⑴ 单摆问题是几年级的知识
机械振动的内容,高中选秀3-4,如果有选择修着一本数的话,应该在高二下学期学习。
⑵ 高中物理学什么
高一
高中物理新课标教材·必修1
走进物理课堂之前
物理学与人类文明
第一章 运动的描述
1 质点参考系和坐标系
2 时间和位移
3 运动快慢的描述——速度
4 实验:用打点计时器测速度
5 速度变化快慢的描述——加速度
第二章 匀变速直线运动的研究
1 实验:探究小车速度随时间变化的规律
2 匀变速直线运动的速度与时间的关系
3 匀变速直线运动的位移与时间的关系
4 自由落体运动
5 伽利略对自由落体运动的研究
第三章 相互作用
1 重力基本相互作用
2 弹力
3 摩擦力
3 摩擦力
4 力的合成
5 力的分解
第四章 牛顿运动定律
1 牛顿第一定律
2 实验:探究加速度与力、质量的关系
3 牛顿第二定律
4 力学单位制
5 牛顿第三定律
6 用牛顿定律解决问题(一)
7 用牛顿定律解决问题(二)
第五章 机械能及其守恒定律
1 追寻守恒量
2 功
3 功率
4 重力势能
5 探究弹性势能的表达式
6 探究功与物体速度变化的关系
7 动能和动能定理
8 机械能守恒定律
9 实验:验证机械能守恒定律
10 能量守恒定律与能源
第六章 曲线运动
1 曲线运动
2 运动的合成与分解
3 探究平抛运动的规律
4 抛体运动的规律
5 圆周运动
6 向心加速度
7 向心力
8 生活中的圆周运动
第七章 万有引力与航天
1 行星的运动
2 太阳与行星间的引力
3 万有引力定律
4 万有引力理论的成就
5 宇宙航行
6 经典力学的局限性
高二
第一章 电流
一、电荷库仑定律
二、电场
三、生活中的静电现象
五、电流和电源
六、电流的热效应
第二章 磁场
一、指南针与远洋航海
二、电流的磁场
三、磁场对通电导线的作用
四、磁声对运动电荷的作用
五、磁性材料
第三章 电磁感应
一、电磁感应现象
二、法拉第电磁感应定律
三、交变电流
四、变压器
五、高压输电
六、自感现象 涡流
七、课题研究:电在我家中
第四章 电磁波及其应用
一、电磁波的发现
二、电磁光谱
三、电磁波的发射和接收
四、信息化社会
五、课题研究:社会生活中的电磁波
致同学们
第一章 分子动理论 内能
一、分子及其热运动
二、物体的内能
三、固体和液体
四、气体
第二章 能量的守恒与耗散
一、能量守恒定律
二、热力学第一定律
三、热机的工作原理
四、热力学第二定律
五、有序、无序和熵
六、课题研究:家庭中的热机
第三章 核能
一、放射性的发现
二、原子核的结构
三、放射性的衰变
四、裂变和聚变
五、核能的利用
第四章 能源的开发与利用
一、热机的发展和应用
二、电力和电信的发展与应用
三、新能源的开发
四、能源与可持续发展
五、课题研究:太阳能综合利用的研究
致同学们
第一章 电场 直流电路
第1节 电场
第2节 电源
第3节 多用电表
第4节 闭合电路的欧姆定律
第5节 电容器
第二章 磁场
第1节 磁场磁性材料
第2节 安培力与磁电式仪表
第3节 洛伦兹力和显像管
第三章 电磁感应
第1节 电磁感应现象
第2节 感应电动势
第3节 电磁感应现象在技术中的应用
第四章 交变电流电机
第1节 交变电流的产生和描述
第2节 变压器
第3节 三相交变电流
第五章 电磁波通信技术
第1节 电磁场电磁波
第2节 无线电波的发射、接收和传播
第3节 电视移动电话
第4节 电磁波谱
第六章 集成电路传感器
第1节 晶体管
第2节 集成电路
第3节 电子计算机
第4节 传感器
高三
第一章 光的折射
第1节 光的折射 折射率
第2节 全反射 光导纤维
第3节 棱镜和透镜
第4节 透镜成像规律
第5节 透镜成像公式
第二章 常用光学仪器
