导航:首页 > 物理学科 > 数学对物理有什么用

数学对物理有什么用

发布时间:2022-07-04 07:44:41

① 数学在物理学中的应用

在物理学中,物理量之间的关系,物理变化
规律,除了用文字叙述,用方程,方程组,不等
式,比例式、三角函数、三角方程等,还可以用
相应的图象来描述。数学不仅可作为计算公式贯
穿其中,广泛用于推导公式,表达关系,描述规
律,而且它本身的逻辑作用和抽象作用来辅助物
理概念和规律的形成。掌握物理学中的数学方法,
是学好物理学的关键之一。本文仅就极值问题、
正负号问题,数学图象等在力学、热学、电学中
的应用作简单论述。
一、物理学中的正、负号
数学中的正与负反映了数的大小,但在物理
学中,正和负反映的物理意义大不相同。
1、矢量中的正和负反映了方向。在同一直线
上,一般先规定某方向为正方向,与其同向的矢
量为正值,反之为负值,这样把矢量运算化为标
量运算。例如,在直线运动中,若选初速度为V0
的方向为正方向,则加速度为负值时物体做减速
运动。又如在竖直上抛运动中,以抛点为原点,
上方位移为正,下方位移为负,向上的速度为正,
向下的速度为负,这样即可把往返运动当作一直
向上的运动处理。
例1、在离地10 米高度以5 米/秒竖直向上
抛出一物,不记阻力,问经几秒此物落地?
[析解]以抛点为原点, 向上为正,所以
V0=5m/s�0�5,s=-10m, 代入位移式S=V0·t+1/2at�0�5 有
-10=5t-5t�0�5求出t=2 秒。
2、正和负可以反映物体能量的增加减。大当
能量增加量为正值时,说明能量在增加;当能量
增加量为负值时,说明能量在减少。例如,由动
能定律可知:当合外力对物体做正功时,物体动
能增加;当合外力对物体做负功时,物体动能减
少。又如在热学中我们将吸热和对气体做功记为
正直,相反将放热和对外做功记为负值。
3、在势能大小的表示中,正和负表示势能与
标准点相比的大小。例如我们以桌面为势能的零
点,那么桌面以上的各点势能均为正,而桌面以
下的各处势能均为负值,在这种情况下正和负表
示大小。
4、在光学中,正和负表示虚和实。凸透镜的
焦距为正,透镜的焦距为负;实像的像距为正值,
虚像的像距则为负值。
二、用数学方法定义物理量
物理量分为基本量和导出量两种,从定义形
式来看,都可以用数学形式来表示。大量的可以
用以下几种数学方法定义。
1、量比定义法:就是用两个物理量的“比”
来定义一个新的物理量的方法。例如反映物质属
性或特性的密度(ρ=m/v),电场强度(E=F/q),
反映物体属性或特征的导体的电阻(R=u/I),运
动速度(v=s/t),功率(P=w/t)等。
2、乘积定义法:即用两个以上的物理量的乘
积来定义一个新的物理量的方法。例如,功( w
= F·S cosθ ),动量(p=mv), 动能 ( Ek =mv�0�5/2)
等。
3、公式变形定义法:即用已有的公式变形来
定义一个新的物理量是方法。例如,根据电阻定
律(R=ρl/s),胡克定律(f=κx),摩擦定律(f=μN),
自感电动势(ε=LΔI/Δt),得到电阻率ρ,倔强系
数K,摩擦系数μ,自感系数L。
4、和差定义法:即用物理量的和差来定义一
个新的物理量。例如,动能的增量(ΔEk= Ek2
–Ek1 ),动量的增量(ΔP= P2-P1)等。
三、极值在物理学中的应用
