导航:首页 > 物理学科 > 物理储能材料有哪些

物理储能材料有哪些

发布时间:2022-07-05 00:53:48

① 储能材料技术专业就业前景

一、储能专业有哪些?
结合《储能技术专业学科发展行动计划(2020—2024年)》和《普通高等学校高等职业教育(专科)专业目录》2018增补专业可知,目前我国的储能专业主要三种类型,具体如下:
1、即将开设的
储能技术、储能材料、储能管理等新专业。
2、将改造升级的
材料物理、材料化学、新能源科学与工程、新能源材料与器件等已有专业。
3、已有的(唯一)
储能材料技术(专科)
相关学科:
动力工程及工程热物理、电气工程、化学科学与技术、物理学、化学等。
二、储能材料就业前景
随着储能产业的蓬勃发展,对各层次人才需求也呈现井喷式增长。
而当下储能企业人才现状:
1、工人素质较低
目前企业员工多为高中及以下学历人员构成,专业素养有限。
2、新员工知识结构单一
以动力电池的制造及应用为代表的储能技术属于交叉性较强的新领域,大部分员工掌握的知识过于局限,需要再次培训,花费成本。
3、相关企业人才需求大
储能产业生产过程中已使用了大量的自动化设备,各生产环节之间的衔接仍然是以人工为主,目前仍需吸纳大量的相关专门人才。
综合来看,储能材料技术专业是一门紧跟产业需求设立的专业,拥有十分良好的就业前景。

② 相变储能材料是新能源材料吗

你好,算是。

相变储能材料将暂时不用的能量储存起来,到需要时再将其释放,从而可以缓解能量供与求之间的矛盾,节约能源,因此受到越来越广泛的重视和深入的研究。介绍了相变材料在太阳能、建筑、纺织行业、农业等工业与民用方面的应用,概括和评述了相变储能复合材料的制备方法厦其研究进展,指出当前存在的问题以厦目前值得深入研究的课题。

随着全球工业的高速发展,自从20世纪70年代出现了能源危机及大量的能源消耗导致的环境污染和温室效应,人们一直在研究高效能源、节能技术、可再生环保型能源、太阳能利用技术等。

相变储能是提高能源利用效率和保护环境的重要技术,也是常用于缓解能量供求双方在时间、强度及地点上不匹配的有效方式,在太阳能的利用、电力的“移峰填谷”、废热和余热的回收利用、工业与民用建筑和空调的节能等领域具有广泛的应用前景,目前已成为世界范围内的研究热点。利用相变材料的相变潜热来实现能量的储存和利用,有助于提高能效和开发可再生能源,是近年来能源科学和材料科学领域中一个十分活跃的前沿研究方向。

相变储能材料是指在其物相变化过程中,可以与外界环境进行能量交换(从外界环境吸收热量或者向外界环境放出热量),从而达到控制环境温度和利用能量的目的的材料。与显热储能相比,相变储能具有储能密度高、体积小巧、温度控制恒定、节能效果显着、相变温度选择范围宽、易于控制等优点,在航空航天、太阳能利用、采暖和空调、供电系统优化、医学工程、军事工程、蓄热建筑和极端环境服装等众多领域具有重要的应用价值和广阔的前景。

1相变储能材料

20世纪30年代以来,特别是受70年代能源危机的影响,相变储热(LTEs)的基础理论和应用技术研究在发达国家(如美国、加拿大、日本、德国等)迅速崛起并得到不断发展。材料科学、太阳能、航天技术、工程热物理、建筑物空调采暖通风及工业废热利用等领域的相互渗透与迅猛发展为LTEs研究和应用创造了条件。LTES具有储热密度高、储热放热近似等温、过程易控制的特点。潜热储热是有效利用新能源和节能的重要途径。提高储热系统的相变速率、热效率、储热密度和长期稳定型是目前面临的重要课题。研究潜热储热的核心是研究材料的相变传热过程。

2相变储能材料的机理

相变材料从液态向固态转变时,要经历物理状态的变化,在这两种相变过程中,材料要从环境中吸热,反之,向环境放热。

在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中时产生了一个宽的温度平台,该温度平台的出现体现了恒温时间的延长,并可与显热和绝缘材料区分开来(绝缘材料只提供热温度变化梯度)。相变材料在热循环时储存或释放显热。

相变材料在熔化或凝固过程中虽然温度不变,但吸收或释放的潜热却相当大。以冰一水的相变过程为例,对相变材料在相变时所吸收的潜热以及普通加热条件下所吸收的热量作一比较:当冰融解时,吸收335J/g的潜热,当水进一步加热.每升高1℃,它只吸收大约4J/g的能量。因此,由冰到水的相变过程中所吸收的潜热几乎比相变温度范围外加热过程的热吸收高80多倍。除冰一水之外,已知的天然和合成的相变材料超过500种,且这些材料的相变温度和储热能力各不相同。把相变材料与普通建筑材料相结合,还可以形成一种新型的复合储能建筑材料。这种建材兼备普通建材和相变材料两者的优点。

目前,采用的相变材料的潜热达到170J/g左右,而普通建材在温度变化1℃时储存同等热量将需要190倍相变材料的质量。因此,复合相变材料具有普通建材无法比拟的热容,对于房间内的气温稳定及空调系统工况的平稳是非常有利的。

