❶ DNA凝胶电泳实验中EB的作用EB即溴化乙锭,DNA诱变剂,作用机理是什么
1溴化乙锭是一种高度灵敏的荧光染色剂,用于观察琼脂糖和聚丙烯酰胺凝胶中的DNA。
2溴化乙锭可以嵌入碱基分子中,导致错配。许多人认为溴化乙锭是强诱变剂,具有高致癌性。
溴化乙锭用标准302nm 紫外光透射仪激发并放射出橙红色信号,可用Polaroid 底片或带CCD 成像头的凝胶成像处理系统拍摄。
溴化乙锭含有一个可以嵌入DNA堆积碱基之间的一个三环平面基团。它与DNA的结合几乎没有碱基序列特异性。在高离子强度的饱和溶液中,大约每2.5个碱基插入一个溴化乙锭分子。当染料分子插入后,其平面基团与螺旋的轴线垂直并通过范德华力与上下碱基相互作用。这个基团的固定位置及其与碱基的密切接近,导致与DNA结合的染料呈现荧光,其荧光产率比游离溶液中染料有所增加。DNA吸收254nm处的紫外辐射并传递给染料,而被结合的染料本身吸收302nm和366nm的光辐射。这两种情况下,被吸收的能量在可见光谱红橙区的590nm处重新发射出来。由于溴化乙锭-DNA复合物的荧光产率比没有结合DNA的染料高出20-30倍,所以当凝胶中含有游离的溴化乙锭(0.5ug/ml)时,可以检测到少至10ng的DNA条带。
❷ 什么是诱变育种常用的诱变剂有哪些
用各种物理、化学的因素人工诱发基因突变进行的筛选,称为诱变育种 诱变剂:物理:紫外,X射线,β射线,快中子等 化学:硫酸二乙酯(EDS),亚硝基胍等
❸ 诱变剂是什么东西科学家用它做什么
诱变剂
关键词:物理诱变、化学诱变、诱变育种
凡是能引起生物体遗传物质发生突然或根本的改变,使其基因突变或染色体畸变达到自然水平以上的物质,统称为诱变剂。当各种诱变剂被人为地强加于地球环境中之后,生物基因的情报系统由于诱变剂的作用受到损伤而发生紊乱,不能正确地传递遗传信息,具体地说就是发生了突变。那么这类诱变剂则被认为是环境诱变剂。未经人工处理而发生的突变称为自发突变;经过人工处理而发生的突变称为诱发突变。
❹ 物理因素 化学因素 生物因素引起基因突变的机理分别是什么
都是使基因结构发生根本性改变。物理因素(射线等)会在细胞分裂染色体复制时影响复制进程,辐射严重时甚至可能损伤基因结构,导致细胞死亡。
化学因素基于对染色体复制相关酶活性的影响而对复制进程造成影响,造成基因结构的改变。
生物因素则是病毒等的遗传物质为自我的复制更新而通过反转录等整合到宿主基因链上,造成基因突变。
❺ 化学诱变剂的诱变机理是什么为保证诱变效果应注意掌握哪些环节
诱变育种是指用物理、化学因素诱导动植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株/个体,进而培育成新的品种或种质的育种方法。它是继选择育种和杂交育种之后发展起来的一项现代育种技术。
方法
物理、化学诱变的方法及其机理如下述。
物理诱变
应用较多的是辐射诱变,即用α射线、β射线、γ射线、Χ射线、中子和其他粒子、紫外辐射以及微波辐射等物理因素诱发变异。当通过辐射将能量传递到生物体内时,生物体内各种分子便产生电离和激发,接着产生许多化学性质十分活跃的自由原子或自由基团。它们继续相互反应,并与其周围物质特别是大分子核酸和蛋白质反应,引起分子结构的改变。由此又影响到细胞内的一些生化过程,如 DNA合成的中止、各种酶活性的改变等,使各部分结构进一步深刻变化,其中尤其重要的是染色体损伤。由于染色体断裂和重接而产生的染色体结构和数目的变异即染色体突变,而DNA分子结构中碱基的变化则造成基因突变。