在物理学中经常遇到极值和最值问题,有时
用到一元二次方程的关系,有时则是三角函数的
极值等。此类题解题特点:在物理机理的基础上,
其解题关键要依赖数学手段和方法,借助于数学
技巧和技能。
例2、甲乙两辆汽车同方向行使,当t=0 时,
两车恰好相齐,它们位移随时间t 的变化规律分
别为:S 甲=10t;S 乙=2t+t�0�5,试问在什么时刻,甲车
在前时,两车相距最远?
[析解]两车相距的距离为:
ΔS= S 甲- S 乙=10t -(2t+t�0�5)=-t�0�5+8t
据二次函数的性质有:当x=-b/2a 时,ΔS 有
最大值, ΔSmax=(4ac-b�0�5)/4a, 即当t=4s 时,
ΔSmax=16m
[注]物理量的变化规律在很多场合下可以用
二次函数y=ax�0�5+bx+c 来表示,根据二次函数的性
质:x=-b/2a 时,y 有极值,极值y=(4ac-b�0�5)/4a,当
a>0 时有极小值,当a<0 时有极大值。
例3、把q0 分配给两个相距为r 的质点,使
之成为两个带电体q1 和q2,则当电量如何分配
时,两个电体之间的库仑作用力最大?
[ 析解] 两个带电体之间的库仑力为
F=kq1q2/r�0�5根据题意q1+q2=q0 为一定值,因此当
q1=q2=q0/2 时,q1q2 有最大值,也就是F 有最大
值。所以电量平均分配给两个质点时,它们之间
的库仑作用力最大,最大值Fmax=Kq0�0�5/4r�0�5.
四、图象在物理学中的应用
利用图象可以直观地反映物理量之间相互依
赖的关系,形象地表述物理规律。应用图象解题,
常常使一些复杂的问题变得简单明了,对提高我
们分析问题、解决问题的能力大有益处。
综上所述,在物理学中应用数学的求解方法
是多种多样的,同一物理过程可以用两种或两种
以上的方法求解,关键在于把物理意义和数学方
法巧妙的揉合为一体,才能收到较好的效果。由
于事物的多样性、复杂性及物理与数学两门基础
学科之间的相互渗透与交叉。故在学习中应注意
利用有关的数学知识解决物理问题,以培养自己
正确分析物理过程和运用数学工具解决物理问题
的能力。
与教师之间交叉活动的自由空间,允许窃
窃私语,允许寻求教师、同学帮助。因为我们
常会发现这样一些情况:有的同学想象力很丰
富,但动手能力较差;有的同学制作精细,但
思路狭窄,如果让这两者有机结合,取长补短,
则是最佳的组合了。即使两者水平相当,在合
作中也能得到启发,所谓“三人行,必有我师”。
同时有些活动题材、内容,需要搜集大量的材
料,可组织以小组为单位完成。如“插花”、“版
面设计”、“画脸”等创作,可以以小组为单位合
作收集材料:你准备花泥我准备鲜花,我们一
起来完成一束艺术插花;尝试四个人合作设计
一块别致的版面;相互给对方装饰一个有趣的
脸面等。在愉快的合作氛围中,在友情浓郁的
氛围中,消除表现的顾虑,快乐主动参与学习
的过程,给学生带来愉悦的审美情趣,使每个
学生都体会到集体的智慧胜过于个人,从而培
养学生团结互助、合作的好品德。这样一来,
作业的时间相对缩短,作业的质量却提高了,
何乐而不为?
没有教师心灵的参与,课堂就会像没有雨
水的春日,燥寒而缺少滋润;没有教育实践的
参与,教育研究就会像行将干涸的一潭秋水,
沉闷而无活力。把美术教育的艺术与生命艺术
合二为一,将是我们21 世纪每个美术教师的毕
生追求。

