导航:首页 > 物理学科 > 如何用物理方法消除臭氧分子

如何用物理方法消除臭氧分子

发布时间:2022-08-03 04:15:22

⑴ 怎样才能减少对地球臭氧层的破坏和消耗

首先,要了解臭氧层破坏的的原因:
关于臭氧层变化及破坏的原因,一般认为,太阳活动引起的太阳辐射强度变化,大气运动引起的大气温度场和压力场的变化以及与臭氧生成有关的化学成分的移动、输送都将对臭氧的光化学平衡产生影响,从而影响臭氧的浓度和分布。而化学反应物的引人,则将直接地参与反应而对臭氧浓度产生更大的影响。 人类活动的影响,主要表现为对消耗臭氧层物质的生产、消费和排放方面。大气中的臭氧可以与许多物质起反应而被消耗和破坏。在所有与臭氧起反应的物质中,最简单而又最活泼的是含碳、氢、氯和氮几种元素的化学物质,如氧化亚氮(N2O)、水蒸汽(H2O)、四氯化碳(CH4)、甲烷(CH4)和现在最受重视的氯氟烃(CFC)等。这些物质在低层大气层正常情况下是稳定的,但在平流层受紫外线照射活化后,就变成了臭氧消耗物质。这种反应消耗掉平流层中的臭氧,打破了臭氧的平衡,导致地面紫外线辐射的增加.
臭氧的平衡 在自然状态下,大气层中的臭氧是处于动态平衡状态的,当大气层中没有其它化学物质存在时,臭氧的形成和破坏速度几乎是相同的。即: 然而大气中有一些气体,例如亚硝酸、甲基氧、甲烷、四氯化碳,以及同时含有氯与氟(或溴)的化学物质,如CFC和哈龙等,它们能长期滞留在大气层中,并最终 从对流层进人平流层,在紫外线辐射下,形成含氟、氯。氮、氢、溴的活性基因,剧烈地与臭氧起反应而破坏臭氧。这类物质进人平流层的量虽然很少,但因起催化剂作用,自身消耗甚少,而对臭氧的破坏作用十分严重,导致臭氧平衡的打破,浓度下降.
氯氟烷烃与臭氧层氯氟烷烃是一类化学性质稳定的人工源物质 ,在大气对流层中不易分解,寿命可长达几十年甚至上百年。但它进人平流层后,受到强烈的紫外线照射,就会分解产生氯游离基CI·,氯游离基 与臭氧分子O3作用生成氧化氯游离基。ClO·和氧分子O2消耗掉臭氧进而氧化氮游离基再与臭氧分子作用生成氯游离基,如此,氯游离基不断产生,又不断与臭氧分子作用,使一个CFC分子可以消耗掉成千上万个臭氧分子。其主要反应式如下(以CFC-11为例): CFCl3→·CFCl2+CI· CI·+O3→CIO·+O2 ClO·+O3→Cl·+2O3 作为臭氧层破坏元兇而被人们高度重视的CFC,有5种物质为“特定氟里昂”,它们主要用作致冷剂、发泡剂、清洗剂等。其产品一直在增加,直到知道利用CFC作气溶胶的潜在危险后才开始下降,通过实施控制措施,特定氟里昂的生产量由1986年的113万吨减少为1991年的68万吨,削弱了40%。
漠化物与臭氧层 世界气象组织认为,溴比氯 对整个平流层中臭氧的催化破坏作用可能更大。南极地区臭氧的减少至少有2%是溴的作用所致。有人指出,在对极地臭氧的破坏中,BrO与ClO反应可能起重要作用: BrO+ClO→Cl·+O2 Br·+O3→BrO+O2 Cl·+O3→ClO+O2 整个反应使 2Q→3O2。 对极地平流层的BrO和ClO的观察支持这种观点,并由此认为南极地区臭氧破坏的20%~30%是由溴引起的,而且认为,溴对北半球臭氧的破坏可能更加严重。所以溴化物的量虽少,作用却不可低估。
氮氧化物与臭氧层 氮氧化物系列中的N2O(氧化亚氮),化学性质稳定,至今还不清楚它对生物的直接影响,因而还未列为大气污染物。但是,N2O同氯氟烃一样能破坏平流层臭氧,同二氧化碳一样,也是一种温室气体,并且其单个分子的温室效应能力是CO2分子的100倍。 5.南极臭氧洞的形成原因 关于南极臭氧洞的形成和发展,人们曾认为主要是由于CFC单个因素的破坏,但是,用CFC的光化学反应不可能解释臭氧洞;的准两年周期波动和11年左右的周期变化。在南极地区的大规模大气 物理和化学综合观测以及相应的化学动力学理论和实验研究,较好地回答了为什么主 要在北半球中纬度地区排放的CFC对南极地区臭氧的破坏最大这一问题。在南极地区,每年4月~10月盛行很强的南极环极涡旋,它经常把冷气团阻塞在南极达几个星期,使南极平流层极冷(一84℃以下),因而形成了平流层冰晶云。实验证明,在这种特定的条件下,破坏臭氧的两个过程(即Cl+O3→ClO+O2和ClO+O→Cl+O2)将因原子氯的活性大大增加而变得更为有效,这就使南极春天平流层臭氧浓度大幅度下降。在北极地区,虽然也存在环极涡旋,但其强度较弱,且持续时间较短,不能有效地阻止极地气团与中纬度气团的交换,再加上气体交换造成的臭氧向极区输送便使北极臭氧洞不像南极明显。
保护的方法:
1、减少氟氯碳化物的使用,购买冷气、冰箱、汽车、喷雾剂等,应选购不含氟氯碳化物的产品;
2、通过国际立法,加强国际间的合作;
3、提高各国公民素质,树立保护环境的意识;
(1985 年,也就是 Monlina 和 Rowland 提出氯原子臭氧层损耗机制后 11 年,同时也是南极臭氧洞发现的当年由联合国环境署发起.通过保护臭氧层的维也纳公约.首次在全球建立了共同控制臭氧层破坏的一系列原则方针。
1987 年,大气臭氧层保护的重要历史性文件《蒙特利尔议定书》通过.在该议定书中,规定了保护臭氧层的受控物质种类和淘汰时间表.要求到 2000 年全球的氟利昂消减一半,并制定了针对氟利昂类物质生产、消耗、进口及出口等的控制措施。
由于进一步的科学研究显示大气臭氧层损耗的状况更加严峻, 1990 年通过《蒙特利尔议定书》伦敦修正案。 1992年通过了哥本哈根修正案,其中受控物质的种类再次扩充.完全淘汰的日程也一次次提前。
从这里我们不仅可以看到人类日益紧迫的步伐,而目也发现,即使如此努力地弥补我们上空的“臭氧洞”,但由于臭氧层损耗物质从大气中除去十分困难.预计采用哥本哈根修正案.也要在2050年左右平流层氢原子浓度才能下降到临界水平以下.到那时,我们上空的“臭氧洞”可望开始恢复。臭氧层保护是近代史上一个全球合作十分典型的范例。这种合作机制将成为人类的财富,并为解决其它重大问题提供借鉴和经验。

