⑴ 测定有机物相对分子质量常用的物理方法是()A.质谱法B.红外光谱法C.紫外光谱法D.核磁共振谱
A.质谱仪其实是把有机物打成很多小块,会有很多不同的分子量出现,其中最大的那个就是该有机物的分子量,故A正确;
B.红外光谱是用于鉴定有机物中所含的各种官能团的,双键,三键,羟基,羧基羰基等等,故B错误;
C.紫外光谱是为了了解未知物的初步的化学结构.从光谱信息中得到该物质的基团或者化学键产生的吸收情况,初步判断该物质的结构信息,故C错误;
D.核磁共振是检验不同环境的H的数量.有多少种不同的H,就有多少个峰,各个峰的高度大致上能显示各种H的数量比例,故D错误.
故选A.
⑵ 分析有机物组成的方法有哪些,要用到什么仪器
UV紫外,用于确定化合物的类型及共轭情况,定量分析。
IR红外,用于提供未知物具有哪些官能团及化合物种类。
MS质谱,用于确定化合物的分子量、分子式。
NMR核磁共振,给出细微结构分析。
⑶ 燃烧是测定有机物分子结构的有效方法
因为你是要测定出有机物的分子结构,这个步骤就比较多,而且复杂一点了。单靠燃烧的话是无法完成的。
首先你可以通过燃烧有机物,通过测定产物,来判断有机物有哪几种元素组成。
其次,你可以通过测定各种产物的物质的量,来判断,各种元素的原子个数比,进而确定出,有机物分子中各种原子的个数。
根据得到的有机物原子个数比算出实验式,
以上是传统的确定方法,现在随着科技的发展又有了红外光谱和核磁共振氢谱这些仪器,比较方便的多了。
⑷ 除了四大谱以外,有机化合物绝对构型的结构测定重要有力的方法还有哪些
除了四大谱以外,有机化合物绝对构型的结构测定重要有力的方法还有化学方法与物理方法。
化学方法是利用有机物官能团的特征反应,以确定该化合物所含官能团,还可以利用化学反应进行衍生化,通过确定衍生物的结构进一步推断原分子的结构。物理方法因所需样品量少、速度快、准确,甚至可以确定分子的三维空间结构,而显出较大的优越性,是化学方法所不能比拟的。
有机物
是生命产生的物质基础,所有的生命体都含有机化合物,如脂肪、氨基酸、蛋白质、糖、血红素、叶绿素、酶、激素等。生物体内的新陈代谢和生物的遗传现象,都涉及到有机化合物的转变。此外,许多与人类生活有密切相关的物质,如石油、天然气、棉花、染料、化纤、塑料、有机玻璃、天然和合成药物等,均与有机化合物有着密切联系。
⑸ 有机化合物的立体结构是怎么测试出来的如果是光谱法,那么原理是什么
这个问题比较复杂,实际上,有机化合物的立体结构并不是一种检测方法就能完全准确地去确定的。光谱只能提供某些特征峰的信息,但是也不完全,需要通过其他检测手段,例如质谱,核磁共振,X-射线衍射等方法相互配合才能对一个复杂的分子的结构有一个全面的了解。
在这些检测手段没有发明之前,科学家实际上是通过分子自身的化学性质和物理性质,以及该分子发生反应后得到的产物的化学性质和物理性质来推断这种分子的结构的。
⑹ 有机物的测定方法
现代环境样品分析方法发展趋向于测定不同基质样品中低浓度有机污染物,这可通过发展新的样品前处理技术实现,也可通过引进新型高灵敏度分析装置和方法实现。有机物的测定方法很多,其中常用的有色谱法、质谱法、气相色谱-质谱联用等。
(1)色谱法
色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分配系数(或吸附系数、渗透性)的性质,当两相做相对运动时,这些物质在两相中进行多次反复分配而实现分离。在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫液相色谱。固定相可以装在柱内,也可以做成薄层,前者叫柱色谱,后者叫薄层色谱。根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。色谱法的分类方法很多,最粗的分类是根据流动相的状态将色谱法分成4大类,见表2.1。
表2.1色谱法按流动相状态的分类
色谱法的优点主要表现为:①分离效率高:几十种甚至上百种性质类似的化合物可在同一根色谱柱上得到分离,能解决许多其他分析方法无能为力的复杂样品分析;②分析速度快:一般而言,色谱法可在几分钟至几十分钟的时间内完成一个复杂样品的分析;③检测灵敏度高:随着信号处理和检测器制作技术的进步,不经过预浓缩可以直接检测10-9g级的微量物质,如采用预浓缩技术,检测下限可以达到10-12g数量级;④样品用量少:一次分析通常只需数纳升至数微升的溶液样品;⑤选择性好:通过选择合适的分离模式和检测方法,可以只分离或检测感兴趣的部分物质;⑥多组分同时分析:在很短的时间内(20min左右),可以实现几十种成分的同时分离与定量;⑦易于自动化:现在的色谱仪器已经可以实现从进样到数据处理的全自动化操作。色谱法的缺点主要表现为定性能力较差。为克服这一缺点,已经发展起来了色谱法与其他多种具有定性能力的分析技术的联用。
(2)质谱法
质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(M/Z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。由于应用特点的不同,有机质谱仪可分为:气相色谱-质谱联用仪(GC/MS)、液相色谱-质谱联用仪(LC/MS)、基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS)、傅立叶变换质谱仪(FTMS)等。
(3)气相色谱-质谱联用
色谱法是有机物的有效分离分析方法,特别适用于进行有机物的定量分析,但定性分析比较困难。质谱法擅长定性分析,但对复杂的有机混合物分离则无能为力。如果把二者结合起来,则能发挥两种仪器各自的优点。因此,目前所有的质谱仪都与气相色谱相连,组成气相色谱-质谱联用(GC/MS)系统。混合物样品由色谱仪逐一分开,由质谱仪逐一鉴定,并且根据需要由数据系统进行数据处理,快速地得到各种信息。因此,GC/MS系统已成为有机物分析的重要工具,在水质样品有机物测试中得到广泛应用。
⑺ 研究有机物结构的常用物理方法有哪些
模型法:即将抽象的物理现象用简单易懂的具体模型表示。如用太阳系模型代表原子结构,用简单的线条代表杠杆等。 叠加放大法:物理学中常常把微小的、不易测量的同一物理量叠加放大,如用镜面反射激光方法,来将音叉微小振动的幅度放大等。