导航:首页 > 物理学科 > 物理的g是怎么求出来的

物理的g是怎么求出来的

发布时间:2022-07-09 11:22:57

㈠ 万有引力常数g怎么求

万有引力常数G的精确测量不仅对于弄清引力相互作用的性质非常关键,而且对于理论物理学、地球物理、天文学、宇宙学以及精确测量等都具有重要的理论意义与现实意义。令人遗憾的是,G是历史上最早被认识和测量的物理常数,但它的精度至今仍是最差的。自卡文迪许(Cavendish)1798年采用精密扭秤取得历史上第一个较为精确的万有引力常数G测量值以来,人们在这一领域内做出了艰苦卓绝的努力,将不断发展的近代科学技术与巧妙的实验设计相结合,力求得到精确可靠的结果。但两百年来G的测量精度提高不到两个数量级。近三十年来,尽管大部分实验者都认为自己的测G实验达到了10-4数量级的相对精度,但事实上他们之间测量结果的吻合度仅达到10-3数量级。因而万有引力常数G的精确测量作为一个热点和难点为各国科学家所关注,并投入大量人力和物力进行精确测量。

目前测G的方法大致可分为地球物理测量、实验室测量和空间测量等三大类。地球物理学方法引力效应明显,但实验的精度比较低。空间测量方法面临着很多新的技术难题,目前仍在探索之中。实验室内测量是目前获得高精度G值的主要手段,常用工具是精密扭秤。采用扭秤测量引力常数G有以下方法:直接倾斜法、共振法和周期法等。其中扭秤周期法是采用得最多并且测量结果较为理想的方法之一,其基本原理是当扭秤周围放置吸引质量之后其运动周期要产生相应的变化。实验室内测量引力常数G是一项艰巨而又困难的系统工作,实验精度的提高主要受到以下四个方面因素的制约:引力相互作用十分微弱;引力作用不可屏蔽;质量、长度以及时间的绝对测量;引力常数G的独立性等。

该论文采用扭秤周期法对万有引力常数G进行绝对测量,系统地研究了扭秤的特性和系统误差,同时对实验环境背景进行同步监测,从而确保了实验精度。其创新之处在于采用了长周期、高Q值扭秤并使之在一个恒温、隔振以及外界引力干扰相对较小的环境下工作,从而克服了扭丝滞弹性和热弹性对测G的影响。具体内容如下:

A.扭秤系统误差研究

从理论和实验两方面弄清楚扭秤系统的各种误差来源,对于提高扭秤的实验精度具有重要意义。我们在扭秤系统误差研究方面取得了一系列重要结果:1)扭秤系统的检验质量和吸引质量之间存在最佳配置,采用这种配置可降低源于吸引质量的非线性效应,从而使扭秤可在较大振幅下运行,提高系统的信噪比(Phys.Lett.A,238,1998:337);2)在扭秤运动的暂态进行测量,而不是在扭秤的平衡态进行测量可获得更高的实验精度(Phys.Lett.A,238,1998:341);3)理论分析和实验研究表明,当扭秤在10-2弧度下工作时,扭秤悬丝的非线性效应对测G的影响不到1 ppm,因而可以忽略不计。这一结论消除了人们对扭丝非线性效应的担心(Phys.Lett.A,264,1999:112);4) 理论分析和实验研究表明,扭秤系统的品质因数Q值随其振幅的增加而衰减,这一结论对减小滞弹性对测G的影响具有重要的指导意义(Phys.Lett.A, 268,2000:255)(5)理论分析和实验研究表明,环境温度的变化极大地影响扭秤悬丝的扭转系数k,对于实验中常用的钨丝而言,其温度系数 。即当环境温度变化 时,带给测G的误差将高达165 ppm(Rev.Sci.Instrum. 71, 2000:1524 )。扭丝的这一热弹性效应的研究结果表明,以往很多的测G的结果值得怀疑,并且我们可以利用它对目前测G结果不吻合的现象作出合理的解释。