⑵ 用什么能抵消水中的臭氧

1.
臭氧的应用 1840年瑞士化学家Schōnbein证实了臭氧的存在.1886年法国人Meritenus发现臭氧具有杀菌作用.1893年荷兰首先将臭氧应用于水的消毒处理.1906年法国的Nice城将臭氧用于大规模净水厂的水处理,至今已有近百年历史. 臭氧氧化能力强,用于消毒杀菌杀伤力大,速度快;臭氧可氧化溶解性铁、锰,形成高价沉淀物,使之易
2.
臭氧的物理性质 O3是一种具有特殊的刺激性气味的不稳定气体,常温下为浅蓝色,液态呈深蓝色.O3是常用氧化剂中氧化能力最强的,在水中的氧化还原电位为2.07V,而氯为1.36V,二氧化氯为1.50V.另外,O3具有较强腐蚀性. O3在空气中会慢慢自行分解为O2,同时放出大量的热量,当其浓度超过25%时,很容易爆炸.但一般臭氧化空气中O3的浓
3.
臭氧的氧化消毒机理 O3溶于水后会发生两种反应:一种是直接氧化,反应速度慢,选择性高,易与苯酚等芳香族化合物及乙醇、胺等反应.另一种是O3分解产生羟基自由基从而引发的链反应,此反应还会产生十分活泼的、具有强氧化能力的单原子氧(O),可瞬时分解水中有机物质、细菌和微生物. O3 O2 +(O) (O)+ H2O 2OH 羟基是强氧化剂