相变材料应具有以下几个特点:凝固熔化温度窄,相变潜热高,导热率高,比热大,凝固时无过冷或过冷度极小,化学性能稳定,室温下蒸气压低。此外,相变材料还需与建筑材料相容,可被吸收。

3相变储能材料的应用领域

相变储能材料在许多领域具有应用价值,包括太阳能利用、电力调峰、废热利用、跨季节储热和储冷、食物保鲜、建筑隔热保温、电子器件热保护、纺织服装、农业等等。

3.1在太阳能方面的应用

太阳能清洁、无污染,而且取用方便。利用太阳能是解决能源危机的重要途径之一。但是由于到达地球表面的太阳辐射能量密度并不高,而且受地理、昼夜和季节等规律性变化的影响,及阴晴云雨等随机因素的制约,其辐射强度也不断发生变化,而且具有稀薄性、非连续性和不稳定性。所以为了保持供热或供电装置稳定不问断地运行,就需要通过贮热装置把太阳能贮存起来,在太阳能不足时再释放出来,从而满足生产、生活用能连续和稳定供应的需要。一些工业发达的国家昼夜用电存在“谷峰差”,可以利用相变材料在夜间储存能量(电能转化的热能或者冷能),到白天用电高峰时再释放出来使用,缓解电网负荷。

相变储能材料即可满足这一要求。例如美国管道系统公司(Pipe System Inc.)应用CaCl2·6H2O作为相变储能材料制成贮热管,用来贮存太阳能和回收工业中的余热。该公司称:100根长15cm、直径9crn的聚乙烯贮热管就能满足一个家庭所有房间的取暖需要。法国ElFUnion公司和美国的太阳能公司(SOlar Inc.)用NaSO4·10H2O作相变材料来储存太阳能,也都是应用较成功的实例。

3 2在生态建筑业方面的应用

有关资料显示:社会一次能源总消耗量的1/3用于建筑领域。提高建筑领域能源使用效率,降低建筑能耗,对于整个社会节约能源和保护环境都具有显着的经济效益和社会影响。生态建筑是可持续发展的重要手段之一。在生态建筑中,相变储能复合材料可以帮助利用太阳能、季节温差能等可再生能源,有效降低建筑物室内温度波动、缩减各种热能设备、降低能源支出和提供健康舒适的室内环境}可以利用低峰电力、削峰填谷,降低电能消耗,缓解电力紧张。尤其是近年来,随着高层建筑的快速发展,大量采用轻质建筑材料,而轻质建筑材料的热容比较低,不利于平抑室内温度波动。在轻质建筑材料中加入相变材料是解决这一问题的有效方法。

此外,利用相变材料作为室内保温装置已进入实用阶段。在有暖气的室内安装相变材料蓄热器后,当通人暖气时,它会把热贮存起来;当停止送暖气时,它会放出热量,维持室内的温度较为恒定。如果在室内的地板和天花板使用相变材料,由于相变材料的贮热和放热作用,则可将室内温度梯度降低到小于5℃的舒适状态。相变材料还可用在空调节能建筑上,这是一种比较新的应用,通过在墙、屋顶、门窗、地板中“加人”相变材料,可提高空调的使用效率,节约能源,而且室内环境的舒适度也得到了提高。

相变储能复合材料在建筑领域中一个很有前景的应用方式是将相变材料与现存的通用多孔建筑材料复合,即将相变材料储藏在多孔建筑材料中,使这些建筑材料同时具有承重和储能的双重功能,成为结构一功能一体化建筑材料。采用这样的多功能建筑材料,在为建筑增加功能的同时,无需占用额外建筑空间,降低了建筑成本,是一种性价比较高的新型建筑材料,具有明显的市场竞争力。

3.3在服装纺织品方面的应用

根据人体的冷热舒适特点,结合气候条件的差异,选择相变温度适当的相变材料,可以为人体有效地提供一个舒适的微气候环境,提高生活质量和工作效率。美国Kallsas州立大学的shim等研究表明,含相变材料的纺织品能使人体在较长时间内处于舒适状态。在纺织服装中加入相变储能材料可以增强服装的保暖功能,甚至使其具有智能化的内部温度调节功能。把相变材料掺人纺织品后,如果外界环境升高,则相变材料熔化而吸收热能,使得体表温度不随外界环境升高而升高;如果外界环境降低,则相变材料固化而放出热能,使得体表温度不随外界环境降低而降低。

对以严寒气候,宜选择相变温度为18.3~29.4℃的相变材料;对以温暖气候,宜选择相变温度为26.7~37.7℃的相变材料;对以炎热气候.宜选择相变温度为32.2~43.3℃的相变材料。固液相变储能材料在液态时容易流动散失,所以其应用于纺织品时必须采用微胶囊化的形式,即微胶囊相变材料MPcMs。制备微胶囊的物理工艺主要有:喷射烘干、离心流失床或涂层处理。石蜡类烷烃和聚乙二醇是常用于纺织品的相变材料。目前这方面的代表是Outlast公司发明的相变储能纤维——outlast fiber。0utlast fiber是一种采用微胶囊技术生产的特殊纤维,根据使用要求可以具有不同的相变温度。