第1节 眼睛
第2节 显微镜和望远镜
第3节 照相机
第三章 光的干涉、衍射和偏振
第1节 机械波的稍微和干涉
第2节 光的干涉
第3节 光的衍射
第4节 光的偏振
第四章 光源与激光
第1节 光源
第2节 常用照明光源
第3节 激光
第4节 激光的应用
第五章 放射性与原子核
第1节 天然放射现象 原子结构
第2节 原子核衰变
第3节 放射性同位素的应用
第4节 射线的探测和防护
第六章 核能与反应堆技术
第1节 核反应和核能
第2节 核列变和裂变反应堆
第3节 核聚变和受控热核反应
第四章 电磁感应
1 划时代的发现
2 探究电磁感应的产生条件
3 法拉第电磁感应定律
4 椤次定律
5 感生电动势和动生电动势
6 互感和自感
7 涡流
第五章 交变电流
1 交变电流
2 描述交变电流的物理量
3 电感和电容对交变电流的影响
4 变压器
5 电能的输送
第六章 传感器
1 传感器及其工作原理
2 传感器的应用(一)
3 传感器的应用(二)
4 传感器的应用实例
附 一些元器件的原理和使用要点
第七章 分子动理论
1 物体是由大量分子组成的
2 分子的热运动
3 分子间的作用力
4 温度的温标
5 内能
第八章 气体
1 气体的等温变化
2 气体的等容变化和等压变化
3 理想气体的状态方程
4 气体热现象的微观意义
第九章 物态和物态变化
1 固体
2 液体
3 饱和汽和饱和汽压
4 物态变化中的能量交换
第十章 热力学定律
1 功和内能
2 热和内能
3 热力学第一定律 能量守恒定律
4 热力学第二定律
5 热力学第二定律的微观解释
6 能源和可持续发展
第十一章 机械振动
1 简谐运动
2 简谐运动的描述
3 简谐运动的回复力和能量
4 单摆
5 外力作用下的振动
第十二章 机械波
1 波的形成和传播
2 波的图象
3 波长、频率和波速
4 波的反射和折射
5 波的衍射
6 波的干涉
7 多普勒效应
第十三章 光
1 光的折射
2 光的干涉
3 实验:用双缝干涉测量光的波长
4 光的颜色 色散
5 光的衍射
6 波的干涉
7 全反射
8 激光
第十四章 电磁波
1 电磁波的发现
2 电磁振荡
3 电磁波的发射和接收
4 电磁波与信息化社会
5 电磁波谱
第十五章 相对论简介
1 相对论诞生
2 时间和空间的相对性
3 狭义相对论的其他结论
4 广义相对论简介
第十六章 动量守恒定律
1 实验:探究碰撞中的不变量
2 动量守恒定律(一)
3 动量守恒定律(二)
4 碰撞
5 反冲运动 火箭
6 用动量概念表示牛顿的第二定律
第十七章 波粒二象性
1 能量量子化:物理学的新纪元
2 科学的转折:光的粒子性
3 崭新的一页:粒子的波动性
4 概率波
5 不确定的关系
第十八章 原子结构
1 电子的发现
2 原子的核式结构模型
3 氢原子光谱
4 玻尔的原子模型
5 激光
第十九章 原子核
1 原子核的组成
2 放射性元素的衰变
3 探测射线的方法
4 放射性的应用与防护
5 核力与结合能
6 重核的裂变
7 核聚变
8 粒子和宇宙
⑶ 高中物理:关于单摆的问题
按照绳子的方向和垂直于绳子的方向(即球的运动方向)构成正交坐标系,
做受力分析:
沿绳方向,由于绳子不能伸长,所以小球受力平衡,即绳子的拉力与重力在沿绳方向上的分量平衡。
垂直于绳子的方向,重力的分力使小球从最高点向下运动。
所以,当运动到最高点时,小球受到2个力。
至于您说的第一种说法,绳子上的拉力是提供向心力的,而不是向心力提供拉力,所以没有向心力并不代表着没有拉力。
⑷ 简谐运动,单摆,共振这些内容是高几物理学的
很高兴能够回答您的问题:
简谐运动,单摆,共振这几节内容是来自必修教材力学部分内容的第九章机械振动.
