,回答这一问题,需要借鉴以往关于低纬加热异常与中高纬环流异常的关系和机制研究工作。

㈢ 大气是由哪些气体构成的

地球的周围包围着一层厚厚的被子——大气,人类就居住在这层大气的底部。这看不见、摸不着的大气圈里,发生着种种有趣的自然现象,为人类的生存提供了可靠的保障。

大气的成分很复杂,除了氧气和氮气外,还有氢、二氧化碳、氦、氖、氩、氪、氙、臭氧等气体。氮和氧分别占了空气总容积的78.09%和20.95%,其他气体的总和还不到空气总容积的1%。大气层中还含有一定数量的水和各种尘埃杂质,是形成云、雨、雾、雪的重要物质。

大气圈里的空气虽然看不见,但质量大得惊人。据科学家估算,整个地球周围有5000多亿吨重的空气。住在地球上的人,如果没有人体内向外的压力,会被压得粉身碎骨。由于地球引力的作用,大气质量的十分之九都集中在近地面的16公里以内的大气层里。离地面越高,空气就越稀薄。

地球大气圈的厚度大约有二三千公里。由于各个不同高度上的大气特性不同,因此,气象学家往往把大气划分为几个层次。

距地球表面最近的一层叫对流层。在中纬度地区的平均厚度为10~12公里,在赤道地区的为16~18公里,两极地区的为7~10公里。对流层的主要特点是气温随高度升高而降低,离地面愈远温度愈低。对流层内空气具有强烈的垂直和水平对流运动,从而导致了水的三态变化,产生了一系列物理变化过程。风霜雨雪、云雾冰雹等变化多端的天气现象,都发生在对流层内。

从对流层往上到50公里的高空是平流层。这里空气稀薄,水气和尘埃很少,气流以水平运动为主,而且很平稳,所以很适宜于飞机飞行。从平流层再往上到85公里的高空是中间层。这一层的气温随高度升高而降低,最高处可到-90℃左右。中间层的顶部有少量水分,偶尔还能见到银白色的夜光云。

从85公里到500公里这一层,称为热层或暖层。它的特点是温度随高度升高而升高,在距地面400公里的高空,温度可达3000~4000℃。这一层里的氧原子和氮原子处于电离状态,所以又被称为电离层。来自地表某个地点的无线电波,必须经过电离层的反射,才能传到世界各地。

热层以上就是大气的外层了。它的下限约在800~1000公里,上限可伸展到3000公里。这里是地球大气与星际空间的过渡地带。因为这一层的空气非常稀薄,温度又高,一些高速运动的空气分子和原子拼命挣脱地球引力的速缚,逃逸到宇宙太空中去,所以,这一层又称为散逸层。

