❶ 万用表原理
回答这个问题还是从万用表基本原理来讲为好。
一般万用表表头内阻都不是一个固定值,所以要串联一只电位器调(MHZ)整到一个固定值(2.5K),表头灵敏度固定在50uA,这样就可以计算了:
电压档通过倍增器扩大电压量程:也就是说:串联的电阻扩大10倍,那么被测电压也扩大了10倍(这时表针满度时表头流过的仍然是50uA电流)。
电流档通过分流器扩大电流量程:也就是说:在表头上并联一只电阻,那么这只电阻与表头内阻形成分流,例如表头内阻2.5K,分流器为25欧姆,这时电流量程扩大100倍,满度时被测电流为500mA(这时表针满度时表头流过的仍然是50uA电流)。
电阻档也是这样的原理:欧姆档调零时使表针满度,通过分流器与倍增器相结合使电阻档内阻达到表盘中心阻值(表盘中心值*倍率)。当被测电阻=该数值时流过表头的电流被分流一半,这样指针正好指在表盘中心。
根据上述原理就很容易理解万用表是怎样形成回路了。
❷ 简述磁电系电流表表头的工作原理是什么
用的电流表的构造如图1所示。在很强的蹄形磁铁的两极间有一个固定的圆柱形铁心,铁心外面套一个可以绕轴转动的铝框,铝框上绕有线圈,铝框的转轴上装有两个螺旋弹簧和一个指针。线圈的两端分别接在这两个螺旋弹簧上,被测电流就是经过这两个弹簧通入线圈的。
蹄形磁铁和铁心间的磁场是均匀地辐向分布的(图2),不管通电线圈转到什么角度,它的平面都跟磁力线平行,因此磁场使线圈偏转的力偶矩M1不随偏角而改变。另一方面,线圈的偏转使弹簧扭紧或扭松,于是弹簧产生一个阻碍线圈偏转的力矩M2。线圈偏转的角度越大,弹簧的力矩M2也越大。到M1跟M2平衡时,线圈就停在某一偏角上,固定在转轴上的指针也转过同样的偏角,指到刻度盘的某一刻度。
设电流表通电线圈的匝数为N,则线圈受到的力偶矩M1=NBIS。由于NBS为定值,所以M1跟电流强度I成正比。设k1=NBS,则M1=k1I。另一方面,弹簧产生的力矩M2跟偏角θ成正比,即M2=k2θ,其中k2是一个比例恒量。M1和M2平衡时,k1I=k2θ,即θ=kI,其中k=k1/k2也是一个恒量。可见,测量时指针偏转的角度跟电流强度成正比,这就是说,这种电流计的刻度是均匀的。
这种利用永久磁铁来使通电线圈偏转的仪表叫做磁电式仪表。这种仪表的优点是刻度均匀,准确度高,灵敏度高,可以测出很弱的电流;缺点是价格较贵,对过载很敏感,如果通入的电流超过允许值,就很容易把它烧掉,使用时要特别注意。
❸ 物理中的表头是什麽 有什麽作用 介绍有关它的一切
表头就是电流表和电压表共同具有的一个部分,相当于一个小型的电流表,但能通过它的额定电流很小,所以它不能单独使用.用它与一个阻值较大的电阻串联,就组成电压表,用它与一个阻值很小的电阻串联,就组成电流表.
❹ 万用表的原理是什么
万用表的基本原理是利用一只灵敏的磁电式直流电流表(微安表)做表头。
万用表
当微小电流通过表头,就会有电流指示。但表头不能通过大电流,所以,必须在表头上并联与串联一些电阻进行分流或降压,从而测出电路中的电流、电压和电阻。
数字万用表的测量过程由转换电路将被测量转换成直流电压信号,
万用表
再由模/数(A/D)转换器将电压模拟量转换成数字量,然后通过电子计数器计数,最后把测量结果用数字直接显示在显示屏上。
万用表测量电压、电流和电阻功能是通过转换电路部分实现的,而电流、电阻的测量都是基于电压的测量,也就是说数字万用表是在数字直流电压表的基础上扩展而成的。
数字直流电压表A/D转换器将随时间连续变化的模拟电压量变换成数字量,再由电子计数器对数字量进行计数得到测量结果,再由译码显示电路将测量结果显示出来。逻辑控制电路控制电路的协调工作,在时钟的作用下按顺序完成整个测量过程。
❺ 将表头扩程成电流表的原理是什么
在表头上并联一个阻值较小的电阻,使部分或绝大部分电流从分流电阻上流过,这就是原本只能测量小电流的表头成为能测量大电流的电流表的原理。
❻ 物理上说的表头是什么
表头就是一个灵敏电流器 单独的用G表示 电压表,电流表,欧姆表都是用表头改装的
❼ 表头问题,高二物理
端口2
2ma时通过表头电流刚好200微安=0.2ma,所以1/10通过表头,9/10通过电阻,电流=2-0.2=1.8
并联电压相等 0.2*100=1.8*R R= 11.11 R1+R2串联后总电阻为11.11欧姆
端口1