那些带有染色体突变或基因突变的细胞,经过细胞世代将变异了的遗传物质传至性细胞或无性繁殖器官,即可产生生物体的遗传变异。 诱变处理的材料宜选用综合性状优良而只有个别缺点的品种、品系或杂种。由于材料的遗传背景和对诱变因素的反应不同,出现有益突变的难易各异,因此进行诱变处理的材料要适当多样化。由于不同科、属、种及不同品种植物的辐射敏感性不同,其对诱变因素反应的强弱和快慢也各异。如十字花科白菜的敏感性小于禾本科的水稻、大麦,而水稻、大麦的敏感性又小于豆科的大豆。另外,辐射敏感性的大小还同植物的倍数性、发育阶段、生理状态和不同的器官组织等有关。如二倍体植物大于多倍体植物,大粒种子大于小粒种子,幼龄植株大于老龄植株,萌动种子大于休眠种子,性细胞大于体细胞等。根据诱变因素的特点和作物对诱变因素敏感性的大小,在正确选用处理材料的基础上,选择适宜的诱变剂量是诱变育种取得成效的关键(表 1)。适宜诱变剂量是指能够最有效地诱发作物产生有益突变的剂量,一般用半致死剂量(LD50)表示。不同诱变因素采用不同的剂量单位。Χ、γ射线线吸收剂量以拉德(rad)或戈瑞(GY)为单位,照射剂量以伦琴(R)为单位,中子用注量表示。同时要注意单位时间的照射剂量(剂量率、注量率)以及处理的时间和条件。 辐照方法分外照射和内照射两种,前者指被照射的植物接受来自外部的γ射线源、Χ射线源或中子源等辐射源辐照,这种方法简便安全,可进行大量处理。后者指将放射性物质(如32P、35S等)引入植物体内进行辐照,此法容易造成污染,需要防护条件,而且被吸收的剂量也难以精确测定。干种子因便于大量处理和便于运输、贮藏,用于辐照最为简便。
化学诱变
化学诱变除能引起基因突变外,还具有和辐射相类似的生物学效应,如引起染色体断裂等,常用于处理迟发突变,并对某特定的基因或核酸有选择性作用。化学诱变剂主要有:①烷化剂。这类物质含有1个或多个活跃的烷基,能转移到电子密度较高的分子中去,置换其他分子中的氢原子而使碱基改变。常用的有甲基磺酸乙酯(EMS)、乙烯亚胺(EI)、亚硝基乙基脲烷(NEU)、亚硝基甲基脲烷(NMU)、硫酸二乙酯(DES)等。②核酸碱基类似物。为一类与DNA碱基相类似的化合物。渗入DNA后,可使DNA复制发生配对上的错误。常用的有5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR)等。③抗生素。如重氮丝氨酸、丝裂毒素C等,具有破坏DNA和核酸的能力,从而可造成染色体断裂。 化学诱变主要用于处理种子,其次为处理植株。种子处理时,先在水中浸泡一定时间,或以干种子直接浸在一定浓度的诱变剂溶液中处理一定时间,水洗后立即播种,或先将种子干燥、贮藏,以后播种。植株处理时,简单的方法是在茎秆上切一浅口,用脱脂棉把诱变剂溶液引入植物体,也可对需要处理的器官进行或涂抹。应用的化学诱变剂浓度要适当(表 2)。处理时间以使受处理的器官、组织完成水合作用和能被诱变剂所浸透为度。化学诱变剂大都是潜在的致癌物质,使用时必须谨慎。
❻ 诱变育种的基本原理是什么
诱变育种的基本原理是基因突变,主要包括染色体畸变和基因突变。诱变育种是利用各种被称为诱变剂的物理因素和化学试剂处理微生物细胞,提高基因突变频率,再通过适当的筛选方法获得所需要的高产优质菌种的育种方法。
诱变育种存在的主要问题是有益突变频率仍然较低,变异的方向和性质尚难控制。因此提高诱变效率,迅速鉴定和筛选突变体以及探索定向诱变的途径。
(6)物理诱变剂作用原理是什么扩展阅读:
诱变育种是指用物理、化学因素诱导动植物的遗传特性发生变异,再从变异群体中选择符合人们某种要求的单株/个体,进而培育成新的品种或种质的育种方法。它是继选择育种和杂交育种之后发展起来的一项现代育种技术。
应用较多的是辐射诱变,即用α射线、β射线、γ射线、Χ射线、中子和其他粒子、紫外辐射以及微波辐射等物理因素诱发变异。当通过辐射将能量传递到生物体内时,生物体内各种分子便产生电离和激发,接着产生许多化学性质十分活跃的自由原子或自由基团。
它们继续相互反应,并与其周围物质特别是大分子核酸和蛋白质反应,引起分子结构的改变。由此又影响到细胞内的一些生化过程,如 DNA合成的中止、各种酶活性的改变等,使各部分结构进一步深刻变化,其中尤其重要的是染色体损伤。
由于染色体断裂和重接而产生的染色体结构和数目的变异即染色体突变,而DNA分子结构中碱基的变化则造成基因突变。那些带有染色体突变或基因突变的细胞,经过细胞世代将变异了的遗传物质传至性细胞或无性繁殖器官,即可产生生物体的遗传变异。
❼ 杂交育种与诱变育种的区别
一、操作不同
杂交育种:杂交育种是将两个或多个品种的优良性状通过交配集中一起,再经过选择和培育,获得新品种。
诱变育种:诱变育种是利用物理或化学因素来处理生物,使生物产生基因突变,利用这些变异育成新品种。
二、原理不同
杂交育种:杂交育种的原理是基因重组。通过基因重组产生新的基因型,从而产生新的优良性状。
诱变育种:诱变育种的原理是基因突变。
三、优点不同
杂交育种:杂交育种的优点是可以将两个或多个优良性状集中在一起。
诱变育种:诱变育种的优点是可以在较短时间内获得更多的优良性状。
(7)物理诱变剂作用原理是什么扩展阅读
诱变育种的诱变剂种类:
1、物理诱变剂主要为各种射线,如紫外线、X射线、α射线、β射线、γ射线和超声波等,其中以紫外线应用最广。
2、化学诱变剂的种类较多,常用的有甲基磺酸乙酯(EMS)、亚硝基胍、亚硝酸、氮芥等。它们作用于微生物细胞后,能够特异地与某些基团起作用,即引起物质的原发损伤和细胞代谢方式的改变,失去亲株原有的特性,并建立起新的表型。
诱变剂的选择主要是根据已经成功的经验,诱变作用不但决定于诱变剂,还与菌种的种类和出发菌株的遗传背景有关。一般对遗传上不稳定的菌株,可采用温和的诱变剂,或采用已见效果的诱变剂。
❽ 什么是物理诱变
用物理因子使基因发生突变的过程。
物理诱变剂主要有紫外线,X—射线,γ-射线,快中子,激光,微波,离子束等。
1紫外线
我们知道,DNA和RNA的嘌呤和嘧啶有很强的紫外光吸收能力,最大的吸收峰在260nm,因此波长260nm的紫外辐射是最有效的诱变剂.对于紫外线的作用已有多种解释,但研究的比较清楚的一个作用是使DNA分子形成嘧啶二聚体,即两个相邻的嘧啶共价连接,二聚体出现会减弱双键间氢键的作用,并引起双链结构扭曲变形,阻碍碱基间的正常配对,从而有可能引起突变或死亡.另外二聚体的形成,会妨碍双链的解开,因而影响DNA的复制和转录.总之紫外辐射可以引起碱基转换、颠换、移码突变或缺失等[1]。
2γ-射线
γ-射线属于电离辐射,是电磁波.一般具有很高的能量,能产生电离作用,因而能直接或间接地改变DNA结构.其直接效应是,脱氧核糖的碱基发生氧化,或脱氧核糖的化学键和糖-磷酸相连接的化学键断裂,使得DNA的单链或双链键断裂.其间接效应是电离辐射使水或有机分子产生自由基,这些自由基与细胞中的溶质分子起作用,发生化学变化,作用于DNA分子而引起缺失和损伤.此外,电离辐射还能引起染色体畸变,发生染色体断裂,形成染色体结构的缺失、易位和倒位等[2].