② 为什么数学在物理学里那么有用

如果是中学物理的话还好,毕竟数学是物理的工具学科。
如果是高等物理就完全不一样了,物理学的绝大多数理论的建立过程是——发现现象——实验探索原因——得到结论——把结论表达成数学表达式——阐述观点和解释其他现象。
因为生活中的物理现象太多了,不可能根据现象来归类,但是如果利用数学公式对其进行整理的话就简单得多,比如无论是什么力给与的加速度在经典力学里面就可以用F=ma来表示和初步计算,如此严谨和科学性的多。
所以数学在高等物理的理论中非常重要,这也是为什么许多数学理论是物理学家发现的原因,例如”微积分“的发明者是物理学家牛顿。所以,物理学家一定也是数学家。

③ 数学与物理有什么关系

(拒绝复制,复制必究)
你好,因为物理有很多都用到了数学的公式,所以物理学得好,数学就一定不会差。

④ 数学在物理学的应用

力的概念最初是具有人类自身生物学意义上的,类比地面物体的推一推动一动是力所致,所以人们总是以人为力去理解自然力。物质世界是以自然力而运动着的,然而我们却用人为惯性机械论的思想观点去类比对待自然界显然是不妥的,力被定义为“引起物体运动变化的东西”,只不过是人们对于司空见惯了的事实发生了某种误会而已。问题是自然界所能产生类似机械运动的自然惯性现象的机理本质原因是什么?它们在实质上是有区别的,不能用完全类比统一等同的方法来对待。

目前我们的物理学是以力学为基础的学科,现在的物理学仿佛一切都可以归结为力学,即把一切力学定量化后完全用数学描述。力的多义性歧义性:化学亲和力、引斥力、免疫力、抵抗力、活力、生命力、权力、影响力等,仿佛一切都成了力学范畴。历史的传统似乎以世界的机械图像为物理内容的,是在这个力学框架下发展演变的。人类的眼能看、耳能听、鼻能闻、口能尝、脑能思等功能属性,用人为机械主义物理学岂能解释得了的?力是什么?我们却无法解释。

力学的目的是计算力的大小与速度、位移等,而力则只能解释运动中的动量、速度、距离位置变化。从应用的角度来对待力是有效的,力学不能揭示自然本质,从认识的角度来对待力的概念严重地混淆了人们的视线。混淆人为力与自然力的关系才会引起认识不清,所以才不知自然力是怎么回事。只看见物体位置变化的运动,于是误以为是力的作用推动的。却看不见物质形态变化就是物体位置变化运动的原因。

虽然自然力与人为力在测量的结果上都是相等的,但是产生它们的原因都完全是不相同的,在坐标变换下是不变的,在纯数学作用下完全抹杀自然中所有的区别性,这更是数学所无法揭示或进行解释的,只能在相对人为性的坐标系内有意义。目前只知道力的作用不知道力的原因或来源,实际上自然运动的里面已经包含了运动的原因。

空气是自然当中一个最重要的物质概念内容,可是却被物理学忽略了不予考虑,物理学已经脱离了赖以存在着的物质性意义。自然力不应该是超越于物质或空间气体物质的抽象的概念,自然力恰好相反是物体的内部与外部气体的相互作用的变化引起的。力的概念不能确切地反映物质之间的相互作用过程,对力学自然观的本体解释非得从物质性开始不可,因为它是一切自然运动的原因,力使物体运动与物质变化产生力完全是两回事。

物理学不只应该研究物体与运动,而是应该指物质和所有的自然的事物,即应该研究不同形态物质之间的相互作用与相互联系,由量化技术手段到为定性解释。物理学应该以物质作为研究对象,不管我们的认识与否,世界上只有物质是实在的,因为一切都是物质派生出来的,应该摆正关系避免本末倒置。什么运动位置、距离、速度、方向、转换变化力等各种现象,都脱离不开这个物质作用的。力不是基本概念,物质之间的相互作用才是基本概念,离开物质一切都不存在了。

物理学竟然没有物质相互作用相互转化过程和原因,在物理学中的物质竟然不是被研究的核心基础对象,而是力学,物质对其它也不起直接作用,物质已成为空洞无意义的概念。所谓的物理学只是提出和使用物理学的概念并无物理学内容,所谓的定律等都是仿照欧几里得的数学形式而提出来的,是为了满足数学计算上的要求。为什么不用语言解释呢?因为他们解释不了。当今物理学用数学符号来代表,既可以进行实际计算应用,又可以免去解释上的困难。

数学是在考虑对象中产生的,然后又脱离了对象,可是物理学却以数学化的方法来对待物理,显然是不合适的。数学不必考虑数学的对象,也是情有可原的,因为考虑不过来。数学的公设或公理是公认成立而不要求证明的,然后推出其它定理,数学采用这种方法是可以的,这是数学的特点,然而物理也采用或仿效数学这种逻辑演绎方法显然是不合适的。所有的物理定理规律等都是通过观察自然后而又经过人为性规定的,将规律当作了不证自明无可争议的真理。类似自主性,规律实则掩盖了事物过程中存在有效的相互作用的原因。对于那些认为自然是混乱无序无法解释,而盲目迷信崇拜超自然神的人们来说,推理出来的规律不能不说是一种进步。