⑶ 消除臭氧气体的方法

臭氧的化学性质极不稳定,在空气和水中都会慢慢分解成氧气。
(温度升高,臭氧分解速度加快,温度超过
100℃
时,分解非常剧烈,达到
270℃
高温时,可立即转化为氧气。
臭氧在水中的分解速度随水温和
PH
值的提高而加快)
可与氮化物混合外加紫外线照射,使其分解为氧气。注意有些氮化物有毒。
可放置活性炭或者类似物质吸收
深圳弘扬环保设备有限公司
http://www.szhongyang.com

⑷ 如何清除臭氧

臭氧是一种不稳定的气体,它的半衰期只有三十分钟左右,不需要刻意去消除它,在常温下,它最多也就存在三十分钟左右,之后还原成氧气.
如果非要去消除它的话,分法有以下几种,一是让空气流动,冲淡臭氧浓度,最后达到消除.二是加温,当温度达到60摄氏度左右时,臭氧会迅速还原成氧气.三是利用臭氧的强氧化性,释放其它易于发生氧化反应的物质,中和臭氧.(比较麻烦,成本也高,不值得提倡).
臭氧气体的有味,草鲜味.人对臭氧的感知浓度为0.02-0.04PPM,而美国标准中注明当臭氧浓度为0.1PPM的安全浓度时,允许连续直接接触10小时.也就是说,当你能闻到臭氧味时,你离安全浓度还有很大一段距离,臭氧不是一氧化碳,不会说吸入一定量就会倒下.如果你不适应臭氧环境时,完全可以先离开一会,等臭氧消失了再回来,没有什么好担心的.

⑸ 如何用物理方法去除水中的溶解臭氧

如何用物理方法去除水中的溶解臭氧
可适当加温.臭氧的溶解度在水中不是很高,应该能赶出来

⑹ 室内臭氧如何去除

臭氧的味道是一种草腥味,要去除它很容易。一种方法是加热,臭氧在温度超过55摄氏度时,会还原成氧气,它的草腥味也随之消失;一种方法是等待,臭氧在常温下的半衰期是30分钟左右,之后还原成氧气,它的草腥味也随之消失了。

⑺ 如何消除臭氧

消除臭氧要消除挥发性有机化合污染物和氮氧化物。

挥发性有机化合污染物和氮氧化物是臭氧形成的重要前体物,消除臭氧污染,就要协同控制好挥发性有机化合物和氮氧化物的排放。如:使用天然气、太阳能、风能、生物质能等清洁能源,整治各类散乱污企业,限制煤炭等的消费总量。



(7)如何用物理方法消除臭氧分子扩展阅读:

臭氧的特点:

1、保护

臭氧层能够吸收太阳光中的波长306.3nm以下的紫外线,主要是一部分UV—B(波长290~300nm)和全部的UV—C(波长<290nm=,保护地球上的人类和动植物免遭短波紫外线的伤害。

2、加热

臭氧吸收太阳光中的紫外线并将其转换为热能加热大气,由于这种作用大气温度结构在高度50km左右有一个峰,地球上空15~50km存在着升温层。

正是由于存在着臭氧才有平流层的存在。而地球以外的星球因不存在臭氧和氧气,所以也就不存在平流层。 大气的温度结构对于大气的循环具有重要的影响,这一现象的起因也来自臭氧的高度分布。

⑻ 怎样加快分解空气中臭氧

臭氧分解方法很多:

  1. 预臭氧化法
    预臭氧化处理情况下,从接触室排出的气体再重新喷射到尚未臭氧处理过的水里。在采用臭氧化处理作为饮水处理最后一步的情况下,预臭氧化阶段的臭氧吸收率可再一次达到 90% 。问题依然存在,不过此刻尾气臭氧浓度又降低了 9/10 ,例如 2.08×10 -5 mol/L ( 0.1g/m 3 )取代 2.08×10 -4 mol/L ( 1g/m 3 )。
    由于进行预臭氧化处理的原水含有快速反应的溶解物质和疏松物质,尾气里的臭氧能被大量分解。然而,大多数现有水处理厂均未设计有此种用法,因而原水取水口往往是远离臭氧化处理厂。此外,那些有原水流过便于进行臭氧接触的池子或工作区等场所,原来建造时往往没有预见到臭氧接触所需的要求。今后扩建计划时,新设计中原水的预臭氧处理应受到更多关注。
    预臭氧化系统需要一台自吸设备,如环流涡轮混合器,或者一座装有适用的不锈钢水封空气压缩机的加压站。为运行此系统,能耗按以下次序排列:
    喷射器: 200 (最大 800 ) W·h/m 3
    涡轮: 100 (最大 200 ) W·h/m 3
    压缩机: 80 (最大 150 ) W·h/m 3
    由于臭氧在预臭氧化阶段的利用,可以推断出这些部分的能耗: ±40 W·h/m 3 再接触尾气。
    当用富氧气体发生臭氧时,一般是实行尾气循环回到臭氧发生器,这项技术是以氧的经济回用为基础的。此法曾在巴黎市圣 . 莫儿水厂实验过。要成功应用,尾气必须或者被加压或者被吸引通过臭氧生产系统的空气处理装置。
    然而,循环气体内氨气和二氧化碳气含量的逐步富集是此法固有的问题,虽然只是使用空气时如此。所以,为防止臭氧产量下降,排放废气和补充新鲜气体是必要的。为避免微量有机物逐步积累在干燥塔内吸附剂上,它们的有效隔除也是必要的。在循环系统中的某些部位还需要无腐蚀材料或耐潮湿臭氧材料。
    接触器尾气中的臭氧并不能使臭氧发生器出口的臭氧浓度有真正提高,这点符合臭氧发生器是在平衡状态下运行的化学反应器原理。
    用此法处理尾气带来的额外能耗主要是它们的加压: 80~100 W·h/m 3 。用于气体制备及循环系统的特种防腐材料的附加费用依厂而定,可能在臭氧生产及接触装置费用的 5%~10% 之间变化。
    2.稀释法
    用通风系统内的新鲜空气稀释含臭氧的尾气往往是一项实用方法。不过,直接达到排放尾气 1.46×10 -9 mol/L 臭氧安全目标所需的稀释比可能是很高的,例如在 5000~10000 之间。所以此法只有在剩余臭氧进一步利用,例如通过预臭氧化,确保适当的大气稀释比如 8~10 ,配接排气烟筒之后才是切实可行的。用机械通风 100~120 的稀释比足够。吸气点压力降 10mmH 2 O ,运行能耗等于 8~10W·h/m 3 尾气。
    尽管运行成本极为有利,此项技术还是很少应用。主要问题是巨型离心通风机所产生的噪音超过 60 分贝的容许极限,同时,不同生产条件下气体流量调节的可变性极小并可能干扰臭氧接触的进行。稀释法的实际设计应用是采用装在噪音吸收室内的空气喷射器从而抽出尾气。采用这一技术,只需很少控制设备。
    比利时诺托梅尔( Notmeir )水厂,在臭氧处理能力不大(最大 6kgO 3 /h )的情况下,臭氧化处理排出的尾气可同内燃机或水泵发动机的废气混合。在后一种情况下剩余臭氧同废气中的杂质起反应。从而,所需的稀释比可降低到 35 (最大),乃至于在极端情况下降到 10 。
    3.洗涤法
    在喷淋塔内用水来洗涤尾气,对于从尾气中去除臭氧来说不是一种有效的方法,即使接触塔装填有拉希格环。在比寻常浓度高一些的情况下,臭氧浓度能降低 50% 。现时尚未报道过有使用臭氧还原产物的研究。运行能耗实际上受其排气装置的限制,大约为 5 W·h/m 3 。
    通过洗涤排气设备使用适当还原剂消除剩余臭氧,乍一看似乎有可能。如果这样必须在排气能耗( 5~6 W·h/m 3 )上加上还原剂用的能耗,估计在 20~50 W·h/m 3 ,依尾气中臭氧浓度而定。洗涤装置方面研究过的最主要的几种还原剂有硫酸亚铁溶液和(或)亚氯酸钠溶液。根据初步研究,此项技术似乎缺乏适应性,因为反应速度不足以将臭氧去除到适当水平。