3激光
激光在微生物诱变育种方面的研究与开发应用比较晚。激光诱变育种技术研究始于20世纪60年代,经过世界各国40多年的开发应用研究,不仅证明激光和普通光在本质上都是电磁波,它们发光的微观机制都与组成发光物质的原子、分子能量状态和变化密切相关。激光是一种与自然光不同的辐射光,它具有能量高度集中、颜色单一、方向性好、定向性强等特性。激光通过光效应、热效应和电磁效应的综合作用,能使生物的染色体断裂或形成片断,甚至易位和基因重组[3]。
4微波
微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升,从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应。因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果[4]。
5离子束
离子注入是20世纪80年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术。离子注入诱变是利用离子注入设备产生高能离子束(40~60keV)并注入生物体引起遗传物质的永久改变,然后从变异菌株中选育优良菌株的方法。离子束对生物体有能量沉积(即注入的离子与生物体大分子发生一系列碰撞并逐步失去能量,而生物大分子逐步获得能量进而发生键断裂、原子被击出位、生物大分子留下断键或缺陷的过程)和质量沉积(即注入的离子与生物大分子形成新的分子)双重作用,从而使生物体产生死亡、自由基间接损伤、染色体重复、易位、倒位或使DNA分子断裂、碱基缺失等多种生物学效应。因此,离子注入诱变可得到较高的突变率,且突变谱广,死亡率低,正突变率高,性状稳定[5]。
❾ 诱变的物理诱变
物理诱变剂主要有紫外线,X—射线,γ-射线,快中子,激光,微波,离子束等。 常压室温等离子体(Atmospheric and Room Temperature Plasma)的简称,(缩写为ARTP)能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。按照热力学平衡状态,等离子体可分为三种:完全热力学平衡等离子体(也称高温等离子体,其电子温度(Te)、离子温度(Ti)和中性粒子温度(Tn)完全一致),局部热力学平衡等离子体(也称热等离子体,Te≈Ti≈Tn=3×10~3×10),以及非热力学平衡等离子体(也称冷等离子体,其Te≥Ti,Ti≈Tn)。
大气压辉光放电(Atmospheric Pressure Glow Discharge,APGD)是一个被广泛使用的、用来描述大气压条件下各种气体放电冷等离子体的总称。在各种大气压非平衡放电等离子体源中,采用裸露金属电极结构的大气压射频辉光放电(Radio Frequency Atmospheric Pressure Glow Discharge,RF APGD)等离子体源是近几年提出的一种新的大气压辉光放电冷等离子体源。为了从生物技术应用的角度突出这种等离子体源的特点,采用常压室温等离子体即ARTP来代表这种RF APGD等离子体源。
科学研究表明,等离子体中的活性粒子作用于微生物,能够使微生物细胞壁/ 膜的结构及通透性改变,并引起基因损伤,进而使微生物基因序列及其代谢网络显着变化,最终导致微生物产生突变。与传统诱变方法相比,采用ARTP能够有效造成DNA多样性的损伤,突变率高,并易获得遗传稳定性良好的突变株;
ARTP是常压室温等离子体(Atmospheric and Room Temperature Plasma)的简称,能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。