数学又可以说是人脑思想的想象和理想的产物,而不必非得是事实,物理却不可以这样,如果不是事实那还叫什么物理。数学物理化是为了满足数学上的实际应用,物理数学化却是为了逃避解释物理原因的困难。仿效数学方法以数学为描述手段的物理,根本也不再是属于物理而是属于数学了。只是具有物理名称,却无物理内容的一个称谓而已,现在的物理学实质就是数学。

物理学目的就是应该寻找物质变化原因的初始源头,应该研究几何图形是什么原因形成的和所有的前提性原因。目前的物理学没有从物质的范围来对待考虑,而又是从哪里来的理呢?天下是没有无物之理的,天下万物又不能离开理,理与物是不可分割而共同存在的。理是指事物现象的道理或本质原因,如果这个事物不是表示物质,那么这个事物的理就不应该称为物理学,否则物理学岂不成了空洞之物。实际上物理学在开始建立那天就已经存在危机了,只是没有明显地显示出来。

数学的有效性作用
数学在实际应用技术方面获得巨大的成功,数学在应用技术方面的成效是不容抹杀否定的。数学在科学活动中所发挥的实际应用作用是显而易见的,数学本身就是属于一种实际应用技术性的工具,如果说没有数学也就没有科学是毫不夸张的。数学家或几何学家们为物理学家们准备了各种可供选择使用的数学公式或几何形式。公式是数学家通过抽象归纳发明的,它起到了物理学家所起不到的作用,这是数学所起到的作用。人们受到欢欣鼓舞并试图用数学手段来解决处理一切问题。

数学的优美表现在形式上,数学形式化是一种必然,因为它本身就是抽象,大可不必非得存在具体内容。数学形式系统是抽象没有任何真实物质意义的表示,即不管任何物质变化作用关系内容。数学只是对现象或结果的一种定量描述,而不必管内容实质原因的。以观察和实验事实通过推导所获得到的唯一地可能来把握现象的公式,优点在于可以超脱关于产生这些现象的原因,即寻找数学规律而用不着寻找原因。它的目的作用是为了实际应用,知道原因内容与不知道原因内容是没有任何区别的。

数学是具有它本身的特点,即高度的符号化、抽象化、形式化、逻辑化、简单化的特点。我们追求简单化,而不单是数学上无内容的简单化,数学看似容易简单,而实质却没有实际事实内容,才有时把认识问题复杂化了。数学只关注形式数量的变化,却容易忽视内容和关系上的变化。实质原因只是在事实发生或产生的之前,也不是在过程之中,更不是过后的结果。

这些是数学与物理学的关系,希望对你有帮助O(∩_∩)O

⑤ 数学在物理中的作用

是基础,做物理题需要有数学思维,尤其是后面的大题。不过都是有套路的,只要你多看,多做历年的理综,高分不是困难。数学老师做不了物理老师,但是物理老师可以做数学老师。

⑥ 数学在物理中的运用

数学是研究物理学的有力工具,不论是物理实验的测量和计算,物理概念和规律的表达,还是习题求解等,都离不开数学的应用.但是,数学只是工具.作为工具用的数学必须与物理现象的内容统一,而且还受到具体的物理条件的制约,所以运用数学解决物理问题的能力培养必须充分考虑到物理学科的特点。

众所周知,物理学的发展离不开数学,数学是物理学发展的根基,并且很多物理问题的解决是数学方法和物理思想巧妙结合的产物。打好数学基础要从高中做起 ,培养学生的数学思想,创新能力,更好的与大学课程接轨,更早的把高中生带到物理殿堂。
下面以一题为例说明一下数学思想在物理中的应用:
【例一】如图所示,一根一段封闭的玻璃管,长L=96厘米内有一段h1=20厘米的水银柱,当温度为27摄氏度,开口端竖直向上时,被封闭气柱h2=60厘米,温度至少多少度,水银才能从管中全部溢出?
解:首先使温度升高为T0以至水银柱上升16厘米,水银与管口平齐,此过程是线性变化。温度继续升高,水银溢出,此过程不再是线性关系。设温度为T时,剩余水银柱长h,对任意位置的平衡态列方程:

(76+ h1)×60/300=(76+h) ×(96-h)/ T 整理得:

T=(-h2+20h+7296)/19.2

h的变化范围0——20,可以看出温度T是h的二次函数,此问题转化为在定义域内求T的取值范围,若Tmin<T<Tmax,只有当温度T大于等于Tmax 才能使水银柱全部溢出,经计算所求值Tmax =385.2 。

只有通过二次函数极值法,才能从根上把本体解决。加强数学思想的渗透是新教材新的一个体现,比如:“探索弹簧振子周期与那些因素有关”,“探索弹簧弹力与伸长的关系”。在实际教学过程中应该引起高度重视并加以扩展。

大学物理课程与高中物理课程跨度较大,难点在于运用数学手段探索性研究物理问题的方法,另外微积分思想比较难以理解,为了与大学物理课程更好的接轨,在高中阶段对学生进行微积分思想的渗透也是非常必要的。因此在高中物理教学过程中应抓住有利时机渗透微元思想,为学好微积分奠定良好的基础。渗透的内容应该有两方面:一是变化率,二是无限小变化量,比如:

在讲速度时,平均速度v=△s/t,即时速度呢?△s/t就是变化率,当△s取无限小时,v就可以理解为某一时刻的速度——即使速度。加速度a= △v/t, △v/t是速度变化率,当△v取无限小时,加速度a就可以理解为某一时刻的加速度。象这样的例子还有w/t,I/t, △φ/t等等。总之高中物理教师应当根据学生的具体情况适当的渗透微积分的思想并加以配套练习,达到巩固理解的目的。下面讨论一个相关题目。

【例二】一竖直放的等截面U形管内装有总长为L的水银柱, 当它左右两部分液面做上下自由振动时,证明水银柱的振动时间谐振动。

解:设两液面相平时速度为V0,建立坐标如图。

当有液面上升x时,液体速度为v,则根据能量守恒的

mv02/2=△mgx1 +mv12/2 ⑴

△m=mgx1/L ⑵

⑵带入⑴得

mv02/2=mgx12/L +mv12/2 ⑶

当液面在上升△x时,x2=x1+△x 则

mv02/2=mgx22/L +mv22/2 ⑷

⑷减⑶ 得

0=(x22-x12)mg/L+m(v22-v12)/2化简得:

0=(x1+x2) mg△x/L+m(v12-v22)/2 ⑸

△x很小,则认为加速度a不变,根据运动学公式得:

v12-v22=2ax带入⑸得

0=2x△xmg/L+2ma△x/2 ⑹

即:F=-2mgx/L 2mg/L为常数K,证得水银柱的振动为简谐振动。

⑦ 数学对物理学的影响、作用及贡献

数学和物理从来是没有分开过的,这就好比父母和孩子一样。有人说哲学是科学的母亲,而数学就是科学的父亲。然而我们看到的是在物理学的发展道路中,哲学起到的作用是指导性的,甚至有的时候是从物理问题中才能得到更多的深化。而数学起到的作用是具体的。一个理论有没有生命力的基本条件就是数学表述是否正确完善,是否和物理定律界定的条件配合得很好,或者和客观实验符合得很好。当这种符合度到达一定程度之后,物理理论就会反过来赋予数学描述以生命力。
数学对于物理的影响是很深远的,但是也不能说明数学和物理的关系有很分明的先后关系。有的数学问题是从物理现象中抽象出来的,而有的数学表述方式也是因为有了物理理论才有了意义。
用微积分来说明,微积分是数学中比较基本的一支,基本上近现代数学的每一个分支都要用到微积分的理论。而微积分的理论基础是极限,而极限的思想就是牛顿在研究物质运动的时候提出来的。在这以后的复变函数、积分变换、无穷级数等等,都成为研究物理学的有效描述工具。对于不同的体系和对象,我们所用到的数学工具是不相同的。有的是方法上的不同,有的则是知识体系的不同。例如在量子力学中,曾经就有三种描述的方式,薛定谔的波动方程,这是一种微分方程;海森堡的矩阵量子力学;狄拉克的高等量子力学,也就是相对论量子力学的描述方程。这三种表述的方式侧重点是不同的,但是都做到了同样的表述目的。而在凝聚态物理当中,我们更多的用到泛函分析。这些数学工具的理论基础有的是相同的,但有的不是。从这一点我们也可以看到,物理和数学之间的关系是一种相互影响,甚至是相互依存的关系。
除此之外还有概率论和数理统计,也是对于物理学贡献非常大的一门学科。
物理学的研究,特别是理论物理,谁高明,很大程度上就在于对于数学的运用,数学的高明。把物理的现象抽象成数学的定解混合问题,就是我们的基本要求,而这并不像有的人所说的数学好物理自然会好,因为有很多的数学方法和问题是通过物理来体现的,怎么让它体现出来,这才是物理的真正目的,而不是单纯的利用现有的数学公式。
最后举几个例子:
复变函数对于电磁学方面的贡献是显着的;数学的场论几乎只要有物质运动的地方都可以去利用研究;数理统计在热力学、量子力学方面的贡献很大;其他的还有很多方法,积分变换在电磁学中也是经常用到的,黎曼几何、张量在广义相对论中是主要的工具;泛函分析在凝聚态物理中很有用处;光学因为里面有很多的分支学科,所以它的数学工具是十分广泛的,除了欧几里得几何在几何光学中的应用外,还有像波动光学要用到波动函数,量子光学要用到量子力学中的数学工具。但我认为其最根本的是微积分、欧氏几何、向量运算、非欧几何、数理统计,而这几个数学学科中也不是独立的。

⑧ 数学与物理是什么关系

数学是物理研究的工具和手段。物理学的一些研究方法有很强的数学思想,所以学习物理的过程也能提高数学认知。

数学对物理学的发展起着重要作用,物理学也对数学的发展起着重要的作用:正如莫尔斯所说:“数学是数学,物理是物理,但物理可以通过数学的抽象而受益,而数学则可通过物理的见识而受益。”

物理学:

是研究物质最一般的运动规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。

物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。物理学是一门实验科学,也是一门崇尚理性、重视逻辑推理的科学。物理学充分用数学作为自己的工作语言,它是当今最精密的一门自然科学学科。

⑨ 数学在物理上的应用有哪些(急用!)

不晓得你是要写文章还是准备什么比赛、考试?我按照写文章的思路给点建议吧:
1,核心
数学作为物理学最根本的工具,为物理学的发展作出了极大的贡献。作为解决时空与物质运动问题的学科,物理学和其中纷繁复杂的问题从提

出、抽象、分析、归纳、应用等环节都必须数学的参与,并且可以创造极大的应用价值。
2,物理问题的提出
物理问题的提出很大程度上来源于人对生活经验的观察、总结和推理,尤其是物理中较基础的部分。观察总结的能力看似与数学无关,但数学

研究本身就需要观察数学现象、总结数学规律;物理上的观察总结又与数学上的相互作用、相互促进。而推理正是数学能力的一种。
3,实际问题的抽象化
数学对象的丰富多彩给了物理模型创建以广阔的空间。无论是函数思想,数型结合思想,还是解析方法,方程思想,都使具体的物理对象能够

找到它的数学对应。例如经典力学中的质点模型、经典光学中的直线光就是建立在欧式几何中关于点、线、面等对象的研究基础上的很好的模

型。
4,抽象问题的分析
物理之所以是自然科学而不是社会科学,是因为它更倾向于定量分析(事实上它是最纯粹的定量分析学科)。数学的基础全部建立在抽象思维

之上,因而她简洁明了;物理模型把很难定量的实物转化为抽象的事物,数学便可以大显神通了。分析上常用的手段有:函数(寻求变量之间

的关系,建立一定的等式,利用初等或高等——例如微积分——方法得到一系列公式),解析(把时间、空间等属性在坐标中量化,寻求它们

的关系。典型的例子是洛伦兹变换的推导),概率统计(处理实验数据等物理信息,分析量子论等复杂理论),计算数学(发展各种计算手段

,帮助获得物理结果)等等。
5,物理问题的归纳
类似的物理模型之间需要类比、归纳,数学可以提供统一它们的方案。甚至数学形式本身可以启示物理学家不同物理现象之间的联系。纷繁复

