❶ 低通滤波器有哪些种类
高通与低通滤波器的最常见拓扑是Sallen Key。 它只需一个运放。多通(道)滤波器常用作带通滤波器,而且它还只需要一个运放。
❷ 求低通滤波器的几种形式
A,C是低通滤波器的结构,F这种结构形式没怎么见过,不太确定。
❸ 常见滤波器的类型都有哪几种
滤波器的常见种类:数字滤波器、低通滤波器、带通滤波器、模拟滤波器、声表面波滤波器、介质滤波器、有源电力滤波器
1、数字滤波器
与模拟滤波器相对应,在离散系统中广泛应用数字滤波器。它的作用是利用离散时间系统的特性对输入信号波形或频率进行加工处理。或者说,把输入信号变成一定的输出信号,从而达到改变信号频谱的目的。
数字滤波器一般可以用两种方法来实现:一种方法是用数字硬件装配成一台专门的设备,这种设备称为数字信号处理机;另一种方法就是直接利用通用计算机,将所需要的运算编成程序让通用计算机来完成,即利用计算机软件来实现。
2、低通滤波器
低通滤波器是指车载功放中能够让低频信号通过而不让中、高频信号通过的电路,其作用是滤去音频信号中的中音和高音成分,增强低音成分以驱动扬声器的低音单元。由
于车载功放大部分都是全频段功放,通常采用AB类放大设计,功率损耗比较大,所以滤除低频段的信号,只推动中高频扬声器是节省功率、保证音质的最佳选择。此外高通滤波器常常和低通滤波器成对出现,不论哪一种,都是为了把一定的声音频率送到应该去的单元。
低通滤波器是容许低于截止频率的信号通过,但高于截止频率的信号不能通过的电子滤波装置。
对于不同滤波器而言,每个频率的信号的减弱程度不同。当使用在音频应用时,它有时被称为高频剪切滤波器, 或高音消除滤波器。
低通滤波器概念有许多不同的形式,其中包括电子线路(如音频设备中使用的hiss滤波器、平滑数据的数字算法、音障(acoustic barriers)、图像模糊处理等等,这两个工具都通过剔除短期波动、保留长期发展趋势提供了信号的平滑形式。
低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数所起的作用;
低通滤波器有很多种,其中,最通用的就是巴特沃斯滤波器。
3、带通滤波器
(1)带通滤波器的工作原理:
一个理想的滤波器应该有一个完全平坦的通带,例如在通带内没有增益或者衰减,并且在通带之外所有频率都被完全衰减掉,另外,通带外的转换在极小的频率范围完成。实际上,并不存在理想的带通滤波器。滤波器并不能够将期望频率范围外的所有频率完全衰减掉,尤其是在所要的通带外还有一个被衰减但是没有被隔离的范围。这通常称为滤波器的滚降现象,并且使用每十倍频的衰减幅度dB来表示。通常,滤波器的设计尽量保证滚降范围越窄越好,这样滤波器的性能就与设计更加接近。然而,随着滚降范围越来越小,通带就变得不再平坦—开始出现“波纹”。这种现象在通带的边缘处尤其明显,这种效应称为吉布斯现象。
除了电子学和信号处理领域之外,带通滤波器应用的一个例子是在大气科学领域,很常见的例子是使用带通滤波器过滤3到10天时间范围内的天气数据,这样在数据域中就只保留了作为扰动的气旋。
在频带较低的剪切频率f1和较高的剪切频率f2之间是共振频率,这里滤波器的增益最大,滤波器的带宽就是f2和f1之间的差值。
(2)带通滤波器的应用区域:
许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。这种有源带通滤波器的中心频率 ,在中心频率fo处的电压增益Ao=B3/2B1,品质因数 ,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。上式中,当fo=1KHz时,C取0.01Uf。此电路亦可用于一般的选频放大。 有源带通滤波器电路,此电路亦可使用单电源
4、模拟滤波器
模拟滤波器在测试系统或专用仪器仪表中是一种常用的变换装置。例如:带通滤波器用作频谱分析仪中的选频装置;低通滤波器用作数字信号分析系统中的抗频混滤波;高通滤波器被用于声发射检测仪中剔除低频干扰噪声;带阻滤波器用作电涡流测振仪中的陷波器,等等。
用于频谱分析装置中的带通滤波器,可根据中心频率与带宽之问的数值关系,分为两种:
一种是带宽B不随中心频率人而变化,称为恒带宽带通滤波器,其中心频率处在任何频段上时,带宽都相同;
另一种是带宽B与中心频率人的比值是不变的,称为恒带宽比带通滤波器,其中心频率越高,带宽也越宽。
5、声表面波滤波器
声表面波是指声波在弹性体表面的传播,这个波被称为弹性声表面波。声表面波的传播速度比电磁波的速度约小10万倍。声表面波滤波器是采用石英晶体、压电陶瓷等压电材料,利用其压电效应和声表面波传播的物理特性而制成的一种滤波专用器件,广泛应用于电视机及录像机中频电路中,以取代LC中频滤波器,使图像、声音的质量大大提高。