10ma时通过表头电流刚好200微安=0.2ma,所以1/50通过表头和R2,49/50通过电阻R1,电流=10-0.2=9.8
R1与表头串联后在于R1并联,并联电压相等 ,却 R1=11.11-R2
0.2*(100+R2)=9.8R1=9.8(11.11-R2) 得R2=8.89 R1=2.22
❽ 电流表表头原理是什么。。为什么指针会动。
一、电表
(一)电表的结构与工作原理
实验室用的电表大部分是磁电式电表。它们的内部构造可以简单地表示为如图2—2—1所示。永久磁铁的两个极上连着带圆筒孔腔的极掌,极掌之间装有圆柱形软铁芯,它的作用是使极掌和铁芯间的空隙中磁场很强,并且磁力线是以圆柱的轴为中心呈均匀辐射状。在圆柱形铁芯和极掌间空隙处放有长方形线圈,线圈上固定一根指针,当有电流流通时,线圈就
受电磁力矩而偏转,直到跟游丝的反扭力矩平衡。线圈偏角的大小与所通入的电流成正比,电流方向不同,偏转方向也不同,这是磁电式电表的工作原理。
磁电式电表串联或并联一个电阻后,就构成了一个电压表或电流表。
(二)电表的维护
电表的维护参见电表的使用注意事项。
图2—2—1
图2—2一2
图2—2一3
二、灵敏电流计
(一)灵敏电流计的结构与原理
1.灵敏电流计的基本结构
灵敏电流计的基本结构如图2—2一2所示,可以把它分为三个部分。
(1) 磁场部分:永磁铁磁掌N、S极和圆柱形软铁心的间隙内,磁场呈均匀辐射状。
(2)偏转部分:线圈在磁场内可自由转动。线圈的上下端用称为张丝的金属丝张紧,张丝作为线圈的电流引线又作为线圈的转轴,代替了普通电表的转轴和轴承,可以避免机械摩擦。提高了电流计的灵敏度。
(3)读数部分:灵敏电流计的读数系统,如图2—2—3所示。从光源发出的光照到固定在张丝上的小镜上,反射后形成带准线像的光标投射到读数标尺上。
2.灵敏电流计的读数原理
当电流通过线圈时,线圈带动小镜转过α角,光标偏转角为2α。光标在标尺上移动的距离为
d = 2αr
式中r是小镜与标尺之间的距离。显然,这种读数系统采用了光杆原理。提高了电流计的灵敏度。
可以证明光标偏转量d与通过线圈的电流I成正比,即
I = Kd
式中K称为灵敏电流计的电流常数,单位是A/mm,即光标偏转1mm所对应的安培数。K的倒数l/K=S,称为电流计的灵敏度。表示通过单位电流时引起的光标偏转量,S越大,电流计越灵敏。
3.灵敏电流计的运动状态
了解电流计线圈的运动状态,便于根据需要选用适当状态进行测量,以达到缩短测量等待时间或者提高测量精度的目的。
灵敏电流计工作时线圈转动切割磁场线,故线圈内产生感应电动势E。由于灵敏电流计内阻Rg与外电路电阻R构成回路,因而有感生电流通过线圈。感生电流
i = 。
感生电流i在磁场中也受到磁力作用。所产生的力矩将阻碍线圈转动,该力矩称为电磁阻尼力矩,用M阻表示。它的大小与R近似成反比,因而,控制R的大小可以控制M阻的大小,从而控制线圈的运动状态。
当灵敏电流计工作时,光标的准线从零点偏转,最后稳定在α处。运动过程可分为欠阻尼、过阻尼和临界阻尼三种运动状态。
(1) 当R较大时,M阻较小,线圈作减幅振荡,线圈需较长时间才能停在α处,如图2—2一4的曲线Ⅰ所示,这种情况称为欠阻尼运动状态。若外电路断开,则R ∞,M外 0,这时线圈只受到空气阻尼,其数值很小,常忽略不计,可称为无阻尼运动状态,振动一次的时间称为自由振动周期,用T表示。
图2—2一4
(2)当R较小时,M外较大,线圈将缓慢地趋于α,而又不超过α,如图2—2—4曲线Ⅱ所示,这种情况称为过阻尼运动状态。如果在灵敏电流计两端并联一个“阻尼开关”,要使光标尽快稳定下来,可按下“阻尼开关”,使R = 0,M外最强,线圈停止偏转,可使光标停在平衡位置,缩短复零时间。
(3) 当R = Rc时,线圈处于上述欠阻尼和过阻尼之间,M外恰好使线圈无振动地最快转到平衡位置α处,如图2—2—4曲线Ⅲ所示,这种情况称为临界阻尼运动状态,Rc称为灵敏电流计的外临界电阻。在实验中,为了缩短等待读数的时间,应尽可能使灵敏电流计工作在临界阻尼或接近临界阻尼状态。为此,应选用Rc接近R的灵敏电流计。
(二)灵敏电流计的维护
1.灵敏电流计不可以剧烈震动,以免损坏转动部分。
2.灵敏电流计是一种高灵敏度的仪表,一般只可以用来测量微弱电流(10-6~10-10A)或微小电压(10-3~10-6V)。切不可测量超过该量程的电流或电压。
3.灵敏电流计应该水平存放,避免太阳直射,要远离热源。