    4.热分解法
    热分解法是当前用于消除臭氧处理厂尾气所含臭氧使用最广泛的技术。可采用的主要工艺有三种:
    ( 1 )单通道电阻加热;
    ( 2 )通过热交换加热;
    ( 3 )加热并过热燃烧。
    以上三项工艺的相应投资费用比分别为 1 : 2.5 : 1.3 。
    臭氧在空气中比在水中更稳定,室温下臭氧在气相的半衰期可由 4~12h 不等。
    空气中臭氧的热分解早在 30℃ 即已开始,在 40~50℃ 时显着。在 200℃ 下一分钟内臭氧分解大约是 70% , 230℃ 时 92%~95% 。在 300℃ 或以上时, 1~2s 反应时间内达到 100% 分解。
    单通道电阻加热工艺是一种具有很大处理能力,易自动化的简单连续流动处理过程。水头损失范围 20~30mmH 2 O. 排出的气体达到 250~300℃ 的高温,废气烟道需要用耐火材料建造,此外,排气管需要加大尺寸以能装在加热装置上。每小时要处理( 300±100 ) m 3 流量的气体时,需要 0.6m×0.6m 的断面。此系统的运行能耗为 130~170 W·h/m 3 尾气。
    在热交换器中加热尾气可以通过进气的预热器回收部分热能。此法整体构造比电阻加热所用的要大些,如图 4 所示。运行能耗可根据现有实际使用装置求锝为 85 W·h/m 3 , 由于交换法排气最终温度在 90~100℃, 因此管道可用常规材料制造。
    热交换器系统内的水头损失可达到 1mH 2 O ,如此高的数值使系统自动化变化困难。此外,离心通风机难以抵抗湿臭氧化气所造成的腐蚀。所以,它们最好是装在破坏装置之后以便靠抽吸和吹风来排气。对热交换器及风机置于气流上游的情况来说,热交换器必须用抗腐蚀材料制造,如不锈钢 AISI316 或 318 。在此种排列顺序中,风机还必须是水环式的,而且运行费过高。因此,抽气设备最好还是置于破坏装置的出口。如果这样安装,用具有抗腐蚀环氧涂层的常规构造就足够了。使用富氧工艺气体时,上述设备应与适当的安全要求相符。
    除直接加热的热交换器外,用间接热交换器也能达到尾气破坏目的,如费勒里希式( Frolich type )间接交换器(图5 )。位于威斯波 · 卡普塞尔( Weesper kapsel )的阿姆斯特丹水厂装有这种装置。在此装置中,加热气体同通入的尾气进行热交换,在出口处尾气达到 200℃ ,热交换量为 60%~70% 。然后预热了的尾气直接进到一台用所装燃油喷嘴运行的燃烧炉内,把尾气加热至 300℃ 。之后炉内的排气直接排到费勒里希交换器预热尾气进气。这种热交换器是用不锈钢制造的并装有硼硅玻璃管,通过它循环加热了的气体。
    整个装置的灵活性基于燃烧器系统所允许的大流量波动,即可在设计能力的 5%~100% 之间变化。运行能耗需要 10mL 燃油 /m 3 尾气,以及辅助装置 10W·h/m 3 。
    利用适当热交换法预热尾气不仅能节省部分运行费,而且也能降低燃烧区的操作温度。尾气在加热炉内停留时间 120s 的情况下,为达到完全破坏需要 350℃ 。设计还必须确保气体在炉内的充分混合。整个设备占用相当大的空间。
    设计的可处理 400m 3 /h 尾气的燃烧炉近似尺寸为:直径 2.2m ,长 10m ,因此,所需的炉体容积约 10m 3 。为保持所需要的温度,除燃烧率外气体总流量也必须予以控制。无二次热交换器时,运行能耗待处理尾气需要 30ml 燃油 m 3 ,同时燃烧器的鼓风和调节等辅助设备还需要 10 W·h/m 3 。
    5.吸附法
    通过吸附在可燃载体上破坏臭氧,实际上使用的是装有活性炭滤层的上流式过滤器。臭氧通过慢速率燃烧来消耗碳。
    基本设计参数是:用 2L (约 1kg )活性炭处理 1 m 3 尾气 /h ,且过滤器炭层装成 1.2m 的厚度。它所产生的水头损失为 0.02~0.03MPa 。为获得完全反应,过滤器炭层最好加热到 60~80℃ 。此项温升又最好是利用将开水在围绕过滤器的半球形热交换器内进行循环的方法来达到。