3.4在农业上的应用

温室在现代农业中有着举足轻重的地位,它在克服恶劣的自然气候、拓展农产品品种和提高农业生产技翠等方面具有重要的价值。温室的核心是控制适宜农作物生长的温度和湿度环境。1987年11月我国在河北省安国县设计建造了一座农用太阳能温室,内部设置的潜热蓄热增温器就是利用相变材料的潜热特性。潜热蓄热增温器储存农用栽培温室中自天过量的太阳能,当夜晚温度下降到定范围后释放出储存的这部分热能,使天之中温室内温度曲线的高峰区有所下降,而低谷区有所上升,昼夜之间的温差变小。这既保证冬季蔬菜等作物的正常生长,叉不需另设常规燃料增温设备,节约了蒸气锅炉、燃油暖风机等基本建设投资和日常燃料的消耗。结果表明,温室冬季夜间最低温度可以提高6℃,增温效果明显。

日本专利报道,用NaSO4·10H2O、NaCO3·10H2O、CH3COONa·3H2O作相变材料,用硼砂作过冷抑制剂,用交联聚丙烯酸钠作分相防止剂,制成在20℃相变的储能相变材料。该材料可用于园艺温室的保温。

在农业上,最先采用的相变材料是CaCl·6H2O,随后又尝试了NaSO4·10H2O、石蜡等。研究结果表明:相变材料不仅能为温室储藏能量,还具有自动调节温室内湿度的功能,能够减少温室的运行费用和降低能耗。

4相变储能复合材料的研究现状

单一的相变材料存在很多缺点,如绝大多数无机物相变材料具有腐蚀性,相变过程中存在过冷和相分离的缺点。为防止无机物相变材料的腐蚀,储热系统必须采用不锈钢等特殊材料制造,从而增加了制造成本;为抑制无机物相变材料在相变过程中的过冷和相分离,需通过大量试验研究,寻求好的成核剂和稳定剂。因此,相变材料通常是由多组分构成的,包括主储剂和相变点调整剂、防过冷剂、防相分离剂和相变促进剂组分。有机物相变材料则因相变潜热低,易挥发、易燃烧、价格昂贵,特别是其热导率较低、相变过程中的传热性能差,在实际应用中通常采用添加高热导率材料如铜粉、铝粉或石墨等作为填充物以提高热导率,或采用翅片管换热器依靠换热面积的增加来提高传热性能,但这些强化传热的方法均未能解决有机相变材料热导率低的本质问题。

近年来,为了克服单一相变储能材料的缺点,更好地发挥其优点,复合相变材料应运而生。它既能有效克服单一的无机物或有机物相变材料存在的缺点,又可以改善相变材料的应用效果,拓展其应用范围。目前相变储能材料的复合方法有以下几种。

4.1胶囊型相变材料

为了解决相变材料在发生固一液相变后液相的流动泄漏问题,特别是对于无机水合盐类相变材料还存在的腐蚀性问题,人们设想将相变材料封闭在球形的胶囊中,制成胶囊型复合相变材料来改善应用性能。

其中,溶胶一凝胶法(Sol—gel)就是近年来发展比较迅速的一种。溶胶一凝胶工艺是一种独特的材料合成方法,它是将前驱体溶于水或有机溶剂中形成均质溶液,然后通过溶质发生水解反应生成纳米级的粒子并形成溶胶,溶胶经蒸发干燥转变为凝胶来制备纳米复合材料。它与传统共混方法相比较具有一些独特的优势:①反应用低粘度的溶液作为原料,无机一有机分子之间混合相当均匀,所制备的材料也相当均匀,这对控制材料的物理性能与化学性能至关重要;②可以通过严格控制产物的组成,实行分子设计和剪裁;③工艺过程温度低,易操作;④制备的材料纯度高。

林怡辉等采用溶胶—凝胶法,以二氧化硅作母材、有机酸作相变材料,合成复合相变材料。二氧化硅是理想的多孔母材,能支持细小而分散的相变材料,加入适合的相变材料后,能增进传热、传质,其化学稳定和热稳定性好。有机酸作相变材料克服了无机材料易腐蚀、存在过冷的缺点,而且具有相变潜热大、化学性质稳定的优点。

Lee Hyoen Kook研究出一种球形储热胶囊。其制备方法如下:先将无机水合盐类相变材料(如三水乙酸钠)与一定量的成核剂和增稠剂混合均匀后,制成直径为0.1~3mm的球体作为核,然后再在球形相变材料核的外表面涂覆1层憎水性的蜡膜以及1~3层聚合物膜,最后得到直径在0.3~10mm之间的胶囊型相变材料。

采用胶囊化技术制备胶囊型复合相变材料能有效解决相变材料的泄漏、相分离以及腐蚀性等问题,但胶囊体的材料大都采用热导率较低的高分子物质,从而降低了相变材料的储热密度和热性能。此外,寻求工艺简单、成本低以及便于工业化生产的胶囊化工艺也是需要解决的难题。

4.2与高分子材料复合制备定形相变材料

为了克服传统的相变材料在实际应用中需要加以封装或使用专门容器以防止其泄漏的缺陷,近年来,出现了将有机相变材料与高分子材料进行复合,制备出在发生相变前后均呈固态而保持形体不变的定形相变材料。

其中一种制备工艺是将相变材料(如石蜡)与高分子物质(如聚乙烯)按一定比例在热炼机上进行加热共混。肖敏等将石蜡与一热塑性体苯乙烯丁二烯苯乙烯三嵌段共聚物(sBs)复合,制各了在石蜡熔融态下仍能保持形状稳定的复合相变材料。复合相变材料保持了纯石蜡的相变特性,其相变热焓可高达纯石蜡的80%。复合相变材料的热传导性比纯石蜡好,因此其放热速率比纯石蜡快,但由于sBs的引人,其对流传热作用削弱,所眦蓄热速率比纯石蜡慢。在复合相变材料中加入导热填料膨胀石墨后,其热传导性进一步提高,以传导传热为主的放热过程更快,放热速率比纯石蜡提高了1.5倍;而在以对

