① 高一物理角速度怎么学
很简单,首先要明白什么是角速度,角速度就是单位时间内角度的变化量:ω=Δθ/Δt,其中Δθ是所转的角度,Δt是转Δθ所用的时间,要注意的是Δθ是弧度制的也就是180°= π(360°=2π)
比如说:你原地打转,2s(2秒)转了90°(也就是π/2)那么你的角速度就是ω=Δθ/Δt=(π/2)/2s=0.25π/s
② 高一地理:什么是角速度和线速度如何计算(请写出公式,并讲解,谢谢)
角速度连接运动质点和圆心的半径在单位时间内转过的弧度叫做“角速度”。在国际单位制中,单位是“弧度/秒”,但是也可以以其他单位来作度量,例如:“度/秒”、“度/小时” 等等。它是描述物体转动或一质点绕另一质点转动的快慢和转动方向的物理量。物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度�6�1秒-1,方向用右手螺旋定则决定。对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t。
角速度还可以通过V(线速度)/R(半径)求出
角速度是在物理学中描述物体转动时在单位时间内转过角度以及转动方向的矢量(更准确地说,是伪矢量[1]),通常用希腊字母Ω或ω来表示。在国际单位制中,单位是“弧度/秒”,但是也可以以其他单位来作度量,例如:“度/秒”、“度/小时” 等等。当在度量单位时间内的转动周数时(例如:每分钟转动周数),则以转速来描述转动速度快慢。角速度的方向垂直于转动平面,可通过右手定则来确定。
质点的角速度
二维坐标系
一个质点在二维平面上的角速度是最容易懂的。 如右图所示,假使从(O)点向(P)质点画一条直线,则该粒子的速度向量()可分成在沿着径向上分量( - 径向分量)以及垂直于径向的分量( - 切线方向分量).
由于粒子在径向上的运动并不会造成相对于原点(O)的转动,在求取该粒子的角速度时,可以忽略水平(径向)分量。因此,转动完全是由切线方向的运动所造成的(如同质点在绕着圆周运动),即角速度是完全由垂直(切线方向)的分量所决定的。 质点角度位置的改变率与其切线方向速度的关系式如下:
:
定义角速度为 ω=dφ/dt, 而速度的垂直分量 等于 ;其中 θ 是向量 r 与 v 的夹角,则导出:
:
在二维坐标系中,角速度是一个只有大小没有有方向的伪纯量,而非纯量。纯量与伪纯量不同的地方在于,当' 轴与' 轴对调时,纯量不会因此而改变正负符号,然而伪纯量却会因此而改变。角度及角速度则是伪纯量。以一般的定义,从 ' 轴转向 ' 轴的方向为转动的正方向。倘若座标轴对调,而物体转动不变,则角度的正负符号将会改变,因此角速度的正负号也跟着改变。
注意:角速度的正负号及数值量取决于原点位置及座标轴方向的选定。
三维座标系
在三维座标系中,角速度变得比较复杂。在此状况下,角速度通常被当作向量来看待;甚至更精确一点要当作伪向量。它不只具有数值,而且同时具有方向的特性。数值指的是单位时间内的角度变化率,而方向则是用来描述转动轴的。概念上,可以利用右手定则来标示角速度伪向量的正方向。原则如下:
假设将右手(除了大拇指以外)的手指顺着转动的方向朝内弯曲,则大拇指所指的方向即是角速度向量的方向'
正如同在二维座标系的例子中,一个质点的移动速度相对于原点可以分成一个沿着径向以及另一个垂直径向的分量。举例而言,原点与质点的速度垂直分量的组合可以定义一个转动平',质点在此平面上的行为就如同在二维座标系中的状况下,其转动轴则是一条通过原点且垂直此平面的线,这个轴订定了角速度伪向量的方向,而角速度的数值则是如同在二维座标系状况下求得的伪纯量的值。当定义一个指向角速度伪向量方向单位向量时,可以用类似二维座标系的方式来表示角速度: :