㈣ 大气成分经历了哪些变化

时间
原始大气出现于距今约46亿年以前,比人类出现的时间约早三个量级(人类出现距今数百万年),比人类最初出现文字记载的时间约早六个量级(文字出现距今数千年)。

特点
所以人类无法获得各阶段的大气样本,只好依靠所发现的地层征迹和太阳系各行星上大气的资料(见行星大气),结合自然演化规律以及物理学、化学、生物学的理论和实验等,用模拟方法或逻辑推理进行研究。但所得的资料仍十分零星,而且地球大气的演化史,前同星系、太阳系、行量起源相衔接,后同人类对大气的影响相联系,本身又和地球的地质发展史、生命发展史等密切相关,加上研究其演变所牵涉到的学科很多,除大气科学本身外,和天文学、地质学、生物学、物理学、化学等,都有密切关系,所以要把一鳞半爪的资料串联为在地区上能横向调谐、在时间上能纵向连贯,在各学科研究结果间又能互相补充、互相印证,基本上符合自然发展规律,能科学地说明现在大气成分和结构机理的地球大气演化史,是十分困难的。一些学者提出了地球大气的多种演变模式,这些模式往往由于研究者的主要专业的局限,作资料处理时所强调的方面不同,在许多细节上,难以统一认识,但模式的轮廓仍有其共同性,与细节相比,还是具有一定稳定性的。
地球大气的演化经历了原始大气、次生大气和现在大气三代。
原始大气
原始大气的形成与星系的形成密切有关。宇宙中存在着许多原星系,它们最初都是一团巨大的气体,主要成分是氢。以后原星系内的气体,团集成许多中心,在万有引力作用下,气体分别向这些中心收缩。出现了许多原星体,愈收缩则密度愈大,密度愈大则收缩愈快,使原星体内原子的平均运动速率愈来愈大,温度也愈来愈高。当温度升高到摄氏1000万度以上时,原星体会发生核反应,出现四个氢原子聚变为一个氦原子的过程。较大的原星体的核反应较强,能聚变成较重的元素。按照爱因斯坦能量(E)和质量(m)方程E = mc2(c为光速),这些聚变过程会伴生大量辐射能,使原星体转变为发光的恒星体。恒星体内部存在复杂的核反应,在氢的消耗过程中,较重元素的丰度渐渐增多,并形成一些更重要的元素,光谱分析的结果是,原子丰度随原子序数增大而减少。
特别巨大的星体,内部核反应特强,能使星体爆裂,形成超新星,它具有强大的爆炸压强,使其中已形成的不同原子量的元素裂成碎片,散布到星际空间中去,造成宇宙尘和气体云,随后冷却成暗云。这样,超新星的每一次爆炸,都进一步使星系内增加更多的较重元素,使星际空间内既有大量气体(以氢、氦为主),又有固体微粒。太阳系是银河系中一个旋臂空间内的气体原星体收缩而成的,因此它包含有气体和固体微粒。太阳系的年龄估计为46~50亿年,银河系的历史约比太阳系长2~3倍。原太阳系中弥漫着冷的固体微粒和气体,它们是形成行星、卫星及其大气的原料。在原太阳系向中心收缩时,其周围绕行的固体微粒和气体,也分别在引力作用下凝聚成行星和卫星。关于太阳、行星、卫星是否同时形成,尚有不同意见:有的认为是同时形成的,有的认为是先形成太阳,后形成行星及卫星,有的认为卫星是行星分裂出的,也有认为行星和卫星的形成早于太阳。但对地球的形成约在距今46亿年前,则是比较一致的看法。原地球是太阳系中原行星之一。它是原太阳系中心体中运动的气体和宇宙尘借引力吸积而成。它一边增大,一边扫并轨道上的微尘和气体,一边在引力作用下收缩。随着“原地球”转变为“地球”,地表渐渐冷凝为固体,原始大气也就同时包围地球表面。

次生大气
地球原始大气的消失不仅是太阳风狂拂所致,也与地球吸积增大时温度升高有关。温度升高的原因不仅是吸积的引力能转化为热能所致,流星陨石从四面八方打击固体地球表面,其动能也会转化为热能。此外,地球内部放射性元素如铀和钍的衰变也释放热能。上述这些发热机制都促使当时地球大气中较轻气体逃逸。发热机制除使当时大气中较轻气体向太空逃逸外,还起到为产生次生大气准备条件的另外两种作用。①使被吸积的C1型碳质球粒陨石中某些成分因升温而还原,使铁、镁、硅、铝等还原分离出来,由于它们的比重不等,造成了固体地球的重力不稳定结构。但由于它们都是固体,没有自动作重力调整的可能。②使地球内部升温而呈熔融状态。这一作用十分重要。因为它使原来不能作重力调整的不稳定固体结构熔融,可通过对流实现调整,发生了重元素沉向地心、轻元素浮向地表的运动。这个过程在整个地质时期均有发生,但在地球形成初期尤为盛行。在这种作用下,地球内部物质的位能有转变为宏观动能和微观动能的趋势。微观动能即分子运动动能,它的加大能使地壳内的温度进一步升高,并使熔融现象加强。宏观动能的加大,使原已坚实的地壳发生遍及全球的或局部的掀裂。这两者的结合会导致造山运动和火山活动。在地球形成时被吸积并锢禁于地球内部的气体,通过造山运动和火山活动将排出地表,这种现象称为“排气”。地球形成初期遍及全球的排气过程,形成了地球的次生大气圈。这时的次生大气成分和火山排出的气体相近。而夏威夷火山排出的气体成分主要为水汽(约占79%)和二氧化碳(约占12%)。但根据H.D.霍兰(1963)的研究,在地球形成初期,火山喷发的气体成分和现代不同,他们以甲烷和氢为主,尚有一定量的氨和水汽。次生大气中没有氧。这是因为地壳调整刚开始,地表金属铁尚多,氧很易和金属铁化合而不能在大气中留存,因此次生大气属于缺氧性还原大气。次生大气形成时,水汽大量排入大气,当时地表温度较高,大气不稳定对流的发展很盛,强烈的对流使水汽上升凝结,风雨闪电频仍,地表出现了江河湖海等水体。这对此后出现生命并进而形成现在的大气有很大意义。次生大气笼罩地表的时期大体在距今45亿年前到20亿年前之间。