SAW 声表滤波器、声表谐振器,是在压电基片材料表面产生并传播、且其振幅随深入基片本材料的深度增加而迅速减少的的弹性波。声表面波(SAW)是传播于压电晶体表面的机械波,其声速仅为电磁波速的十万分之一,传播衰耗很小。
SAW 声表器件是在压电基片上采用微电子工艺技术制作叉指形电声换能器和反射器耦合器等,利用基片材料的压电效应,通过输入叉指换能器(IDT)将电信号转换成声信号,并局限在基片表面传播,输出IDT将声信号恢复成电信号,实现电-声-电的变换过程,完成电信号处理过程,获得各种用途的电子器件。
采用了先进微电子加工技术制造的声表面波器件,具有体积小、重量轻、可靠性高、一致性好、多功能以及设计灵活等优点。
6、介质滤波器
介质滤波器利用介质陶瓷材料的低损耗、高介电常数、频率温度系数和热膨胀系数小、可承受高功率等特点设计制作的,由数个长型谐振器纵向多级串联或并联的梯形线路构成。
其特点是插入损耗小、耐功率性好、带宽窄,特别适合CT1,CT2,900MHz,1.8GHz,2.4GHz,5.8GHz,便携电话、汽车电话、无线耳机、无线麦克风、无线电台、无绳电话以及一体化收发双工器等的级向耦合滤波。
7、有源电力滤波器
有源电力滤波器是一种动态抑制谐波和补偿无功的电力电子装置,它能对频率和大小都变化的谐波和无功进行补偿,可以弥补无源滤波器的缺点,获得比无源滤波器更好的补偿特性,是一种理想的补偿谐波装置。
早在70年代,有源电力滤波器的基本原理和主电路拓扑结构就已被确定,但由于受当时的技术条件限制,未能使有源电力滤波器得以实施。进入80年代后,新型电力电子器件的出现、PWM控制技术的发展以及瞬时无功功率理论的提出,极大地促进了有源电力滤波器技术的发展。
国外已开始在工业和民用设备上广泛使用有源电力滤波器,并且单机装置的容量逐步提高,其应用领域从补偿用户自身的谐波向改善整个电力系统供电质量的方向发展。
(3)哪些物理模型是低通滤波器扩展阅读:
板上滤波器虽然对高频的滤波效果不理想,但是如果应用得当,可以满足大部分民用产品电磁兼容的要求。在使用时要注意以下事项:
1、“干净地”:如果决定使用板上滤波器,在布线时就要注意在电缆端口处留出一块“干净地”,滤波器和连接器都安装在“干净地”上。通过前面的讨论,可知信号地线上的干扰是十分严重的。如果直接将电缆的滤波电容连接到这种地线上,会造成严重的共模辐射问题。
为了取得较好的滤波效果,必须准备一块干净地。并与信号地只能在一点连接起来,这个流通点称为“桥”,所有信号线都从桥上通过,以减小信号环路面积。
2、并排设置:同一组电缆内的所有导线的未滤波部分在—起,已滤波部分在一起。否则,一根导线的耒滤波部分会将另一根导线的已滤波部分重新污染9使电缆整体滤波失效。
3、靠近电缆:滤波器与面板之间的导线的距离应尽量短。必要时,使用金属板遮挡一下,隔离近场干扰。
4、与机箱接:安装滤波器的干诤地要与金属机箱可靠地搭接起来,如果机箱不是金属的,就在线路板下方设置一块较大的金属板来作为滤波地。干净地与金属机箱之间的搭接要保证很低的射频阻抗。如有必要,可以使用电磁密封衬垫搭接,增加搭接面积,减小射频阻抗。
5、接地线短:考虑到引脚的电感效应,其重要性前面已讨沦,滤波器的局部布线和设计线路板与机箱(金属板)的连接结构时要特别注意
参考资料:网络-滤波器
❹ 低通滤波器的概念和分类
低通滤波器容许低频信号通过, 但减弱(或减少)频率高于截止频率的信号的通过。对于不同滤波器而言,每个频率的信号的减弱程度不同。当使用在音频应用时,它有时被称为高频剪切滤波器, 或高音消除滤波器。低通滤波器概念有许多不同的形式,其中包括电子线路(如音频设备中使用的hiss 滤波器、平滑数据的数字算法、音障(acoustic barriers)、图像模糊处理等等。低通滤波器在信号处理中的作用等同于其它领域如金融领域中移动平均数(moving average)所起的作用;这两个工具都通过剔除短期波动、保留长期发展趋势提供了信号的平滑形式。
❺ 信号滤波器原理
滤波是信号处理中的一个重要概念。滤波分经典滤波和现代滤波。
经典滤波的概念,是根据富立叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路。
实际上,任何一个电子系统都具有自己的频带宽度(对信号最高频率的限制),频率特性反映出了电子系统的这个基本特点。而滤波器,则是根据电路参数对电路频带宽度的影响而设计出来的工程应用电路。
用模拟电子电路对模拟信号进行滤波,其基本原理就是利用电路的频率特性实现对信号中频率成分的选择。根据频率滤波时,是把信号看成是由不同频率正弦波叠加而成的模拟信号,通过选择不同的频率成分来实现信号滤波。
当允许信号中较高频率的成分通过滤波器时,这种滤波器叫做高通滤波器。
当允许信号中较低频率的成分通过滤波器时,这种滤波器叫做低通滤波器。
当只允许信号中某个频率范围内的成分通过滤波器时,这种滤波器叫做带通滤波器。
