① 声波是如何产生的
声音是一种能量,具体的说是一种波,再具体的说是纵波。它可以反射。声波遇到大面积平整的反射物体之后,反射回来的结果。详解声波的形成:从物理现象而言,物体振动后接触到空气,激振空气而发生空气压力的波动。形成空气质点向外传送,产生稠密层与稀疏层。也就是空气的分子被交替地压紧与放松,空气密度高时,气压高于稳态的大气力。疏时,气压小于稳态的大气压力,这就是压力波动而形成的声波运动。声波运动可藉固体,液体,或气体传送,但我们在音响的范畴里。所谓的声波系指振动借由空气传送者而言。物体振动空气所产生的疏密波,进人耳的外耳道,到达人耳的耳膜,振动耳膜所引起的听觉感觉叫做“声音”。但人耳能听到的频率范围是很有限,因此我们所谓的声音,乃指能引起人耳能感觉的振动频率而言。更高或更低的频率不能引起人耳听觉反应的不称为声音,超过人耳低频感觉以外的为“低声纳”( Subsonic )。而超过人耳高频感觉以外的为(超音波)。声波是如何在空气中传送的呢?声波的传送很类似石子掉入水池中所造成的向四面扩散的涟波,由石子的落池点开始,形成由小到大,一环一环的同心涟波,向四面扩散。我们可以看到这一环一环高起水平面的波形是波顶,而一环一环低于水平面的是波谷,如果我们用图来表示的话。水平面为“0点”,涟波是呈弧形的形状,高于水平面的是波峰,低于水平面的是波谷。 而声波也是由音源向各方向把空气分子交替地压紧与放松的。如果我们也用图来表示的话,压紧为波峰,放松是波谷。空气最紧密的地方是波顶,最放松的地方是波谷,“ 0 点 ”是稳态的大气压力,压紧与放松之间的相隔时间则视音源振动的速率而定。声波是有震动产生的,振动体是原
② 声音是如何产生的又是如何通过介质传播的
声音是如何产生的?又是如何通过介质传播的?声音是人类最早研究中的物理现象之一。它是经典物理学的一个分支学科。在之前,人们仅限于研究来听取,最早的声音研究是音乐。科学家对17世纪进行了系统的研究,研究了单个摆缝循环和物体的振动。媒体中的机械波(即声波)特征的科学呼唤,研究范围包括声波,传播,接受,转换和声波的各种效果。机械波是声波,并且运动变化的变化的通信(包括位移,速度,加速)。声音的一代和传播特征,这是研究声音的基础。声音是由物体的振动产生的波,这是由介质传播的波动,并且可以由人或动物听觉器官感知。最初发出称为声源的振动物体。声波传播是介质振动,其中包含能量。
声音的音调特征。声音的高低和低称为音调。音调一般与声源的振动相关,振动频率越大,音调越高。声音的频率可以通过20Hz至20kHz之间的耳识别。普通人的耳朵只能听到20Hz到20000 Hz的声音。超声波20,000 Hz以上,耳朵无法在20 Hz的耳朵中听到它。声音全息和声学成像是在非破坏性测试中的声音科学中的一个重要应用。声信号被转换为电信号,电信号通过电子计算机,并且声音全息或声学成像用于与检测到的对象充分作出反应,这极大地优于通用超声检测方法。
固体和液体中声波的非线性特性可以通过介质的微小变化来反映,用于研究声音和声音的相互作用,高分辨率声纳。气氛的吸收小,自然现象如火山,地震,风暴,台风是次要来源。该研究可以更深入地了解这些自然现象。峰会还具有国防研究中的重要应用,可用于侦察和确定大型爆破(例如氢炸弹测试),火箭发射等。声波在低温流体氦中繁殖,可以研究液氦物理特性,尤其是量子特性。
③ 电磁波、光波和声波传播的原理是什么
光波就是电磁波的一种,电磁波是变化的磁场产生电场,变化的电场又产生磁场,这样电场、磁场在空间无限延伸,就形成了电磁波,且电磁波以此传播,不需要介质,在真空中速度最快,是光速。
声波是一种机械波,是发生物体震动产生的纵波,即介质中的质点振动并带动下一个质点振动,必须依靠介质才能传播,在空气中传播速度约为340米/秒,在其他介质中速度一般更快。
④ 物理里声音是怎样产生的
声源的振动引起空气的振动,产生声波,声波是纵波,传入人耳引起鼓膜振动,在人耳中经过一系列复杂的听觉器官,最后刺激听觉神经,听觉神经将冲动传到大脑听觉中枢,最终引起听觉。
⑤ 声音是如何产生的
什么是声音?