    这项方法常可发展成危险的,能发生严重爆炸的情况。这是由于不稳定的臭氧化反应产物,如过氧化氢类的积累所造成的。也能形成 CO 基,导致氧化碳的高能释放转换。通过往炭层上适量洒水可防止这些危险。此装置还禁止在使用富氧气体发生臭氧情况下使用。
    这种方法的一项优点,是它的运行能耗低,待处理尾气只需要 12 W·h/m 3 。
    6.催化分解法
    尾气中剩余臭氧的催化分解能使臭氧比用活性炭时更快的分解。目前大多数可用催化剂都是同钯有关的,不过,其它金属氧化物诸如氧化锰和氧化镍也是常用的。有时把活性炭催化剂包在某一支撑体上以便于操作,如在铝颗粒上包上钯基催化剂。市场上可买到的催化剂的确切配方往往属制造厂家专有。此外,在此领域方面的现有知识还只是初步的。用于臭氧破坏最广泛的催化剂有可从 Degussa 买到的 C0037 和 E221P ,以及 Harsaw MnO-201T 催化剂。所有这些催化剂当有湿度存在时都很快失效。因此,催化剂持续加热是必要的。
    C0037 ( Degusa )催化剂最佳操作温度在 70~80℃ 之间,而再生期间温度必须提高到 120℃ ,但不得超过 130℃ 。硼的酸性氧化物、氧化氮和大部分氮化合物,均可使这种催化剂不可逆地失去活性。在臭氧浓度 2.08×10 -4 mol/L ( 10g/m 3 )下,为获得显着破坏率所需的最短接触时间大约是在 0.4s 。
    既然认为臭氧破坏量同加热强度的费用有关,根据我们在布鲁塞尔的经验,催化床的最佳操作温度可能是在 30~40℃ 之间。
    E221P 催化剂是一种被说成可比 C0037 耐受更高再生温度的钯催化剂。 8h 再生期间再生温度被提高到 520℃ ,而且在强化热再生过程,由氧化氮和氯化产物产生的失活作用是可逆的。但含硫化合物可使这种催化剂中毒。
    在与 C0037 催化剂数据一样的同一基础上, E221P 催化剂至少 99% 臭氧分解的体积比也已求得 [ 起始浓度:( 3±1.5 ) gO 3 /m 3 ] ,。 Harsaw-MnO-201T ( 1/8in )催化剂当用于干燥尾气气体时,于室温下有同等性能。不过,用潮湿尾气时催化剂只给出较低的产率。这些含锰催化剂用于为不饱和尾气中的臭氧破坏不大有效。
    目前,有关用催化剂作臭氧破坏用的费用和运行特性都需要进一步研究。此处引用的现有数据能给出直接运行费的初步近似值:每立方米待处理尾气约 5W·h ,其中包括催化剂接触层的加热用电。中毒频率和催化剂价格是此法特有的重要经济问题。
    7.吸附 / 分解法
    吸附和分解是辅助臭氧破坏可能采用的另一项技术,也就是在气体循环过程中。硅胶刚活化时,具有从不稳定气体中固着臭氧的特性。此种性能的数据概括于图 8 。理论接触时间等于 8~10s ,同时硅胶逐渐失效。经若干次热再生之后,硅胶的臭氧分解性能被降低。分子筛含有类似硅胶性能的万分,不过失效比硅胶慢一些。而且,在延长运行时间后活化点的失活也不是不可逆的。
    关于吸附 - 分解技术操作的严格条件,包括再生期间所吸附臭氧的热分解,需要进一步研究。有关吸附材料反复热再生的磨耗和退化方面更要特别注意研究。
    上述这些方法的主要目的是列出能通过吸附从尾气中浓缩臭氧的接触材料,并能将比原来尾气流量体积减少的气体通过加热使之热分解和(或)催化分解。有关这方面主题的资料早有发表,不过,进一步研究一直在进行。最有前途的材料是吸附分子筛。
    然而,某些臭氧设备制造厂家关心臭氧吸附到固体表面上可能造成安全问题。这是因为除了臭氧之外挥发有机物也可能浓集在吸附剂表面。如果臭氧和有机物的浓度变得相当高,所吸附有机物的氧化可能同所吸附臭氧的分解一起强烈发生。由于这些可能性,制造厂家建议:先破坏接触器尾气中的臭氧,然后处理过的尾气再循环通过吸附剂。
    为了吸附物质热再生的需要,吸附法的可能运行能耗大约是 4~6W·h/m 3 ,作为本节臭氧接触尾气处理原理讨论的总结,可以制成不同装置运行费用的比较表。