现在大气
由次生大气转化为现在大气,同生命现象的发展关系最为密切。地球上生命如何出现是长期争论的问题。А.И.奥巴林(1924)最早提出生命现象最初出现于还原大气中的看法,其后有S.L.米勒(1952)等人在实验室的人造还原大气中,用火花放电的办法制出了一些有机大分子,如氨基酸和腺嘌呤等。腺嘌呤是脱氧核糖核酸和核糖核酸的主要成分。所以这种实验有一定意义。但20世纪60、70年代人们利用射电望远镜发现在星际空间就有这些有机大分子,例如氨亚甲胺(CH2NH)、氰基(CN)、乙醛(CH3CHO)、甲基乙炔(CH3C2H)等。他们又曾将陨星粉末加热,发现有乙腈(CH3CN)等挥发性化合物和腺嘌呤等非挥发性化合物。于是认为生命的根苗可能存在于星际空间。但无论如何,即使“前生命物质”来自星际空间,但最简单的最早的生命,仍应出现于还原大气中。这是因为在氧气充沛的大气中,最简单的生命体易于分解、难以发展。

氮和氩的形成
正如现在大气中的二氧化碳,最初有一部分是由次生大气中的甲烷和氧起化学作用而产生的一样,现在大气中的氮,最初有一部分是由次生大气中的氨和氧起化学作用而产生。火山喷发的气体中,也可能包含一部分氮。在动植物繁茂后,动植物排泄物和腐烂遗体能直接分解或间接地通过细菌分解为气体氮。氧虽是一种活泼的元素,但是氮是一种惰性气体,所以在常温下它们不易化合。这就是为什么氮能积集成大气中含量最多的成分,且能与次多成分氧相互并存于大气中的原因。至于现在大气中含量占第三位的氩,则是地壳中放射性钾衰变的副产品。

氧和二氧化碳的形成和变化
在绿色植物尚未出现于地球上以前,高空尚无臭氧层存在,太阳远紫外辐射能穿透上层大气到达低空,把水汽分解为氢、氧两种元素。当一部分氢逸出大气后,多余的氧就留存在大气中。在此过程中,因太阳远紫外线会破坏生命,所以地面上就不能存在生命。初生的生命仅能存在于远紫外辐射到达不了的深水中,利用局地金属氧化物中的氧维持生活,以后出现了氧介酶(Oxygen-mediating enzymes),它可随生命移动而供应生命以氧,使生命能转移到浅水中活动,并在那里利用已被浅水过滤掉有害的紫外辐射的日光和溶入水中的二氧化碳来进行光合作用以增长躯体,从而发展了有叶绿体的绿色植物。于是光合作用结合水汽的光解作用使大气中的氧增加起来。大气中氧的组分较多时,在高空就可能形成臭氧层。这是氧分子与其受紫外辐射光解出的氧原子相结合而成的(见大气臭氧层)。臭氧层一旦形成,就会吸收有害于生命的紫外辐射,低空水汽光解成氧的过程也不再进行。于是在低空,绿色植物的光合作用成为大气中氧形成的最重要原因。这时生命物因受到了臭氧层的屏护,不再受远紫外辐射的侵袭,且能得到氧的充分供应,就能脱离水域而登陆活动。总之,植物的出现和发展使大气中氧出现并逐渐增多起来,动物的出现借呼吸作用使大气中的氧和二氧化碳的比例得到调节。此外,大气中的二氧化碳还通过地球的固相和液相成分同气相成分间的平衡过程来调节。
一般在现在大气发展的前期,地球温度尚高时,水汽和二氧化碳往往从固相岩石中被释放到大气中,使大气中水汽和二氧化碳增多。另外大气中甲烷和氧化合时,也能放出二氧化碳。但当现在大气发展的后期,地球温度降低,大气中的二氧化碳和水汽就可能结合到岩石中去。这种使很大一部分二氧化碳被锢禁到岩石中去的过程,是现在大气形成后期大气中二氧化碳含量减少的原因。再则,一般温度愈低,水中溶解的二氧化碳量就愈多,这又是现在大气形成后期二氧化碳含量比前期大为减少的原因之一。因为现在大气的温度比早期为低。
大气中氧含量逐渐增加是还原大气演变为现在大气的重要标志。一般认为,在太古代晚期,尚属次生大气存在的阶段,已有厌氧性菌类和低等的蓝藻生存。约在太古代晚期到元古代前期,大气中氧含量已渐由现在大气氧含量的万分之一增为千分之一。地球上各种藻类繁多,它们在光合作用过程中可以制造氧。在距今约 6亿年前的元古代晚期到古生代初的初寒武纪,氧含量达现在大气氧的百分之一左右,这时高空大气形成的臭氧层,足以屏蔽太阳的紫外辐射而使浅水生物得以生存,在有充分二氧化碳供它们进行光合作用的条件下,浮游植物很快发展,多细胞生物也有发展。大体到古生代中期(距今约4亿多年前)的后志留纪或早泥盆纪,大气氧已增为现在的十分之一左右,植物和动物进入陆地,气候湿热,一些造煤树木生长旺盛,在光合作用下,大气中的氧含量急增。到了古生代后期的石炭纪和二叠纪(分别距今约3亿和2.5亿年前),大气氧含量竟达现有大气氧含量的3倍,这促使动物大发展,为中生代初的三叠纪(距今约 2亿年前)的哺乳动物的出现提供了条件。由于大气氧的不断增多,到中生代中期的侏罗纪(距今约1.5亿年前),就有巨大爬行动物如恐龙之属的出现,需氧量多的鸟类也出现了。但因植物不加控制地发展,使光合作用加强,大量消耗大气中的二氧化碳。这种消耗虽可由植物和动物发展后的呼吸作用产生的二氧化碳来补偿,但补偿量是不足的,结果大气中二氧化碳就减少了。二氧化碳的减少必导致大气保温能力减弱、降低了温度(见温室效应),使大气中大量水分凝降,改变了天空阴霾多云的状况。因此,中纬度地带四季遂趋分明。降温又会使结合到岩石中和溶解到水中的二氧化碳量增多,这又进一步减少空气中二氧化碳的含量,从而使大气中充满更多的阳光,有利于现代的被子植物(显花植物)的出现和发展。由于光合作用的原料二氧化碳减少了,植物释出的氧就不敷巨大爬行类恐龙呼吸之用,再加上一些尚有争议的原因(例如近来有不少人认为恐龙等的绝灭是由于星体与地球相碰发生突变所致),使恐龙之类的大爬行动物在白垩纪后期很快绝灭,但能够适应新的气候条件的哺乳动物却得到发展。这时已到了新生代,大气的成分已基本上和现在大气相近了。可见从次生大气演变为现在大气,氧含量有先增后减的迹象,其中在古生代末到中生代中期氧含量为最多。