声音是由物体振动产生,正在发声的物体叫声源。
声音只是压力波通过空气的运动。压力波振动内耳的小骨头,这些振动被转化为微小的电子脑波,它就是我们觉察到的声音。内耳采用的原理与麦克风捕获声波或扬声器的发音一样,它是移动的机械部分与气压波之间的关系。自然,在声波音调低、移动缓慢并足够大时,我们实际上可以“感觉”到气压波振动身体。因此我们用混合的身体部分觉察到声音。
[编辑本段]返回声源?
先从声源开始。用鼓槌捶击军鼓,鼓槌捶击在鼓头的穹形鼓皮上,鼓皮振动,振动的鼓皮然后就推动空气,产生从鼓头和鼓体发出并散开的压力波。因此,“压力波”从声源向外发出并散开。为了证明这一点,向公园内的池塘或家中的水槽内抛入一个石头,看看落入水中的物体产生的水波是如何从被干扰的波源散开的。另外注意,如果抛入水槽或象碗一样的封闭容器中,波纹/振动是如何碰到边缘、然后从壁上反弹回的。观察封闭容器内的波纹/水波,就给了你一些声音是如何在封闭的屋子里移动,从墙壁上反弹回的概念。另外注意,石头/石块越大,产生波纹的间距就远远比小物体的要大。
[编辑本段]声音的重量
声音没有质量,也没有重量。声音不是物体,只是一个名称,声音是一种机械纵波, 波是能量的传递形式,它有能量,所以能产生效果,但是它不同于光(电磁波),光有质量有能量有动量,声音在物理上只有压力,没有质量.
[编辑本段]声音特性
(一)响度:人主观上感觉声音的大小,由“振幅”决定,振幅越大响度越大。(单位:分贝dB)
(二)音调:声音的高低,由“频率”决定,频率越高音调越高(频率单位Hz,赫兹[/url,人耳听觉范围20~20000Hz。 20Hz以下称为次声波,20000Hz以上称为超声波)例如,低音端的声音或更高的声音,如细弦声。
(三)音色:声音的特性,由发生物体本身材料、结构决定。
频率是每秒经过一给一定点的声波数量,它的测量单位为赫兹,是以一个名叫海里奇R.赫兹的音响奇人命名的。此人设置了一张桌子,演示频率是如何与每秒的周期相关的。
1千赫或1000赫表示每秒经过一给定点的声波有1000个周期,1兆赫就是每秒钟有1,000,000个周期,等等。
[编辑本段]单个正弦波周期
“周期”表示一个波周期从0dB/静音至全部打开又返回的一个全周期。上面所示为正弦波的一个单周期。中线为0dB,即静音。波高为音量,从左至右为时间。“波长”为从左至右的峰—峰距离。
与用于广播或电视信号等,还有其它的一样,频率进一步分为VHF(甚高频)和UHF(超高频)。人在年轻时可以听到约20Hz到20,000Hz(20KHz)的频率范围,这是消费类CD的额定频率范围。人的听力从12岁以后开始下降,经常性处于声压级极大的情况下会导致我们听力的灵敏度下降。因此,声音具有音量/振幅和频率/音调,另外还有基于时间的声音结构。声音达到最大音量有多快,可持续多长时间以及声音消失直到听不到时需多长时间。所使用的最基本术语有:
(一)“上升”:声波从静音达到最大振幅或音量所需的时间。
(二)“衰变”:声波达到最大振幅/音量后消失为静音所需的时间。
声音的“音量-时间”形状特性叫作“振幅包络”。
简单包络:“ 上升”达到最大音量并不是立即完成的。声音然后缓缓地衰变。
将上述振幅/音量包络用正弦波表示的结果
声波的包络:在实际生活中,声音是混杂的,含有以不同振幅包络层迭的许多频率。
[编辑本段]声音的应用
次、超声波也是声音的一种声音的用处有很多。
(1)通过研究自然现象所产生的次声波的特性和产生的机理,更深入地研究和认识这些自然现象的特征与规律。例如,利用极光所产生的次声波,可以研究极光活动的规律。
(2)利用所接收到的被测声源产生的次声波,可以探测声源的位置、大小和研究其他特性。例如,通过接收核爆炸、火箭发射或者台风产生的次声波,来探测出这些次声源的有关参量。
(3)预测自然灾害性事件。许多灾害性的自然现象,如火山爆发、龙卷风、雷暴、台风等,在发生之前可能会辐射出次声波,人们就有可能利用这些前兆现象来预测和预报这些灾害性自然事件的发生。
(4)次声波在大气层中传播时,很容易受到大气介质的影响,它与大气层中的风和温度分布等因素有着密切的联系。因此,可以通过测定自然或人工产生的次声波在大气中的传播特性,探测出某些大规模气象的性质和规律。这种方法的优点在于可以对大范围大气进行连续不断的探测和监视。
(5)通过测定次声波与大气中其他波动的相互作用的结果,探测这些活动特性。例如,在电离层中次声波的作用使电波传播受到行进性干扰,可以通过测定次声波的特性,进一步揭示电离层扰动的规律。
(6)人和其他生物不仅能够对次声波产生某些反应,而且他(或它)们的某些器官也会发出微弱的次声波。因此,可以利用测定这些次声波的特性来了解人体或其他生物相应器官的活动情况。
超声波的应用:
(1)利用超声波的巨大能量还可以把人体内的结石击碎.
