‘壹’ 什么原因导致了大桥出现了异常抖动
随着现代悬索桥的出现,人类得以建造出越来越长的桥梁。悬索桥的跨度可以很长,能够跨过峡谷、大江、海峡,例如,横跨300多米深峡谷的中国矮寨特大悬索桥;杨泗港长江大桥的主跨长度可达1.7公里,这在世界悬索桥中位列第二,而在世界双层悬索桥中位列第一。
由于悬索桥的跨度长,这会带来一些空气动力学问题。当大风横向吹过悬索桥,桥面有可能会出现波浪式的晃动,这会让行经桥上的人感到非常不适。如果严重的话,桥梁还有可能被摇晃垮塌。
‘贰’ 虎门大桥异常抖动的原因竟然和汽车空气动力学有关系
文/张一
五一假期的最后一天,新闻头条给了广东的虎门大桥。从多家媒体报道及现场视频得知,5.5下午虎门大桥发生了异常抖动,整段桥面像波浪一样起起伏伏的在摇晃,现场一度看起来有些惊悚。
而很快,关于大桥异常抖动的原因也出来了。根据今日凌晨广东省交通集团通报,专家组初步判断大桥抖动是因为桥梁在特定风环境条件下,产生了桥梁涡振现象,并不会影响虎门大桥后续使用的结构安全和耐久性。
至于发生桥梁涡振的主要原因则是:沿桥跨边护栏连续设置的水马,改变了钢箱梁的气动外形。
“水马”,其实就是我们日常在道路经常见到东西,如下图,塑料空心结构,中间注水用来当作临时路障。而“气动外形”这个词听起来也很像汽车上术语。
不过一排小小的水马竟然能让一座跨海大桥发生异常抖动,这还是有点厉害了。而这背后的原理其实和汽车的空气动力学也是有些相似的。大家都知道,汽车开发是应用到空气动力学的,风阻系数这个词就是这一体现。
通过汽车的形面设计,使汽车的迎风面积尽量缩小,同时还要注意导流,让空气尽量贴着物体表面走,因为当较快的风速遇到凹凸不平的面,很容易产生混乱的涡流,不仅消耗汽车动能,对车身稳定性也有影响。
涡流这一点很好理解,如果你有过驾驶经验,当速度高于50km/h,你打开部分车窗,如果能感受到风伴随着你的头发在脸上胡乱的吹过,那就近似是产生涡流了。当然了,在汽车上,真正通常乱流产生较大的区域是三厢车的后车窗处。
所以汽车上通常的做法是,尽量减少凹凸面,或者进行导流设计,比如一些前包围、翼子板、前后扩散器以及加装底盘护板的做法,在加快空气流速提高下压力的同时也是起到防止空气流动混乱。
不过和汽车不同的是,在大型桥梁或者建筑上,应用空气动力学主要目的并不是利用风来做什么事情。而是尽量降低风对于建筑的风压以及空气动力干扰,也就是尽量让风“无视”或不影响到自己,这一点对于一些高层建筑及跨海大桥尤为重要。
▲日本Tozaki Bridge桥梁上的双层翼板设计
比如,现如今大型建筑物在建设前都会和汽车或飞机一样做风洞实验,而很多桥梁在建设时也会通过设计防撞护栏形式或者设计一个类似汽车上的翼子板一样的护栏进行导流,从而减低空气动力干扰。
而此次虎门大桥产生的“桥梁涡振”全称应该是“桥梁涡激共振”,其意思就是指在平均风作用下,有绕流通过实腹梁桥断面后交替脱落的涡旋引起的振动。
而网上流传的另一种说法“卡门涡街效应”,其实也是流体力学的一个分支,其提出者则是大名鼎鼎的冯·卡门先生。不过“桥梁涡振”现象和“卡门涡街效应”是类似的,都能解释这次虎门大桥为什么会发生异常抖动。
就是当一定的风速吹过虎门大桥时,刚好一排不大不小1.2M高的水马对气流产生了影响,使穿过大桥的气流周期性地产生两串平行的反向旋涡,继而连续性的旋涡会对被绕的桥梁产生周期性作用力,这个力刚好与桥梁的自振接近从而产生共振,继而又使得桥梁自身的振幅得到放大最终导致了视频中桥面接近扭曲的效应。
只不过是一阵“微风”配合1.2m高的水马却足以撼动15km长的跨海大桥,这也是算是空气动力学的一次典型应用了。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
‘叁’ 为什么货车经过桥梁时明显感觉到桥在抖动
这属于共振现象。
共振(resonance)是物理学上的一个运用频率非常高的专业术语,是指一物理系统在特定频率下,比其他频率以更大的振幅做振动的情形;这些特定频率称之为共振频率。在共振频率下,很小的周期振动便可产生很大的振动,因为系统储存了动能。当阻力很小时,共振频率大约与系统自然频率或称固有频率相等,后者是自由振荡时的频率。自然中有许多地方有共振的现象如:乐器的音响共振、太阳系一些类木行星的卫星之间的轨道共振、动物耳中基底膜的共振,电路的共振等。人类也在其技术中利用或者试图避免共振现象。