流传热为主的蓄热过程中,由于热传导的加强效应与热对流减弱效应相互抵消,保持了原来纯石蜡的平均蓄热速率。

这样既充分发挥了定形固液相变材料的优点:无需容器盛装,可直接加工成型,不会发生过冷现象,使用安全方便;也克服了固一液相变材料明显的缺陷:在相变介质中加入热导率较低的聚合物载体后,导致本来热导率就不高的有机相变材料的热导率更低了,并且还造成整个材料蓄热能力的下降。

4.3利用毛细管作用将相变材料吸附到多孔基质中

利用具有大比表面积微孔结构的无机物作为支撑材料,通过微孔的毛细作用力将液态的有机物或无机物相变储热材料(高于相变温度条件下)吸人到微孔内,形成有机/无机或无机/有机复合相变储热材料。在这种复台相变储热材料中,当有机或无机相变储热材料在微孔内发生固一液相变时,由于毛细管吸附力的作用,液态的相变储热材料很难从微孔中溢出。

多孔介质种类繁多,具有变化丰富的孔空间,是相变物质理想的储藏介质。可供选择的多孔介质包括石膏、膨胀粘土、膨胀珍珠岩、膨胀页岩、多孔混凝土等。采用多孔介质作为相变物质的封装材料可使复合材料具有结构功能一体化的优点,在应用上可节约空间,具有很好的经济性。多孔介质内部的孔隙非常细小,可以借助毛细管效应提高相变物质在多孔介质中的储藏可靠性。多孔介质还将相变物质分散为细小的个体,有效提高其相变过程的换热效率。

5相变储能材料存在的问题和应用展望

5.1存在的问题

我国现阶段相变储能材料的研究和应用方面仍然存在以下一些问题。

(1)相变储能材料的耐久性问题。这个问题主要分为三类。首先,相变材料在循环相变过程中热物理性质的退化。其次,相变材料从基体材料中泄露出来,表现为在材料表面结霜。另外,相变材料对基体材料的作用,相变材料相变过程中产生的应力使得基体材料容易破坏。

(2)相变储能材料的经济性问题。这也是制约其广泛应用于建筑节能领域的障碍,表现为各种相变储能材料及相变储能复合材料价格较高,导致单位热能的储存费用上升,失去了与其他储热方法的比较优势。

(3)相变储能材料的储能性能问题。储能性能有待更进一步地提高。特别是对于相变储能复合材料来说,为了使储能体更加小巧和轻便,要求相变储能复合材料具有更高的储能性能,目前的槽变储能复合材料的储能密度普遍小于120J/g。有学者预测,通过增加相变物质在复合材料中的含量和选择相变焓更高的相变物质,在未来数年内,将有可能将相变储能复合材料的储能密度提高到150~200J/g。

5.2应用展望

相变储能材料的开发已逐步进入实用阶段,主要用于控制反应温度、利用太阳能、储存工业反应中的余热和废热。低温储能主要用于废热回收、太阳能储存及供暖和空调系统。高温储能用于热机、太阳能电站、磁流体发电及人造卫星等方面。此外,固一固相变储能材料主要应用在家庭采暖系统中,与水合盐相比,具有不泄漏、收缩膨胀小、热效率高等优点,能耐3000次以上的冷热循环(相当于使用寿命25年)}把它们注入纺织物,可制成保温性能好、重量轻的服装}可用于制作保温时间比普通陶瓷杯长的保温杯}含有这种相变材料的沥青地面或水泥路面,可以防止道路、桥梁结冰。因此,它在工程保温材料、医疗保健产品、航空航天器材、军事侦察、日常生活用品等方面具有广阔的应用前景。今后相变储能材料的发展主要体现在以下几个方面:

(1)进一步筛选符合环保的低价的有机相变储能材料,如可再生的脂肪酸及其衍生物。对这类相变材料的深入研究,可以进一步提升相变储能建筑材料的生态意义。

(2)开发复合相变储热材料是克服单一无机或有机相变材料不足、提高其应用性能的有效途径。

(3)针对相变材料的应用场合,开发出多种复合手段和复合技术,研制出多品种的系列复合相变材料是复合相变材料的发展方向之一。

(4)开发多元相变组合材料。在同一蓄热系统中采用相变温度不同的相变材料合理组合,可以显着提高系统效率,维持相变过程中相变速率的均匀性。这对于蓄热和放热有严格要求的蓄能系统具有重要意义。

(5)进一步关注高温储热和空调储冷。美国NAsA Lewis研究中心利用高温相变材料成功地实现了世界上第一套空间太阳能热动力发电系统2kw电力输出,标志这一重要的空间电力技术进入了新的阶段。太阳能热动力发电技术是一项新技术,是最有前途的能源解决方案之一,必将极大地推动高温相变储热技术的发展。另外.低温储热技术是当前空调行业研究开发的热点,并将成为重要的节能手段。

(6)纳米复合材料领域的不断发展为制备高性能复合相变储热材料提供了很好的机遇。纳米材料不仅存在纳米尺寸效应,而且比表面效应大,界面相互作用强。利用纳米材料的特点制备新型高性能纳米复合相变储热材料是制备高性能复合相变材料的新途径。