⑼ 采取哪些措施消除臭氧层空洞的形成

措施:
1、减少含有氯氟泾化合物的产品
2、减少化石燃料的使用

臭氧层空洞形成的原因:
人造化工制品氯氟烃和哈龙污染大气的结果。氯氟烃,即氟里昂(CFC)。应用于泡沫塑料、护发摩丝、灭火剂、杀虫剂、致冷剂的生产中。氯氟烃气体一经释放,就会慢慢上升到地球大气圈的臭氧层顶部。在那里,紫外线会把氯氟烃气体中的氯原子分解出来,氯原子再把臭氧中的一个氧分子夺去,使臭氧变成氧,从而使其丧失吸收紫外线的能力。在对流层顶部飞行的民航和军用飞机排出的氧化氮气体,也是破坏臭氧层的催化剂。农业无控制地使用化肥,会产生大量氧化氮,各种燃料的燃烧也会产生大量氧化氮,这些物质都是破坏臭氧层的因素,将对地球上的生物生存产生潜在的威胁。另一种用于灭火的化工制品叫溴氟烷烃(Halons,哈龙)。这种化学物质排入大气,进入平流层,也会使平流层的臭氧浓度减少,导致透过平流层的紫外线辐射量增加,危及人类与生态环境。
研究表明,哈龙在大气对流层中化学性质稳定不易分解,寿命可达几十年甚至上百年。但它进入平流层后,受到强烈的紫外线的照射,会分解产生氯原子。氯原子可与臭氧分子作用生成氯氧基和氧分子,从而消耗掉臭氧。氯氧基能和大气中游离的氧原子作用,重又生成氯原子和氧分子,这样循环反应产生的氯原子,不断与臭氧分子作用。一个哈龙分子可以消耗成千上万个臭氧分子,从而使臭氧层受到耗损。

阅读全文

与如何用物理方法消除臭氧分子相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:745
乙酸乙酯化学式怎么算 浏览:1410
沈阳初中的数学是什么版本的 浏览:1361
华为手机家人共享如何查看地理位置 浏览:1052
一氧化碳还原氧化铝化学方程式怎么配平 浏览:892
数学c什么意思是什么意思是什么 浏览:1419
中考初中地理如何补 浏览:1310
360浏览器历史在哪里下载迅雷下载 浏览:710
数学奥数卡怎么办 浏览:1399
如何回答地理是什么 浏览:1033
win7如何删除电脑文件浏览历史 浏览:1062
大学物理实验干什么用的到 浏览:1492
二年级上册数学框框怎么填 浏览:1711
西安瑞禧生物科技有限公司怎么样 浏览:996
武大的分析化学怎么样 浏览:1254
ige电化学发光偏高怎么办 浏览:1344
学而思初中英语和语文怎么样 浏览:1663
下列哪个水飞蓟素化学结构 浏览:1429
化学理学哪些专业好 浏览:1492
数学中的棱的意思是什么 浏览:1069