再加上外积的定义,则可以写成:
:
高维空间
一般而言,在高维空间的角速度是一个二阶斜对称的角位移张量对时间的微分。此张量具有 n(n-1)/2 个独立分量,其中"n(n-1)/2" 这个数字指的是在n-维内积空间中转动李群之李代数的维度。
刚体角速度
主条目:刚体动力学
为了处理刚体运动的问题,最好采用固定在刚体上的座标系统,然后再学习此座标系统与实验室座标系统之间的座标转换。如右图所示,O 为实验室座标系统的原点,而O'是刚体座标系统的原点,O 与 O' 之间的向量R。质点 (')在刚体上P点的位置上,此质点在实验室座标中的向量位置是Ri,而在刚体座标中的向量位置为ri。我们可以看到此质点的位置可以写成:
:
刚体最重要的特征为任意两点之间距离不随时间变化。这意味着矢量 的长度是不变的。根据欧拉刚体的有限旋转定理,我们可以用来代替,其中 代表旋转矩阵,而 是初始时刻的质点的位置。这个替代显得非常有意义,随时间变化的只有,而不是相对矢量。对于刚体就O'旋转,质点的位置可以写为:
:
就质点的速度对时间微分,可以得到质点的速度:
:
其中Vi是质点在实验室座标中的速度,而V 是O'点(刚体座标的原点)的在实验室座标中的速度,故质点的速度可以写成:
:
Ω是角速度张量,如果我们取角速度张量的对偶,我们即可得到角速度的伪矢量。
:
矩阵的乘法可以用外积来取代,导出:
:
由此可见,刚体中质点的速度可分解成两项—刚体中某固定参考点的速度再加上一项包含该质点相对于此参考点的角速度的外积。相较于O'点对于O点的角速度,这个角速度是 “自旋” 角速度。
很重要的是,每个在刚体中的质点具有相同的自旋角速度,此自旋角速度与刚体上或是实验室座标系统的原点的选择无关。换句话说,这是一个刚体特质所具有的真实物理量,与座标系统的选择无关。然而刚体上的参考点相对于实验室座标原点的角速度则和座标系统的选择有关,为了方便起见,通常选择该刚体的质心当作刚体座标系统的原点,这将大大地简化以数学形式在刚体角动量的上的表达。 回答人的补充 2009-09-08 12:28 线速度
物体上任一点对定轴作圆周运动时的速度称为“线速度”。它的一般定义是质点(或物体上各点)作曲线运动(包括圆周运动)时所具有的即时速度。它的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的即时速度,其方向沿运动轨道的切线方向。在匀速圆周运动中,线速度的大小等于运动质点通过的弧长(S)和通过这段弧长所用的时间(△t)的比值。即v=S/△t,在匀速圆周运动中,线速度的大小虽不改变,但它的方向时刻在改变。它和角速度的关系是v=ωR。线速度的单位是米/秒。
③ 高中物理关于那个线速度角速度问题
线速度定义:V=s/t(基本)。质点转一周弧长s=2πR,时间即为周期T,则V=2πR/T(此即线速度与周期的关系)
角速度定义:ω=θ/t(基本)。质点转一周角度θ=2π,时间即为周期T,则ω=2π/T(此即角速度与周期的关系)
若每秒转n转,则一秒中转θ=2πn,ω=2πn(此即角速度与转速的关系)
由以上两式得:V=Rω(此即线速度与角速度的关系)
向心加速度定义:a=V^2/R(基本),将V=Rω代入得a=ω^2
R,或a=ωV
由牛顿第二定律F=ma,得F=mV^2/R,F=mω^2
R。
掌握三个基本式子,其余理解了就好记了。
④ 高中物理 线速度,角速度,周期,转速,向心加速度,向心力是什么
线速度:简单来说,在一个圆上任意找一点,连接圆心与这点构成连线,这个点会有个与这条连线相垂直的速度,这个速度就是线速度