杂的公式定理建立之后,物理也面临系统化的问题,数学思想对此有很大的帮助。
6,物理理论的应用
数学对物理理论的应用,以及应用中不断地纠正错误、弥补理论缺陷、改进物理方法等等有着至关重要的作用。
7,数学理论应用于物理研究的实例
那位用数学知识测量地球周长的人可谓是最早的实践者(名字我忘了);
阿基米德的陀螺提水泵——数学应用于工程学的经典范例,还有他对几何和光学的研究使他发明了光武器,这是古代兵器史中的奇迹;
同样是关于日地系统的学说,托勒密的时代对圆锥曲线的研究尚不透彻,他选择完美的圆作为太阳的轨道——他的系统中需要五十多个圆才能

与观测相符!而哥白尼选择椭圆构建了他的日心系统,仅用了十来个椭圆就和实测结果完美如一;
最经典的——牛顿为了建立其经典力学,花费了大量时间发展出微积分,而微积分最终帮助牛顿完成了他的理论大厦;
麦克斯韦的电磁学方程被一些物理学家认为太超前了,以致于后来数十年的数学发展帮助物理学家们发现了其中更多的真谛;
洛伦兹变换的发现者洛伦兹纯粹是个数学家,他的工作和爱因斯坦的那么相似,但他不晓得这个工作的物理意义,后来爱因斯坦发展了他的结

论并应用于相对论中;
量子概念的提出和应用少不了离散数学的发展;
波函数的研究为量子理论大师们自如地运用波函数解决粒子行为问题奠定了基础;
雷达、导弹、原子弹的成功研制是物理学家和数学家们通力合作的结果;
控制论和信息论大大简便了物理研究中的计算和计算方案;
对方程研究的进展使得物理学家发现了许多特殊的物理对象,并且在观测中发现了它们,诸如黑洞、白洞、褐矮星等等;
杨-米尔斯场被证明与同时代另外一位数学家发现的某种矩阵存在深刻的内在联系,并且这种矩阵对杨-米尔斯场的研究促进甚多;
…………
8,结论
数学和物理互相渗透、紧密联系。无论是数学应用于物理还是物理反促进数学,都能举出数不胜数的例子。