⑸ 高中物理单摆
1。绳子力由速度决定 有速度就有力 最高点是单摆没有速度 因此绳子对球没有拉力 回复力由球自重提供
2.同第一问
⑹ 高一物理 单摆
(1),单摆周期公式:T=2π[l/g].
由公式,单摆应该不受物体的体积及质量影响
考虑到若物体体积过大,会受更大的空气阻力影响
(2)单摆在摆角小于5°的条件下振动时,可近似认为是简谐运动。,则振动的周期将随振幅的增加而变大,就不成为单摆了。如摆球的尺寸相当大,绳的质量不能忽略,就成为复摆(物理摆),周期就和摆球的尺寸有关了
更多资料参考
http://ke.soso.com/v5157999.htm
(但估计以高中知识不易看懂)
总之、如果振动的角度大于
5°,就不能再视为简谐运动了
⑺ 高中物理必修2什么时候学
现行人教版必修2高二第一学期开始学,不知道和你说的教科版是否一致,目录如下。学一个学年(整个高二),但一般动量这一章高一下学期会讲,为了赶进度。
一.冲量和动量 第八章 动量
二.动量定理 第八章 动量
三.动量守恒定律 第八章 动量
四.动量守恒定律的应用 第八章 动量
五.反冲运动 火箭 第八章 动量
单元综合 第八章 动量
第九章 机械振动
一.简谐运动 第九章 机械振动
二.振幅、周期和频率 第九章 机械振动
三.简谐运动的图象 第九章 机械振动
四.单摆 第九章 机械振动
五.相位 第九章 机械振动
六.简谐运动的能量 阻尼振动 第九章 机械振动
七.受迫振动 共振 第九章 机械振动
单元综合 第九章 机械振动
第十章 机械波
一.波的形成和传播 第十章 机械波
二.波的图象 第十章 机械波
三.波长、频率和波速 第十章 机械波
四.波的反射和折射 第十章 机械波
五.波的衍射 第十章 机械波
六.波的干涉 第十章 机械波
七.驻波 第十章 机械波
八.多普勒效应 第十章 机械波
九.次声波和超声波 第十章 机械波
单元综合 第十章 机械波
第十一章 分子热运动 能量守恒
一.物体是由大量分子组成的 第十一章 分子热运动 能量守恒
二.分子的热运动 第十一章 分子热运动 能量守恒
三.分子间的相互作用力 第十一章 分子热运动 能量守恒
四.物体的内能 热量 第十一章 分子热运动 能量守恒
五.热力学第一定律 能量守恒定律 第十一章 分子热运动 能量守恒
六.热力学第二定律 第十一章 分子热运动 能量守恒
七.能源 环境 第十一章 分子热运动 能量守恒
单元综合 第十一章 分子热运动 能量守恒
第十二章 固体、液体和气体
一.固体 第十二章 固体、液体和气体
二.固体的微观结构 第十二章 固体、液体和气体
三.液体 表面张力 第十二章 固体、液体和气体
四.毛细现象 第十二章 固体、液体和气体
五.液晶 第十二章 固体、液体和气体
六.伯努利方程 第十二章 固体、液体和气体
七.湍流现象 第十二章 固体、液体和气体
八.气体的压强 第十二章 固体、液体和气体
九.气体的压强、体积、温度间的关系 第十二章 固体、液体和气体
单元综合 第十二章 固体、液体和气体
第十三章 电场
一.电荷 库仑定律 第十三章 电场
二.电场 电场强度 第十三章 电场
三.电场线 第十三章 电场
四.静电屏蔽 第十三章 电场
五.电势差 电势 第十三章 电场
六.等势面 第十三章 电场
七.电势差与电场强度的关系 第十三章 电场
八.电容器的电容 第十三章 电场
九.带电粒子在匀强电场中的运动 第十三章 电场
十.静电的利用和防止 第十三章 电场
单元综合 第十三章 电场
第十四章 恒定电流
一.欧姆定律 第十四章 恒定电流
二.电阻定律 电阻率 第十四章 恒定电流
三.半导体及其应用 第十四章 恒定电流
四.超导及其应用 第十四章 恒定电流
五.电功和电功率 第十四章 恒定电流
六.闭合电路欧姆定律 第十四章 恒定电流
七.电压表和电流表 伏安法测电阻 第十四章 恒定电流
单元综合 第十四章 恒定电流
第十五章 磁场
一.磁场 磁感线 第十五章 磁场
二.安培力 磁感应强度 第十五章 磁场
三.电流表的工作原理 第十五章 磁场
四.磁场对运动电荷的作用 第十五章 磁场
五.带电粒子在磁场中的运动 质谱仪 第十五章 磁场
六.回旋加速器 第十五章 磁场
七.安培分子电流假说 磁性材料 第十五章 磁场
单元综合 第十五章 磁场
第十六章 电磁感应
一.电磁感应现象 第十六章 电磁感应
二.法拉第电磁感应定律--感应电动势的大小 第十六章 电磁感应
三.楞次定律--感应电流的方向 第十六章 电磁感应
四.楞次定律的应用 第十六章 电磁感应
五.自感现象 第十六章 电磁感应
六.日光灯原理 第十六章 电磁感应
七.涡流 第十六章 电磁感应
单元综合 第十六章 电磁感应
第十七章 交变电流
一.交变电流的产生和变化规律 第十七章 交变电流
二.表征交变电流的物理量 第十七章 交变电流
三.电感和电容对交变电流的影响 第十七章 交变电流
四.变压器 第十七章 交变电流
五.电能的输送 第十七章 交变电流
六.三相交变电流 第十七章 交变电流
单元综合 第十七章 交变电流
第十八章 电磁场和电磁波
一.电磁振荡 第十八章 电磁场和电磁波
二.电磁振荡的周期和频率 第十八章 电磁场和电磁波
三.电磁场 第十八章 电磁场和电磁波
四.电磁波 第十八章 电磁场和电磁波
五.无线电波的发射和接收 第十八章 电磁场和电磁波
六.电视 雷达 第十八章 电磁场和电磁波
单元综合
⑻ 高中物理学史有哪些史
【物理学史】史上最全高中物理学史,值得珍藏!
物理学史在高考中是占有一席之地的,大家不妨在假期的时候多看看这篇《物理学史汇总》,赶紧收藏吧!
1.力学
1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);
2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;
3、1687年,英国科学家牛顿在《自然哲学的数学原理》着作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)
6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;
9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;
10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
11、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。
12、1957年10月,苏联发射第一颗人造地球卫星; 1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。
13、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
14、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。
2.电磁学
13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。
14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。
15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。
16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
19、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。
20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。
21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。
22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