③ 储能材料与技术的目录

第1章 绪论1
1.1 气候变化与能源效率1
1.2 储能技术及其应用2
1.2.1 什么是储能2
1.2.2 什么是储能技术2
1.2.3 能量储存方法4
1.2.4 储能系统的评价指标7
1.2.5 储能技术的应用7
1.3 储能技术发展状况与展望11
1.3.1 储能技术发展的历史11
1.3.2 储能技术发展的前景14
1.3.3 储能技术面临的挑战15
1.3.4 需要研究的课题15
参考文献15
第2章 储能技术原理17
2.1 能量转换原理17
2.1.1 能量的基本转换过程17
2.1.2 热力学基本定律18
2.1.3 热力学第二定律19
2.2 热机的原理22
2.3 机械能储存技术24
2.4 热能储存技术27
2.5 化学能储存技术34
2.6 电能储存技术38
2.7 气体水合物储能技术39
参考文献42
第3章 储能材料的基本特性45
3.1 相变的焓差(Δ??H??) 45
3.2 相平衡特性47
3.3 相变过程的特性54
3.4 气体水合物的特性56
3.5 水的特性60
3.6 冰的特性61
3.7 水合盐的特性62
3.8 高分子储能材料的特性63
3.9 储能材料的热物性及测定方法65
3.10 储能材料的遴选原则70
3.11 常用材料的储能特性对比71
参考文献73
第4章 冰蓄冷空调技术及其应用74
4.1 发展蓄冷空调的效益分析74
4.1.1 社会效益74
4.1.2 经济效益76
4.2 空调蓄冷方式及其技术77
4.2.1 水蓄冷77
4.2.2 冰蓄冷79
4.2.3 共晶盐蓄冷85
4.3 空调蓄冷系统运行方式85
4.3.1 水蓄冷系统85
4.3.2 冰蓄冷系统87
4.4 蓄冷空调系统设计方法92
4.4.1 典型设计日空调冷负荷92
4.4.2 蓄冰装置的形式选择95
4.4.3 确定蓄冰系统的形式和运行策略96
4.4.4 确定制冷主机和蓄冰装置的容量97
4.4.5 选择其他配套设备98
4.4.6 蓄冷空调工程实例简介102
4.5 蓄冷空调发展106
参考文献108
第5章 电能储存技术及应用110
5.1 概述110
5.2 抽水蓄能的应用111
5.2.1 抽水蓄能电站的工作原理111
5.2.2 抽水蓄能电站的类型112
5.2.3 抽水蓄能电站的组成部分114
5.2.4 抽水蓄能电站在电力系统中的作用115
5.2.5 近年国内抽水蓄能电站发展状况117
5.3 超导储电能技术的应用119
5.3.1 超导磁储能技术119
5.3.2 超导磁悬浮飞轮储能技术126
5.4 电容器储能技术的应用131
5.4.1 电容器储能原理131
5.4.2 箔式结构脉冲电容器132
5.4.3 自愈式高能储能密度电容器132
5.4.4 高能储能密度电容器的发展趋势133
5.5 压缩空气储电技术的应用135
5.5.1 压缩空气储电技术简介135
5.5.2 利用压缩空气储存电能的原理136
5.5.3 压缩空气储能技术的发展现状137
参考文献141
第6章 热能储存技术的应用143
6.1 热的传递方式144
6.2 热能储存方式146
6.2.1 显热储存(sensible heat storage) 146
6.2.2 潜热储能(latent heat storage) 148
6.2.3 化学反应热储存(chemical reaction heat storage) 149
6.3 蓄热技术的应用149
6.3.1 太阳能热储存149
6.3.2 电力调峰及电热余热储存150
6.3.3 工业加热及热能储存151
6.4 几种蓄热系统的实现方法151
6.4.1 水蓄热151
6.4.2 冰蓄热152
6.4.3 蒸汽蓄热154
6.4.4 相变材料蓄热156
6.5 蓄热系统用于北方供暖159
6.5.1 蓄热式电锅炉159
6.5.2 推广应用蓄热式电锅炉的意义161
6.5.3 蓄热式电锅炉的设计计算实例162
参考文献167
第7章 气体水合物储能技术及其应用168
7.1 概述168
7.2 气体水合物的性质169
7.2.1 气体水合物的定义169
7.2.2 气体水合物的物理性质169
7.3 气体水合物蓄冷现状170
7.4 气体水合物蓄冷工质的选择174
7.5 气体水合物相平衡175
7.5.1 气体水合物相平衡实验175