B. 超长周期信号的基频拟合方法研究

扭秤的周期一般从几分钟到1个小时以上,这是因为周期越长,灵敏度越高。但长周期扭秤的基频拟合却是一件非常困难的事情。传统的FFT (快速傅氏变换)和All-Poles(极值点)方法由于其原理上的限制,为了达到10-5的相对拟合精度,需要N=105个周期的实验测量数据。如果扭秤周期为1个小时,实验数据长度为15年,显然这是不现实的。目前比较常用的是所谓的非线性拟合,例如对于正弦信号采用目标函数 进行最小二乘法拟合。这一方法对频率 的拟合精度取决于振幅 和相位 的拟合精度。为了得到最小的整体方差,三个参量的方差必须保持平衡。由于我们仅对频率的拟合精度感兴趣,因而可牺牲其它参量的拟合精度,从而获得高精度的频率拟合。利用这一思想,我们提出了周期拟合法(Period-Fitting Method)。计算机模拟和实验数据的具体应用结果表明,该方法对含有十几个周期的低频信号(周期长达1小时)的数据拟合精度可达到10-7以上,从而很好地解决了长周期扭秤的基频精确拟合的难题。该方法可广泛应用于需要确定超低频信号基频的领域(Rev.Sci. Instrum., V70,1999:4412)。

C. 折叠摆倾斜仪的研究

为了对测G实验环境的地倾斜固体潮背景进行同步检测,我们将用于激光引力波检测实验中的水平隔振技术用于地倾斜固体潮的研究,成功地研制了折叠摆倾斜仪。其基本思想是将一个正摆和一个倒摆巧妙地连接在一起,以减小整个摆系的回复系数,从而获得极低的运动频率(长周期)。我们研制的折叠摆的周期长达60秒以上,等效的单摆长度达到1公里以上。利用折叠摆进行地倾斜固体潮观测的实验结果表明,折叠摆的灵敏度已达到3.5 10-9弧度(Phys.Lett.A, 256, 1999:132)。这一结果明显优于常用的水管倾斜仪和水平摆倾斜仪。此外,折叠摆也可以作为高精度的拾震器,利用它可对地震尤其是地震前的临震异常信号进行监测,我们已利用折叠摆检测到许多地震及其前兆信号。关于折叠摆倾斜仪的发明专利申请已获得国家专利局的批准(专利号:ZL951148222)。

D. 精密温度传感系统研究

在测G扭秤实验中,微小的环境温度变化将直接影响实验结果。为了对实验环境的温度场进行同步监测,我们研制出高精度的微小温度变化测量系统。其基本原理是利用两重不同材料的热膨胀特性的不同去探测微小温度的变化。我们研制的温度监测系统的分辨本领达到0.0001 oC,从而解决了实验环境背景温度场监测的难题,该技术还可应用于其它许多领域(Rev.Sci.Instrum.,68,1997:565)。

E. 超低频隔振系统研究

由于引力相互作用十分微弱,外界振动对测G实验的干扰必须进行隔离,而且隔振系统的频率越低,隔振效果也就越好。我们首次提出准静止参照系的概念,并实施了基于准静止参照系主动阻尼的新隔振方法。设计并制作了超低频的垂直扭杆弹簧系统,其固有周期达20秒,在6Hz上系统隔振率超过3个量级。将其作为准静止参照系,成功地实现了对一大型隔振系统进行主动阻尼,其隔振性能比传统隔振方法好一个数量级以上(Rev.Sci.Instrum. 69,1998:2781; Phys,Lett.A,253,1999:1)。

独特的实验设计(长周期、高Q值),优越的实验环境(安静、恒温、隔振),扭秤仪器系统误差的深入细致研究,加上背景环境的同步监测,确保了实验精度。我们最终测得G为(6.6699 0.0007) 10-11 m3kg-1s-2,其相对精度达到105 ppm,该结果发表在美国的Phys. Rev. D(《物理评论D》)上。这不仅是我国至今为止的第一个高精度G值,而且也是目前国际上几个最好的测量值之一,并于1998年被国际物理学基本常数委员会推荐的CODATA值采用

㈡ 有谁知道物理中的小g是怎么算的前提是在不同的地方小g都不一样

这个小g其实就是重力加速度。
所以重力加速度(Gravitational acceleration)是一个物体受重力作用的情况下所具有的加速度。 假设一个质量为m的质点与一质量为M的均匀球体的球心距离为r时,质量所受的重力大小约等于两物体间的万有引力,为:F=GMm/r^2
其中G为引力常数。 根据牛顿第二定律
F=ma=mg
可得重力加速度g=GM/r^2。
(^2就是平方的意思)