角速度:角度单位是rad,角速度就是说一个圆在一秒钟内能转多少rad(国际单位)
周期:一个圆在转圈,转一整圈用的时间就是周期啦
向心力:比如说一条绳子掉着物体做语速圆周运动,这条线给物体拉力就是向心力啊,记住啊
是沿着线方向的力,当然这只是个举例加深你理解
向心加速度:还是上个例子,物体速度本来是与线垂直的,但是线的拉力使物体做圆周运动,让物体的速度方向改变,这就是向心加速度的效果,向心力除以物体质量就是向心加速度啦
上面是我用最简单语言表达的啦,望采纳。
⑤ 高一物理必修二中,角速度和线速度的相关问题和详解。
角速度指的是连接质点和圆心的半径在单位时间里转过的弧度,单位是弧度每秒,它是用来描述一物体绕另一物体转动的快慢和方向的物理量。在匀速圆周运动中,角速度是一个不变的量。
线速度指的是一物体绕另一物体做曲线运动时所具有的速度,单位是米每秒,同样具有大小和方向。在做圆周运动时,线速度的方向是在时刻变化的,方向沿运功轨迹的切线方向。在匀速圆周运动中,虽然线速度的大小是不变的,但是他是方向确实在时刻变化的,所以匀速圆周运动也是变速圆周运动。在匀速圆周运动中,线速度V=角速度ω×半径R
⑥ 急!请问物理里“角速度”是什么意思
角速度
连接运动质点和圆心的半径在单位时间内转过的弧度叫做“角速度”。角速度的单位是弧度/秒,读作弧度每秒。它是描述物体转动或一质点绕另一质点转动的快慢和转动方向的物理量。物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度•秒-1,方向用右手螺旋定则决定。对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t。
角速度是在物理学中描述物体转动时在单位时间内转过角度以及转动方向的矢量(更准确地说,是伪矢量),通常用希腊字母Ω或ω来表示。在国际单位制中,单位是“弧度/秒”,但是也可以以其他单位来作度量,例如:“度/秒”、“度/小时”
等等。当在度量单位时间内的转动周数时(例如:每分钟转动周数),则以转速来描述转动速度快慢。角速度的方向垂直于转动平面,可通过右手定则来确定
⑦ 物理中角速度怎么计算
一般角速度涉及圆周运动问题,描述的是(质点)转动的快慢。角速度用w表示:
定义式:wt=a (a表示t 时间内转过的圆心角,a=s/r,这个比较少用)
v=wr(v表示线速度)
w=2π/T=2πn=2πf(转动周期T,转速n,频率f)
a=w2r=vw(w2是w的平方,a是向心加速度)
F=ma=mw2r(F向心力,m质量)
好了,关于角速度的计算公式大概就有这一些了。其实这些都是高一必修二里的知识,我想你应该是还没有学过吧。呵,等学了以后你就会掌握了的。
我已经尽力而为了,若还有什么让你不明白的地方就尽管说吧。
希望对你有帮助!
⑧ 什么是转动角速度 (物理)
角速度指物体在单位时间内转过的角度
角速度等于圆的周长除以旋转的周期.2π就是圆的周长.
就是说一个东西旋转了一圈所用的时间是周期,一圈是2π,角速度当然就是2π/T了,你可以用速度=路程/时间来做类比的理解.
2π是一个角度的度数,也就是你能理解的360度.我们把圆周和角度进行对应,整个圆周也就是360度就称作2π,那么180度就是π,90度就是π/2,45度就是π/4,60度就是π/3,120度就是2π/3,同理你可以用圆周来表示任何角度,4π就是720度.这个是高一数学学的吧,我记得好象是.
再不行,你就自己画个圆,然后画很多半径,看看某两个半径夹的这个夹角,这个夹角对应一段弧(弧你应该知道吧),那么,我们就理应可以用圆弧来表示角度.