④ 有谁能系统的解释一下什么是储热相变材料

相变储能理论在建筑节能材料中的应用 :
1相变储能材料的相变理论

相变材料从液态向固态转变时,要经历物理状态的变化。在这两种相变过程中,材料要从环境中吸热,反之,向环境放热。在物理状态发生变化时可储存或释放的能量称为相变热,发生相变的温度范围很窄。物理状态发生变化时,材料自身的温度在相变完成前几乎维持不变。大量相变热转移到环境中时,产生了一个宽的温度平台。相变材的出现,体现了恒温时间的延长,并可与显热和绝缘材料在热循环时,储存或释放显热。
2调节室内温度
目前,可能采用的PCEM 的潜热达到170 J/g左右,而普通建材在温度变化1℃时储蓄同等热量将需要190倍于PCM 的质量。因此,复合PCEM具有普通建材无法比拟的热容,对于房间内气温的稳定及空调系统工况的平稳是非常有利的。当室外温度有较大波动(波峰与波谷的距离较大)时,墙体温度波动不大,这样室内温度波动也不大,同时,相变房间的热流密度也明显比普通房间低,因此相变储能材料起到了调节室内温度的效果。
3降低混凝土水化反应温度
众所周知,混凝土水化反应时释放出大量的反应热,导致混凝土内温度升高,使混凝土开裂、强度降低,尤其是在大体积混凝土更为明显,甚至可能造成结构破坏等严重的工程事故。笔者对掺人相变材料和不掺相变材料的混凝土水化热进行了对比分析,如图5所示,加入适当的相变材料,可以吸收水化反应释放的热量,发生相变,使混凝土内部温度稳定在某一范围内,在反应结束时热量才逐渐传递出来,不会造成混凝土内部温度过高,达到降低混凝土水化反应温度的目的。
4相变储能材料的工程应用实例
相变储能材料已在武汉市建筑节能示范小区的多个工程中进行了试点应用,如丽岛花园、南湾俊园和紫竹园等。实际工程应用表明:相变储能材料对混凝土的温升有了明显改善,尤其是大体积混凝土。混凝土的表面裂纹现象已得到了较好的控制,同时,在保温隔热性能和房屋有效使用面积增大等方面也得到了广大用户的认可与好评。

⑤ 储能有哪些种类又有哪些优点与缺点

电类储能有多少种类型?电气类储能的应用形式只有超级电容器储能和超导储能。

1、超级电容器储能

根据电化学双电层理论研制而成的,又称双电层电容器,两电荷层的距离非常小(一般0.5mm以下),采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。

超级电容器储能开发已有50多年的历史,近二十年来技术进步很快,使它的电容量与传统电容相比大大增加,达到几千法拉的量级,而且比功率密度可达到传统电容的十倍。

超级电容器储能将电能直接储存在电场中,无能量形式转换,充放电时间快,适合用于改善电能质量。由于能量密度较低,适合与其他储能手段联合使用。

2、超导储能

超导储能系统是由一个用超导材料制成的、放在一个低温容器(cryogenic vessel) (杜瓦Dewar )中的线圈、功率调节系统(PCS)和低温制冷系统等组成。

能量以超导线圈中循环流动的直流电流方式储存在磁场中。

超导储能适合用于提高电能质量,增加系统阻尼,改善系统稳定性能,特别是用于抑制低频功率振荡。

但是由于其格昂贵和维护复杂,虽然已有商业性的低温和高温超导储能产品可用,在电网中应用很少,大多是试验性的。SMES 在电力系统中的应用取决于超导技术的发展 (特别是材料、低成本、制冷、电力电子等方面技术的发展)。

3、铅酸电池

铅酸电池是世界上应用最广泛的电池之一。铅酸电池内的阳极(PbO2)及阴极(Pb)浸到电解液(稀硫酸)中,两极间会产生2V的电势,这就是铅酸电池的原理。

铅酸电池常常用于电力系统的事故电源或备用电源,以往大多数独立型光伏发电系统配备此类电池。目前有逐渐被其他电池(如锂离子电池)替代的趋势。

4、锂离子电池

锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。

充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。

由于锂离子电池在电动汽车、计算机、手机等便携式和移动设备上的应用,所以它目前几乎已成为世界上应用最为广泛的电池。

锂离子电池的能量密度和功率密度都较高,这是它能得到广泛应用和关注的主要原因。

它的技术发展很快,近年来,大规模生产和多场合应用使其价格急速下降,因而在电力系统中的应用也越来越多。

锂离子电池技术仍然在不断地开发中,目前的研究集中在进一步提高它的使用寿命和安全性,降低成本、以及新的正、负极材料的开发上。

5、钠硫电池

钠硫电池的阳极由液态的硫组成,阴极由液态的钠组成,中间隔有陶瓷材料的贝塔铝管。电池的运行温度需保持在300℃以上,以使电极处于熔融状态。

日本的NGK公司是世界上唯一能制造出高性能的钠硫电池的厂家。目前采用50kW的模块,可由多个50kW的模块组成MW级的大容量的电池组件。

在日本、德国、法国、美国等地已建有约200多处此类储能电站,主要用于负荷调平、移峰、改善电能质量和可再生能源发电,电池价格仍然较高。

6 、全钒液流电池

在液流电池中,能量储存在溶解于液态电解质的电活性物种中,而液态电解质储存在电池外部的罐中,用泵将储存在罐中的电解质打入电池堆栈,并通过电极和薄膜,将电能转化为化学能,或将化学能转化为电能。

液流电池有多个体系,其中全钒氧化还原液流电池(vanadium redox flow battery, VRFB)最受关注。

这种电池技术最早为澳大利亚新南威尔士大学发明,后技术转让给加拿大的VRB公司。

在2010年以后被中国的普能公司收购,中国的普能公司的产品在国内外一些试点工程项目中获得了应用。

电池的功率和能量是不相关的,储存的能量取决于储存罐的大小,因而可以储存长达数小时至数天的能量,容量也可达MW级,适合于应用在电力系统中。

储能优点与缺点:

各种类型的储能系统中,锂离子电池储能是目前技术相对成熟的一种储能方式。以橄榄石型磷酸铁锂为活性物质的锂离子二次电池,具有较高的能量密度、较低的生产制造成本以及使用寿命长等诸多优点。在电动汽车产业的推动下,与磷酸铁锂电池有关的荷电状态估算、电池集成技术、管理系统等方面更是进行了广泛、深入的研究工作。然而,这些研究多数是在电动汽车使用环境、运行工况和使用条件下进行的,其研究成果和结论并不完全适用于以大规模能量输入/输出为特征的电网储能系统。

储能定义:

从广义上讲,储能即能量存储,是指通过一种介质或者设备,把一种能量形式用同一种或者转换成另一种能量形式存储起来,基于未来应用需要以特定能量形式释放出来的循环过程。

从狭义上讲,针对电能的存储,储能是指利用化学或者物理的方法将产生的能量存储起来并在需要时释放的一系列技术和措施。

九种储能电池技术优劣对比:

一、铅酸电池

主要优点:

1、原料易得,价格相对低廉;

2、高倍率放电性能良好;

3、温度性能良好,可在-40~+60℃的环境下工作;

4、适合于浮充电使用,使用寿命长,无记忆效应;

5、废旧电池容易回收,有利于保护环境。

主要缺点:

1、比能量低,一般30~40Wh/kg;

2、使用寿命不及Cd/Ni电池;

3、制造过程容易污染环境,必须配备三废处理设备。

二、镍氢电池

主要优点:

1、与铅酸电池比,能量密度有大幅度提高,重量能量密度65Wh/kg,体积能量密度都有所提高200Wh/L;

2、功率密度高,可大电流充放电;

3、低温放电特性好;

4、循环寿命(提高到1000次);

5、环保无污染;

6、技术比较锂离子电池成熟。

主要缺点:

1、正常工作温度范围-15~40℃,高温性能较差;

2、工作电压低,工作电压范围1.0~1.4V;

3、价格比铅酸电池、镍氢电池贵,但是性能比锂离子电池差。

三、锂离子电池

主要优点:

1、比能量高;

2、电压平台高;

3、循环性能好;

4、无记忆效应;

5、环保,无污染;目前是最好潜力的电动汽车动力电池之一。

四、超级电容

主要优点:

1、功率密度高;

2、充电时间短。

主要缺点:能量密度低,仅1-10Wh/kg,超级电容续航里程太短,不能作为电动汽车主流电源。

五、燃料电池

主要优点:

1、比能量高,汽车行驶里程长;

2、功率密度高,可大电流充放电;

3、环保,无污染。

主要缺点:

1、系统复杂,技术成熟度差;

2、氢气供应系统建设滞后;

3、对空气中二氧化硫等有很高要求。由于国内空气污染严重,在国内的燃料电池车寿命较短。

六、钠硫电池

优势:

1、高比能量(理论760wh/kg;实际390wh/kg);

2、高功率(放电电流密度可达200~300mA/cm2);

3、充电速度快(充满30min);

4、长寿命(15年;或2500~4500次);

5、无污染,可回收(Na,S回收率近100%);6、无自放电现象,能量转化率高;

不足:

1、工作温度高,其工作温度在300~350度,电池工作时需要一定的加热保温,启动慢;

2、价格昂贵,万元/每度;

3、安全性差。

七、液流电池(钒电池)

优点:

1、安全、可深度放电;

2、规模大,储罐尺寸不限;

3、有很大的充放电速率;

4、寿命长,高可靠性;

5、无排放,噪音小;

6、充放电切换快,只需0.02秒;

7、选址不受地域限制。

缺点:

1、正极、负极电解液交叉污染;

2、有的要用价贵的离子交换膜;

3、两份溶液体积大,比能量低;

4、能量转换效率不高。

八、锂空气电池

致命缺陷:固体反应生成物氧化锂(Li2O)会在正极堆积,使电解液与空气的接触被阻断,从而导致放电停止。科学家认为,锂空气电池的性能是锂离子电池的10倍,可以提供与汽油同等的能量。锂空气电池从空气中吸收氧气充电,因此这种电池可以更小、更轻。全球不少实验室都在研究这种技术,但如果没有重大突破,要想实现商用可能还需要10年。

九、锂硫电池(锂硫电池是一类极具发展前景的高容量储能体系)

优点:

1、能量密度高,理论能量密度可达2600Wh/kg;

2、原材料成本低;

3、能源消耗少;

4、低毒。

⑥ 储能技术有哪几种,各自的特点是什么

在目前所提出的各种超导电力装置中,储能装置具有较大的技术可行性和经济价值,因此随着高温超导和电力电子技术的不断进步,开展储能装置的研制工作对各国电力事业具有深远的意义,而且也是各国经济战略发展的需要。

到目前为止,人们已经探索和开发了多种形式的电能储能方式,主要可分为:机械储能、化学储能和电磁储能等。

机械储能:抽水蓄能、压缩空气储能、飞轮储能。其特点是技术上成熟可靠,容量可以做的很大,受水库库容限制。

化学储能:铅酸电池、氧化还原液流电池、钠流电池、锂离子电池。特点是自放电小,25℃下自放电率小于2%/月;结构紧凑,密封好,抗振动,大电流性能好;工作温度范围宽,-40℃~50℃;价格低廉;制造维护成本低;无记忆效应(浅循环工作时容量损失)。