(2)金属零件、玻璃和陶瓷制品的除垢是件麻烦事.如果在放有这些物品的清洗液中通入超声波,清洗液的剧烈振动冲击物品上的污垢,能够很快清洗干净.
(3)用超声波探测金属、陶瓷混凝土制品,甚至水库大坝,检查内部是否有气泡、空洞和裂纹
(4)人体各个内脏的表面对超声波的反射能力是不同的,健康内脏和病变内脏的反射能力也不一样.平常说的“B超”就是根据内脏反射的超声波进行造影,帮助医生分析体内的病变.
⑥ 声音是怎样产生的
声音是由物体振动产生。
声音以声波的形式传播,声音只是声波通过固体或液体、气体传播形成的运动。声波振动内耳的听小骨,这些振动被转化为微小的电子脑波,它就是我们觉察到的声音。
当你说话时,就引起空气振动,振动传播出去,只要某人的耳朵接收到了这种振动他就会听到你的声音。声音能够在固体、液体中传播,也可以通过空气或其他气体传播。
随着声音的传播,空气中的分子被挤压在一起,接着被分开,然后又被挤压,再被分开,如此反复,就产生了声波。
(6)声波产生的物理机制是什么扩展阅读:
声音传播影响因素
1、声音的传播与温度和阻力有关
声音还会因外界物质的阻挡而发生折射,例如人面对群山呼喊,就可以听得到自己的回声。另一个以折射为例。
晚上的声音传播的要比白天远,是因为白天声音在传播的过程中,遇到了上升的热空气,从而把声音快速折射到了空中;晚上冷空气下降,声音会沿着地表慢慢的传播,不容易发生折射。
2、声音的传播与介质有关
声音的传播需要物质,物理学中把这样的物质叫做介质,这个介质可以是空气,水,固体.当然在真空中,声音不能传播。声音在不同的介质中传播的速度也是不同的。
声音的传播速度跟介质的反抗平衡力有关,反抗平衡力就是当物质的某个分子偏离其平衡位置时,其周围的分子就要把它挤回到平衡位置上,而反抗平衡力越大,声音就传播的越快。水的反抗平衡力要比空气的大,而铁的反抗平衡力又比水的大。
⑦ 超声波是怎么产生的有何生物物理特性
物体振动产生,频率大,人一般听不到
⑧ 超声成像的物理原理是什么
超声成像是利用超声声束扫描人体,通过对反射信号的接收、处理,以获得体内器官的图象。常用的超声仪器有多种:A型(幅度调制型)是以波幅的高低表示反射信号的强弱,显示的是一种“回声图”。
B型超声是发射超声波给物体,将回声信号显示为光点,回声的强弱以点的灰(亮)度显示,记录物体的回波,根据回波的变化,判断物体的存在变化情况。
它将从人体反射回来的回波信号以光点形式组成切面图像。此种图像与人体的解剖结构极其相似,故能直观地显示脏器的大小、形态、内部结构,并可将实质性、液性或含气性组织区分开来。
声波的频率
声源振动产生声波,声波有纵波、横波和表面波三种形式。而纵波是一种疏密波,就像一根弹簧上产生的波。用于人体诊断的超声波是声源振动在弹性介质中产生的纵波。声波在介质中传播,介质中质点在平衡位置来回振动一次,就完成一次全振动,一次全振动所需要的时间称振动周期(T)。
在单位时间内全振动的次数称为频率(f),频率的单位是赫兹(HZ)。f=1/T,声波在介质中以一定速度传播,质点振动一周,波动就前进一个波长(λ)。波速(C)=λ/T或C=f·λ。
以上内容参考:网络-超声成像