⑩ 数学知识在物理上的应用有哪些

数学知识在物理上的应用有哪些
重心 是规则图形数学是一门非常重要的基础学科,尤其在理解物理概念、物理规律以及解决物理问题时,数学知识起着重要的工具作用。有些初中学生数学学得比较好,但物理不一定学得好,因为这些学生往往用纯数学的思维方式理解物理概念、规律或求解物理问题,这样就造成了学生在应用数学知识解决物理问题时容易出现错误,解决上述问题的有效途径就是把物理问题转化为数学问题,有效的运用数学知识来解决物理问题。一、用数学式子表达物理概念、物理规律,用字母表达物理量、已知量、未知量。初中学生初学物理时往往对用符号表示物理量之间的关系式不习惯,不会应用这些物理量的符号去表示相应的数字信息,不清楚公式中的符号哪些是已知的,哪个是未知的,导致公式变形出错,乱套公式,物理结果出错。 解决途径:(1)首先引导学生学会“读题 → 标量 → 选公式”的方法。即学生边读题,边在相应的数字下面标上相应的物理量的符号,这样做的目的就是明确了已知量和未知量,再根据物理问题情境选择恰当的公式来求解。(2)解题时强调运用“三步法”,即“公式 → 带入数据 (数字+单位) → 结果(数字+单位)”。要让学生明确物理公式是解决物理问题的重要依据,所以要先写出公式,再带入相应的数字和单位,然后运用数学知识进行计算得结果。(3)物理量用规定的符号来表示,学生往往不能把字母和它表示的物理量联系在一起。如学生在数学中未知数都可以用X、Y表示,有时学生在解决物理问题时,不管是求哪个物理量,他们都用X、Y表示,这样不便于理解物理含义。在分析题时让他们在物理量的旁边写出表示这个物理量的符号,再看求哪个量就用他在这个物理量旁边标出的字母来表示。 通过不断强化及练习,学生学会了运用数学能力来求解物理问题,使学生对符号的认识由不熟悉到能够灵活运用。二、用方程表达物理关系、解决物理问题。学生往往在数学中会列方程解方程,但不会求解物理关系式。 解决途径: 教师应教会学生将物理关系式与数学方程概念有机的结合起来,让学生理解物理关系式实际上是将方程概念赋予了具体实际的内容。在建立物理情境的基础上,利用数学方法求解物理问题。 例如:用弹簧测力计提着体积为10cm3的铁块浸没水中,不触底,此时用弹簧测力计的示数多大? 引导学生分析:求弹簧测力计的示数多大,实际是求铁块在水中受到向上的拉力多大。(1)受力分析,画出受力示意图,如图:重力、浮力、拉力。(2)引导学生分析能求哪些量:如:F浮= ρ水 gV铁,G=ρ铁 gV铁(3)建立力的平衡式 F拉 + F浮=G (4)代入求解 F拉 =G + F浮 可以看出物理中力的平衡式实际上就是数学中的方程式,教师再引导学生利用数学方程思想来求解物理问题。通过例题分析、训练,学生逐步增强数理结合的意识,能将物理问题自觉地灵活地转化为受物理规律制约及显示物理规律、物理情境的数学问题。三、用分式的性质等量代换的思想进行单位换算。初学物理的学生在单位换算方面成为学习物理知识的障碍。 解决途径: 首先让学生理解物理中的单位换算,实际上是数学中的等量代换思想的体现,其次让学生理解记忆基本换算关系。例如:速度的单位换算,引导学生运用数学方法:(1)分子分母分别换算法 例如:20m/s = 20 = 72km/h(2)利用速度进率法:1 m/s = 3.6 km/h20m/s = 20 3.6 km/h = 72km/h 通过分析比较,让学生理解单位换算的方法和技巧,今后能灵活自如的进行单位换算,不要让单位换算成为学生学习物理的障碍。四、区分物理平均与数学平均。 学生对物理中的平均概念的理解往往停留在数学的平均思想上,不注意条件,不注意适用范围,导致结果出错。 解决途径: 教师要引导学生理解物理中的平均与数学中的平均概念的区别,要特别注意公式的适用条件和适用范围。 例如:求平均速度问题,原则上应该是,S代表总路程,t代表通过路程S所用的总时间。(1)一个物体做直线运动,前一半路程的速度为 1,后一半路程的速度为 2,求全程的平均速度。隐含的条件是 S1 = S2 = S 但是有一些学生不理解物理上平均速度的含义,直接利用数学上的平均思想解题得出的错误结论 。(2)一个物体做直线运动,前一半时间速度为 1,后一半时间速度为 2,求全程的平均速度。隐含的条件是 t1=t2 = t 又如:伏安法测电阻,多次测量利用数学的加权法求平均电阻值有实际意义。而电功率的平均值没有实际意义。 可见应用数学知识分析物理问题时要特别注意物理学科的特殊性,注意概念的物理含义和规律成立的条件,因此我们在物理教学中要强化物理意义、物理内涵,公式形成过程的指导以及物理规律成立的条件,以使学生在扎实的物理基础上恰当、灵活地应用数学知识解决物理问题。五、利用函数图像理解物理意义。 物理规律、物理量之间的关系可以用图像表达出来。但是有的学生不能将函数图像与物理知识联系起来,造成解决物理题的困难。 解决途径:首先让学生明确,横纵坐标表示什么物理量,再分析这个图像表示的物理意义。 例如:一个正比例函数图像,斜率表示密度ρ=m/v,即m与v成正比,也就是说同种物质,质量增大多少倍,体积也增大多少倍,比值不便,这个比值就是密度。这样有利于学生理解密度是物质的一种特性。 总之,运用数学知识解决物理问题的有效途径,就是把数学知识、数学思维方法迁移到学习物理上来。因此教师在教学中应强化数理知识的结合,利用多渠道的有效途径,促进数学知识的迁移,学生才能更好的利用数学知识来解决物理问题。的几何中心有些求力臂的可能会用到勾股定理还有就是一般性的计算了

阅读全文

与数学对物理有什么用相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071