电磁储能:超导储能、超级电容器储能。超级电容器(SC)是近几十年来,国里外发展起来的一种介于常规电容器与化学电池二者之间的新型储能元件。它具备传统电容那样的放电功率,也具备化学电池储能电荷的能力。与传统电容相比,具备达到法拉级别的超大电容量、较高的能量、较宽的工作温度范围和极长的使用寿命,充放电循环次数达到十万次以上,且不用维护;与化学电池相比,具备较高的比功率,且对环境无污染。

⑦ 相变蓄热材料和相变储能材料是一个意思么

相变材料(PCM),指在温度不变的情况下而被动吸收热量改变物质状态并能提供潜热的物质。相变材料其本身就具有导热、吸热、储能的作用,能蓄热、蓄冷、导热、吸热、降温等。
相变蓄热材料和相变储能材料严格来说是有区别的,不是一个意思。
通常说相变蓄热材料和相变储能材料,仅是其功能的一种叫法而已。相变储能材料包含相变蓄热材料,仅说相变储能材料也有可能是相变蓄冷材料、相变保温材料。直接说相变蓄热材料则需求材料更加明确,至少相变点不可能太低。

也就是说相变蓄热材料,主要作用是起到蓄热的作用,通常需求相变点为40-120℃甚至以上的相变材料。相变储能材料是约等于相变材料了,相变点范围还不明确。
相变材料属于新型材料,在国内,新材料的企业在研究相变材料的只有很小一部分,能规模化自主生产的,只有屈指可数的几家,目前相变材料做到绝缘防水,抗高压,高导热、高热焓值、大比热容,相变后不改变形状的只有力王新材料(KINGBALI)一家。力王新材料有相变凝胶、相变硅脂、相变导热片、相变异形材料等,均可实现蓄热、蓄能的功能。
相变材料在国内别称较多:如相变降温材料、相变储能材料、相变蓄热材料、相变控温材料、相变蓄冷材料、相变吸热材料等等,按用途命名较多。

⑧ 金属氢是不是高能储能物材料

A、构成固态氢的微粒是氢分子,构成金属氢的微粒是氢原子,固态氢和金属氢的构成微粒不同,故错误;
B、金属氢具有了导电的特性,可以做导体,故正确;
C、氢在金属状态下,氢分子将分裂成单个氢原子,氢原子构成金属氢,有新物质生成,属于化学变化,故错误;
D、金属氢是一种元素组成的纯净物,属于单质,不是合金,故错误.
答案:B

⑨ 低温超导材料有哪些

低温超导材料(low temperature superconcting material)
具有低临界转变温度(Tc<30K),在液氦温度条件下工作的超导材料。分为金属、合金和化合物。具有实用价值的低温超导金属是Nb( 铌 ),Tc 为9.3K已制成薄膜材料用于弱电领域。合金系低温超导材料是以Nb为基的二元或三元合金组成的β相固溶体,Tc 在 9K 以上。最早研究的是NbZr合金,在此基础上又出现了 NbTi合金 。NbTi 合金的超导电性和加工性能均优于 NbZr 合金 ,其使用已占低温超导合金的95% 左右 。NbTi 合金可用一般难熔金属的加工方法加工成合金,再用多芯复合加工法加工成以铜(或铝)为基体的多芯复合超导线,最后用冶金方法使其最终合金由β单相转变为具有强钉扎中心的两相(α+β)合金,以满足使用要求。化合物低温超导材料有NbN (Tc=16K)、Nb3Sn ( Tc=18.1K) 和 V3Ga(Tc=16.8K)。NbN多以薄膜形式使用 ,由于其稳定性好 ,已制成实用的弱电元器件 。Nb3Sn是脆性化合物 ,它和V3Ga可以纯铜或青铜合金为基体材料,采用固态扩散法制备 。为了提高 Nb3Sn(V3Ga)的超导性能和改善其工艺性能,有时加入一些合金元素,如Ti、Mg等。
低温超导材料已得到广泛应用 。在强电磁场中 ,NbTi超导材料用作高能物理的加速器、探测器、等离子体磁约束、超导储能 、超导电机及医用磁共振人体成像仪等;Nb3Sn 超导材料除用于制作大量小型高磁场(710T)磁体外,还用于制作受控核聚变装置中数米口径的磁体 ;用Nb及NbN薄膜制成的低温仪器,已用于军事及医学领域检测极弱电磁信号 。低温超导材料由于Tc低,必须在液氦温度下使用,运转费用昂贵,故其应用受到限制。

⑩ 常用的复合储能有哪些组合

常用的复合储能组合:

1、双层复合如PT/PE、纸/铝箔、纸/PE、PET/PE、PVC/PE、NY/PVDC、PE/PVDC、PP/PVDC等。

2、三层复合如BOPP/PE/OPP、PET/PVDC/PE、PET/PT/PE、PT/AL/PE、蜡/纸/PE等。

3、四层复合如PT/PE/BOPP/PE、PVDC/PT/PVDC/PE、纸/铝箔/纸/PE等。

4、五层复合如PVDC/PT/PE/AL/PE等。

5、六层复合如PE/纸/PE/AL/PE/PE等。

在固体物理学中

载流子的复合(英语:recombination)指半导体中的载流子(电子和空穴)成对消失的过程。这一过程在许多光电半导体材料中都会涉及。在一些具有PN结的器件,例如二极管和双极性晶体管中,为了研究其详细的工作原理,分析载流子的复合过程也是必要的。

阅读全文

与物理储能材料有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071