人类活动对大气成分的影响
地球自形成到现代,经历了原始大气、次生大气和现在大气三个阶段。但现在大气的成分,也不是永不再变的,它将随着今后自然条件的变化及人类活动的影响而发生变化。例如自然界的氮在一定时期内近似地保持平衡。但是人畜的大量繁殖,使大气中自由氮转变为固定态氮的量不断增加。又根据统计,自1950年到1968年,为了生产肥料,每年所固定的氮量约增加5倍,这必然会影响大气中氮的含量。大气中氧和二氧化碳也受到人畜繁殖和人类活动的影响。例如人畜的增多,必增加大气中的二氧化碳而减少大气中的氧。人类砍伐林木必将减弱全球光合作用的过程,从而减少大气中的氧含量,而燃烧和工业活动又有消耗大气中的氧并增加大气中二氧化碳的作用。此外,人类的工业活动还增加了大气中一些前所未有的污染物,它们也影响了大气的组分(见空气污染气象学、人类活动对气候的影响)。

㈤ 大气对地物光谱的物理过成

空间物理学研究的主要是宇宙空间环境下的物理过程,包括行星大气层、电离层 、磁层的基本模型与恒星活动等星体引发的物理现象变化规律和宇宙真空环境下稀薄气体、高能反应等现象的规律;
大气物理学研究的主要是地球大气的物理变化规律,包括声、光、电、辐射、云、降水等大气现象和近地面层、平流层、中层大气等气象变化规律;
天体物理学研究的主要是宇宙中天体的物理现象,包括天体的形态、结构、化学组成、物理状态和演化规律等等。

㈥ 太阳辐射经过大气时产生哪些物理过程

太阳辐射经过大气时产生哪些物理过程答:地球是被一层约1000千米厚的气体所包
围,该层气体称大气层。太阳辐射通过大气层过滤
照射到地面,是地球上主要能量来源,也是被动遥感 系统中主要的辐射源。

㈦ 原始大气变成大气是物理变化还是化学变化

二者都有。
原始大气的浓厚程度和现代大气完全不一样,类似氧气,二氧化碳,来氮气的释放填充过程当然是物理过程。
而原始大气拥有非常多还原性的气体,现代大气中自氧气却拥有强氧化性,知还原性气体一个都看不见了,在这个道过程中,二氧化碳,氧气还因植物光合作用,生物呼吸作用进行调控,这个过程无论如何看都是化学过程。