23、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。
24、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。
25、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显着增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。
26、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。
27、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。
28、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。
3.热学
29、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。
31、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。
32、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。指出绝对零度(-273.15℃)是温度的下限。T=t+273.15K
热力学第三定律:热力学零度不可达到。
4.波动学
33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。
34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。
35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。【相互接近,f增大;相互远离,f减少】
36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波
37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。
38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。
39、1800年,英国物理学家赫歇耳发现红外线; 1801年,德国物理学家里特发现紫外线; 1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
5.光学
40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
41、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。
42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。
43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波; 1887年,赫兹证实了电磁波的存在,光是一种电磁波
44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式。
46.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学着作。
47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)
48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。
6.相对论
49、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界);
50、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
51、1905年,爱因斯坦提出了狭义相对论,有两条基本原理: ①相对性原理——不同的惯性参考系中,一切物理规律都是相同的; ②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
52、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;
53、激光——被誉为20世纪的“世纪之光”;
54、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。
55、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)
56、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
57、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;
58、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高分辨能力,质子显微镜的分辨本能更高。
7.原子物理
59、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。
60、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。
61、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
62、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。
63、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15m。
1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生乍得威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。
64、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。
65、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;
66、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。
67、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。 68、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。
69、1932年,卢瑟福学生乍得威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。
70、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现正电子和人工放射性同位素。
71、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
72、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。
73、1932年发现了正电子,1964年提出夸克模型;粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;轻子-不参与强相互作用的粒子,如:电子、中微子;强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.
⑼ 单摆在高中物理重要吗我做不来,呜呜
学习时不要抱有侥幸的心理。
高考物理110,单摆最多占几分的实验题,也可能不考。
但单摆在高中物理中实在不算难的,如果你连学好这样的知识点都没信心的话,以后怎么做综合题?
任何不熟悉的知识点都要弄懂,这次漏一个,以后你可能漏10个,甚至更多,到时候成绩可想而知了。