理想滤波器的行为特性通常用幅度-频率特性图描述,也叫做滤波器电路的幅频特性。理想滤波器的幅频特性如图所示。图中,w1和w2叫做滤波器的截止频率。
滤波器频率响应特性的幅频特性图
对于滤波器,增益幅度不为零的频率范围叫做通频带,简称通带,增益幅度为零的频率范围叫做阻带。例如对于LP,从-w1当w1之间,叫做LP的通带,其他频率部分叫做阻带。通带所表示的是能够通过滤波器而不会产生衰减的信号频率成分,阻带所表示的是被滤波器衰减掉的信号频率成分。通带内信号所获得的增益,叫做通带增益,阻带中信号所得到的衰减,叫做阻带衰减。在工程实际中,一般使用dB作为滤波器的幅度增益单位。
低通滤波器
低通滤波器的基本电路特点是,只允许低于截止频率的信号通过。
(1)一阶低通Butterworth滤波电路
下图a和b是用运算放大器设计的两种一阶Butterworth滤波电路的电路。图a是反相输入一阶低通滤波器,实际上就是一个积分电路,其分析方法与一阶积分电路相同。
基本滤波电路 演示
图b是同相输入的一阶低通滤波器。根据给定的电路图可以得到
对滤波器来说,更关心的是正弦稳态是的行为特性,利用拉氏变换与富氏变换的关系,有
下图是上式RC=2时的幅频特性和相频特性波特图。
RC=2时一阶Butterworth低通滤波器的频率响应特性
(2)二阶低通Butterworth滤波电路
下 图是用运算放大器设计的二阶低通Butterworth滤波电路。
二阶Butterworth低通滤波电路
直接采用频域分析方法得到
其中k = 1+R1/R2 。令Q=1/(3-k),w0=1/RC,则可以写成
其中k相当于同相放大器的电压放大倍数,叫做滤波器的通带增益,Q叫做品质因数,w0叫做特征角频率。
下图是二阶低通滤波器在RC=2时的波特图,其中图a是Q>0.707时的效果,图b是Q=0.707时的效果,图c是Q<0.707时的效果。
(a) Q>0.707
(b) Q=0.707
(c)Q<0.707
二阶低通滤波器在RC=2时的波特图
从图中可以看出,当Q>0.707 或Q<0.707时,通带边沿处会出现比较大的不平坦现象。因此,品质因数表明了滤波器通带的状态。一般要求Q=0.707。
由此可以得到
这就是二阶Butterworth滤波器电压增益得计算0.707公式。令Q=0.707,得
0.414R2 = 0.707R1
通常把最大增益倍所对应的信号频率叫做截止频率,这时滤波器具有3dB的衰减。利用滤波器幅频特性的概念,可以得到截止频率w0 =w =1/RC,即
f =1/2pRC
高通滤波器的特点是,只允许高于截止频率的信号通过。下图是二阶Butterworth高通滤波器电路的理想物理模型。
直接采用频域分析方法,并令k = 1+R1/R2 ,Q =1/(3-k),w0=1/RC,则可以得到二阶Butterworth高通滤波电路的传递函数为
二阶Butterworth高通滤波电路 演示
高通滤波器
考虑正弦稳态条件下,s=jw,得
二阶BButterworth高通滤波器在频率响应特性与低通滤波器相似,当Q>0.707或Q<0.707时,通带边沿处会出现不平坦现象。有关根据品质因数Q计算电路电阻参数R1 和R2的方法与二阶低通滤波器的计算相同。
同样,利用滤波器幅频特性的概念,可以得到截止频率w0 =w =1/RC,即 f =1/2pRC
❻ 怎么判断电路是几阶、哪种类型滤波器(低通,高通,带通,带阻)
rc双t电路组成的滤波器是c、带通滤波,英文缩写是bef。在rc双t电路中用其中一t形rc构成一组一阶低通滤波器lpf,另一t形rc构成另一组一阶高通滤波器hpf,通过中心频率不同的这二阶t形rc级联,就能够实现只允许特定频率范围通过的滤波器就是带通滤波bef。
❼ 信号滤波器原理是什么
一、滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。
广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。
本节所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。
二、滤波器分类
1、根据滤波器的选频作用分类
⑴低通滤波器
从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。
⑵高通滤波器
与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。
⑶带通滤波器
它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。
⑷带阻滤波器
与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过.