19世纪初,一队拿破仑士兵在指挥官的口令下,迈着威武雄壮、整齐划一的步伐,通过法国昂热市一座大桥。快走到桥中间时,桥梁突然发生强烈的颤动并且最终断裂坍塌,造成许多官兵和市民落入水中丧生。后经调查,造成这次惨剧的罪魁祸首,正是共振!因为大队士兵齐步走时,产生的一种频率正好与大桥的固有频率一致,使桥的振动加强,当它的振幅达到最大限度直至超过桥梁的抗压力时,桥就断裂了。类似的事件还发生在俄国和美国等地。有鉴于此,所以后来许多国家的军队都有这么一条规定:大队人马过桥时,要改齐走为便步走。
对于桥梁来说,不光是大队人马厚重整齐的脚步能使之断裂,那些看似无物的风儿同样也能对之造成威胁。1940年,美国的全长860米的塔柯姆大桥因大风引起的共振而塌毁,尽管当时的风速还不到设计风速限值的1/3,可是因为这座大桥的实际的抗共振强度没有过关,所以导致事故的发生。每年肆虐于沿海各地的热带风暴,也是借助于共振为虎作伥,才会使得房屋和农作物饱受摧残。因为风除了产生沿着风向的一个风向力外,还会对风区的构筑物产生一个横力,而且风在表面的漩涡在一定条件下产生脱落,从而对构筑物产生一个震动。要是风的横力产生的震动频率和构筑物的固定频率相同或者相近时,就会产生风荷载共振。近几十年来,美国及欧洲等国家和地区还发生了许多起高楼因大风造成的共振而剧烈摇摆的事件。
‘肆’ 车从桥上过为什么桥会晃
因为车辆经过桥梁的时候会产生共振。
因为车辆经过桥梁的时候会产生共振,严重时会导致侨梁坍塌,于是在现在的桥梁设计中,采用柔性结构代替以前的刚性结构。
使得车辆经过桥梁的时候产生晃动,这种晃动的频率是紊乱的,从而使得车辆的震动频率和桥梁的固有频率不会接近、吻合,从而避免了共振。
共振在力学和电学中亦称“谐振”,它指的是物体因共振而放大强度的现象,如两个相同的弹簧连在一起时,其中一个简谐运动时,另一个也会简谐运动。
产生共振的重要条件之一,就是要有弹性,而且一件物体受外来的频率作用时,它的频率要与后者的频率相同或基本相近。
从总体上来看,这宇宙的大多数物质是有弹性的,大到行星小到原子,几乎都能以一个或多个固有频率来振动。
共振不仅在物理学上运用频率非常高,而且,共振现象也可以说是一种宇宙间最普遍和最频繁的自然现象之一,所以在某种程度上甚至可以这么说,是共振产生了宇宙和世间万物,没有共振就没有世界。
以上内容参考:网络-共振现象
‘伍’ 车辆过桥时桥会震动有哪些物理现象
车辆过桥时涉及的物理现象多了,但就有关“震动”的也不少,但是其中最危险的就是车辆等过桥时引起的震动频率正好等于桥梁本身的固有频率,此时,将引起“共振”可能导致桥梁发生意外。
‘陆’ 货车过桥发生振动是什么原理
主要是振动现象。车辆过桥的时候,车辆的振动会传递到桥上,引起桥梁的振动(受迫振动),当车辆的振动频率与桥梁的固有频率接近或一致时,会引起桥梁的共振。
由于车过桥时,会有个震动频率,而桥有个固有频率,当汽车过桥时,由于频率的效应,所以桥会震动,当汽车震动频率与桥的固有频率相同时,就会产生共振现象,此时桥会断掉的
‘柒’ 大桥为什么会出现异常抖动的情况,背后有什么科学解释
不过,在设计允许的范围内,桥面有时会出现一些上下起伏的波动,这种晃动是正常的涡激振动现象。其原因可能是由桥面的截面发生变化所致,例如,放置水马围挡。只要振动幅度不大,没有超过设计范围,大桥是不会有问题的。
‘捌’ 虎门大桥为什么抖动
据专家分析,水马是涡振诱因,连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下,产生的桥梁涡振现象。另外,也有专家猜测也可能与大桥“阻尼比”有关。
5月5日14时许,虎门大桥发生较为明显的抖动,随后双向全封闭。5月6日,广东省交通集团通报称,省交通运输厅、省交通集团连夜组织国内12位知名桥梁专家召开专题视频会议进行了研判。
经专家组初步判断,虎门大桥悬索桥本次振动主要原因是,由于沿桥跨边护栏连续设置水马,改变了钢箱梁的气动外形,在特定风环境条件下,产生的桥梁涡振现象。
专家还有种猜测,与大桥“阻尼比”有关。通俗说,“阻尼比”类似病毒抗体,代表其抵抗大桥振动的能力。阻尼比越小,大桥抗震能力就越低。虎门大桥存在25年之久,有可能阻尼比变小,影响到抗涡振能力。
(8)桥梁抖动是什么物理情况扩展阅读
虎门大桥结构安全
近期,我国大桥似乎有点“飘”。4月26日,武汉鹦鹉洲长江大桥桥体发生波浪形晃动。9天后,广东虎门大桥悬索桥也来了一波类似的“神晃动”,让大桥“飘”上了热搜。
抖音视频里虎门大桥的波动“大片”,着实让人瘆得慌。不过,专家均表示,尽管大桥“飘”得明显,但仍安全。
对于大桥的“飘动”,中国工程院院士陈政清认为可分“动静”两种角度。大桥在设计时,均会考虑结构承载能力,即大桥满载时最大下沉幅度。据估算,虎门大桥最大下沉幅度为2米,此次大桥“飘”幅0.5米左右。从这一静力概念看,大桥很安全。