㈧ 大气系统能量平衡主要包括哪些物理过程

如把大气作为整体来考虑,物理过程主要包括:①辐射。大气的最根本能源是太阳辐射。但它只有一小部分直接为大气所吸收;一部分被地表面吸收,使地面增温;其余则被地球和大气反射回宇宙空间(见大气环流的能量平衡和转换)。此外,大气还吸收地面的长波辐射,同时大气本身也放射长波辐射。通过辐射过程,大气可以获得或丧失能量。②感热输送。通过传导、湍流和对流等过程,将地面的热量输送给大气。③潜热释放。空气中水汽的凝结或凝华过程和水滴的冻结过程,都将有大量的潜热释放,这是对流层大气获得热能的重要方式之一。

㈨ 大气保温作用的生产可归纳为哪三个物理过程

㈩ 大气基本物理性状有哪些

大气,就是包围地球的空气。而天气,从现象上来讲,绝大部分是大气中水分变化的结果。在太阳辐射、下垫面强迫作用和大气环流的共同作用下,形成的天气的长期综合情况称为气候。大气污染对大气物理状态的影响,主要是引起气候的异常变化。这种变化有时是很明显的,有时则以渐渐变化的形式发生,为一般人所难以觉察,但任其发展,后果有可能非常严重。

大气是指在地球周围聚集的一层很厚的大气分子,称之为大气圈。像鱼类生活在水中一样,人类生活在地球大气的底部,并且一刻也离不开大气。大气为地球生命的繁衍,人类的发展,提供了理想的环境。它的状态和变化,时时处处影响到人类的活动与生存。

大气科学是研究大气圈层的一门科学。它研究大气的具体情况,包括组成大气的成分、这些成分的分布和变化、大气的结构、大气的基本性质和主导状态的运动规律。大气的运动变化是由大气中热能的交换所引起的,热能主要来源于太阳,热能交换使得大气的温度有升有降。空气的运动和气压系统的变化活动,使地球上海陆之间、南北之间、地面和高空之间的能量和物质不断交换,生成复杂的气象变化和气候变化。大气科学将从气压的变化、气压分布不均形成的气压场和气压系统、各层大气中空气运动的各种情况、风的现象和性质等方面,深入研究大气中各种环流系统、天气系统,以及基于流体力学、热力学研究大气运动的本质和现象。天气,从现象上来讲,绝大部分是大气中水分变化的结果。在太阳辐射、下垫面强迫作用和大气环流的共同作用下,形成的天气的长期综合情况称为气候。大气科学将研究气候的成因,不同区域的气候状况,气候变迁以及人类活动对气候的影响等问题。

大气污染对大气物理状态的影响,主要是引起气候的异常变化。这种变化有时是很明显的,有时则以渐渐变化的形式发生,为一般人所难以觉察,但任其发展,后果有可能非常严重。大气是在不断变化着的,其自然的变化进程相当缓慢,而人类活动造成的变化祸在燃眉,已引起世界范围的殷切关注,世界各地都已动员了大量人力、物力,进行研究、防范、治理。控制大气污染,保护环境,已成为当代人类一项重要事业。

整个地球大气层按其成分、温度、密度等物理性质在垂直方向上的变化,世界气象组织把它分为五层,自下而上依次是:对流层、平流层、中间层、暖层和散逸层。

对流层是紧贴地面的一层,它受地面的影响最大。因为地面附近的空气受热上升,而位于上面的冷空气下沉,这样就发生了对流运动,所以把这层叫做对流层。它的下界是地面,上界因纬度和季节而不同。

在对流层的顶部,直到高于海平面50-55公里的这一层,气流运动相当平衡,而且主要以水平运动为主,故称为平流层。

平流层之上,到高于海平面85公里高空的一层为中间层。这一层大气中,几乎没有臭氧,这就使来自太阳辐射的大量紫外线白白地穿过了这一层大气而未被吸收,所以,在这层大气里,气温随高度的增加而下降的很快,到顶部气温已下降到-83℃以下.由于下层气温比上层高,有利于空气的垂直对流运动,故又称之为高空对流层或上对流层。

从中间层顶部到高出海面800公里的高空,称为暖(热)层,又叫电离层。这一层空气密度很小,在700公里厚的气层中,只含有大气总重量的0.5%。暖层里的气温很高,据人造卫星观测,在300公里高度上,气温高达1000℃以上。所以这一层叫做暖层或者热层。

阅读全文

与大气的物理过程有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1422
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1004
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071