低通滤波器和高通滤波器是滤波器的两种最基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。
⒉根据“最佳逼近特性”标准分类
⑴巴特沃斯滤波器
从幅频特性提出要求,而不考虑相频特性。巴特沃斯滤波器具有最大平坦幅度特性,其幅频响应表达式为:
⑵切比雪夫滤波器
切贝雪夫滤波器也是从幅频特性方面提出逼近要求的,其幅频响应表达式为:ε是决定通带波纹大小的系数,波纹的产生是由于实际滤波网络中含有电抗元件;Tn是第一类切贝雪夫多项式。
与巴特沃斯逼近特性相比较,这种特性虽然在通带内有起伏,但对同样的n值在进入阻带以后衰减更陡峭,更接近理想情况。ε值越小,通带起伏越小,截止频率点衰减的分贝值也越小,但进入阻带后衰减特性变化缓慢。切贝雪夫滤波器与巴特沃斯滤波器进行比较,切贝雪夫滤波器的通带有波纹,过渡带轻陡直,因此,在不允许通带内有纹波的情况下,巴特沃斯型更可取;从相频响应来看,巴特沃斯型要优于切贝雪夫型,通过上面二图比较可以看出,前者的相频响应更接近于直线。
⑶贝塞尔滤波器
只满足相频特性而不关心幅频特性。贝塞尔滤波器又称最平时延或恒时延滤波器。其相移和频率成正比,即为一线性关系。但是由于它的幅频特性欠佳,而往往限制了它的应用。
三、理想滤波器
理想滤波器是指能使通带内信号的幅值和相位都不失真,阻带内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。也就是说,理想滤波器在通带内的幅频特性应为常数,相频特性的斜率为常值;在通带外的幅频特性应为零。
理想低通滤波器的频率响应函数为:其幅频及相频特性曲线为:分析上式所表示的频率特性可知,该滤波器在时域内的脉冲响应函数 h(t)为 sinc函数,图形如下图所示。脉冲响应的波形沿横坐标左、右无限延伸,从图中可以看出,在t=0时刻单位脉冲输入滤波器之前,即在t<0时,滤波器就已经有响应了。显然,这是一种非因果关系,在物理上是不能实现的。这说明在截止频率处呈现直角锐变的幅频特性,或者说在频域内用矩形窗函数描述的理想滤波器是不可能存在的。实际滤波器的频域图形不会在某个频率上完全截止,而会逐渐衰减并延伸到∞。
四、实际滤波器
⒈实际滤波器的基本参数
理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。
如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。
⑴纹波幅度d
在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。
⑵截止频率fc
幅频特性值等于0.707A0所对应的频率称为滤波器的截止频率。以A0为参考值,0.707A0对应于-3dB点,即相对于A0衰减3dB。若以信号的幅值平方表示信号功率,则所对应的点正好是半功率点
⑶带宽B和品质因数Q值
上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0( )和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。
⑷倍频程选择性W
在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带的幅频曲线倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。
⑸滤波器因数(或矩形系数)
滤波器因数是滤波器选择性的另一种表示方式 ,它是利用滤波器幅频特性的 -60dB带宽与-3dB带宽的比值来衡量滤波器选择性,记作 ,即理想滤波器 =1,常用滤波器 =1-5,显然, 越接近于1,滤波器选择性越好。
❽ 低通滤波器总共有多少种
参考 1、因为懂得,所以慈悲——这是张爱玲对胡兰成说的话。
❾ 理想低通滤波器、巴特沃斯低通滤波器、指数低通滤波器、梯形低通滤波器之间的区别
都是低通滤波器,理想低通滤波器是理论上的滤波结果,实际上是没有的,
巴特沃斯就是有源滤波器的一种,具体可以查书,一般的模拟电路上有,一两句说不清楚,
梯形滤波器应该是复频响应的波特图是梯形的,不过一般的滤波器都是这样啊 ,
指数滤波器没做过,按字面上来理解就是滤波效果是成指数变化的。