㈢ 关于物理中:g=9.8N/kg这个g是怎么推出来

g = 9.8 N/kg,

一般可通过实验测量得出。

也可以由万有引力公式和牛二定律计算推导出来。

㈣ 物理G=mg当中的g是怎么得来的,为什么可以用来求重力g不是重力的加速度吗那么对于禁止的物体又

在运动学中,g是重力加速度。单位是m/s²。表示每秒增加的速度。
在引力场中,g又是引力场强度。单位是N/kg。表示每千克的物体受到的重力。
由于重力近似等于万有引力为GMm/R²,而引力场强度g=GM/R²,所以重力等于mg.
如是用测力计称质量,是利用了重力等于mg,这个公式,测力计实际得到的是重力,然后利用公式G=mg转化,在标度盘上直接标出质量。

㈤ g等于9.8N每千克怎么算出来的

根据牛顿物理学,下面给出计算重力加速度的表达式。这一计算是很重要的。因为加速度计不能测量重力加速度,必须由计算机依据地球上的位置来计算它,即

式中:g为重力加速度;GM为与地球质量有关的常数;R为地球中心至计算点的距离或半径。

上面的方程给出了重力加速度的大小,其作用方向是沿导弹与地球中心间连线的方向。这里要注意的关键是,了解位置才能求得重力加速度,而且其大小与半径的平方成反比,它随高度的增大而迅速减小。

㈥ 关于物理中:g=9.8N/kg

g,是用万有引力公式求出来的。你可以查一下万有引力的公式。和距离平方成反比。所以当离地心距离不同时,g会改变。我们常说的g是地表的。实际山上的g会小一点、

㈦ 物理:为什么G=mg这个公式可以成立g又代表什么

G=mg
G:重力
m:质量
g:重力常数
这个公式的计算其实是把物体的质量根据一定环境下的重力常数换算成重力,举一个简单的例子吧,在一般的环境下,重力常数g=9.8N/Kg
那么我们将一个1Kg的物体的重力算出来就可以这样做:
G=mg=1Kg*9.8N/Kg=9.8N
就是说,在一般环境下,一Kg质量的物体,它的重力为9.8牛
g指重力加速度和纬度还有高度有关
同纬度,
高度越大,g越小;越靠近两极,g越大。
当纬度和高度都不一样时,就根据万有引力定律来求重力常数又称万有引力常数,即万有引力定律中表示引力与两物体质量、距离关系公式中的系数。
其值约等于6.67259×10^-11
米3/(千克·秒^2),它最初是由英国物理学家亨利·卡文迪许在1798年通过扭秤实验(卡文迪许实验)测得的。
这个数值是在地球表面测量得到的.
在宇宙中其它地方,这个数值会改变的

㈧ 物理中n与kg,g怎么换算

N指的是力,kg、g指的是质量,这是两个完全不同的物理量,是不能用等号换算的,kg和g之间可以换算,1kg=1000g,若是涉及到重力等问题时,可以用 G=mg来运算一下,但 N和kg永远不能直接用等号来连接。

这里有两个g是表示不同的,g在质量中表示克,而在G=mg中g=9.8牛顿/千克是重力加速度。在有些题目g常等于10牛顿/千克。

(8)物理的g是怎么求出来的扩展阅读:

根据牛顿第二定律F=ma,可知,1N=1kg·m/s²,能使一千克质量的物体获得1m/s²的加速度所需的力的大小定义为1牛顿。物理学中,用G=mg求重力,其中G为重力,m为质量,g为常数,约为9.8N/kg。

单位换算:

1 千克 = 0.001公吨

1 千克 = 1,000 克

1 千克 = 1,000,000 毫克

1 千克 = 1,000,000,000 微克

1千克=2斤

1千克=1公斤

1千克=20两

㈨ 物理g怎么算

高中的g是重力加速度,加速度的单位就是m/s²了。
那个实验要用到一个公式 x=1/2at²,这个是用图像推出来的,v-t图。
然后变式就得到了【a=2x/t²】

㈩ 物理G怎么求

你的G是指万有引力吗,还是指万有引力常量?

阅读全文

与物理的g是怎么求出来的相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:746
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1421
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1002
武大的分析化学怎么样 浏览:1255
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1666
下列哪个水飞蓟素化学结构 浏览:1430
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1071