㈠ 传感器分为哪几种
压力传感器、温湿度传感器、温度传感器、流量传感器、液位传感器、超声波传感器、浸水传感器、照度传感器光电传感器是采用光电元件作为检测元件的传感器。称重传感器实际上是一种将质量信号转变为可测量的电信号输出的装置。
㈡ 物理传感器的分类
可以用不同的观点对传感器进行分类:
它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。常见传感器的应用领域和工作原理列于下表。 压力敏和力敏传感器 位置传感器 液面传感器 能耗传感器 速度传感器
加速度传感器 射线辐射传感器 热敏传感器 24GHz雷达传感器 在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:
(1)按照其所用材料的类别分: 金属聚合物 陶瓷混合物
(2)按材料的物理性质分: 导体绝缘体 半导体磁性材料
(3)按材料的晶体结构分: 单晶 多晶非晶材料
与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:
(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。
(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。
(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。 现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。
(1)线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。定义为在全量程范围内实际特性曲线与拟合直线之间的最大偏差值与满量程输出值之比。
(2)灵敏度:灵敏度是传感器静态特性的一个重要指标。其定义为输出量的增量与引起该增量的相应输入量增量之比。用S表示灵敏度。
(3)迟滞:传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象成为迟滞。对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。
(4)重复性:重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
(5)漂移:传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)。 通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。 拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。
㈢ 传感器的种类有哪些
一、按照仪器分类:
1、光电/光敏传感器。
2 、电磁/磁敏传感器。
3、 霍尔/电流(压)传感器。
4、 超声波/声敏传感器。
5、光纤/激光传感器。
6、 测距/距离传感器。
7、 视觉/图像传感器 。
8、光栅/光幕传感器 。
9、压力/称重/力(敏)传感器 。
10、力矩/扭矩传感器 。
二、按照工作原理分类:
1、物理传感器。
2、学传感器。
三、按照其用途分类:
1、压力敏和力敏传感器 。
2、位置传感器 。
3、液位传感器。
4、能耗传感器 。
5、速度传感器。
6、加速度传感器。
7、射线辐射传感器。
8、热敏传感器。
9、真空度传感器 。
10、生物传感器。
㈣ 哪个不是物理传感器 a.视觉传感器 b.嗅觉传感器 c.听觉传感器 d.触觉传感器
b. 嗅觉传感器基本都是化学传感器
㈤ 压力位移温度脉搏哪一个不属于物理传感器
摘要 传感器(Sensor)是一种常见又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。
㈥ 物联网技术与应用 1.云计算与物联网的结合 2.哪个不是物理传感器
物联网(Internet of Things)是指把物体用互联网络连接起来,在中国,物联网技术已从实验室阶段走向实际应用,国家智能电网、机场安保、物流等领域已出现物联网身影。物联网的关键环节可以归纳为全面感知、可靠传送、智能处理。全面感知是指利用射频识别(RFID)、GPS、摄像头、传感器、传感器网络等感知、捕获、测量的技术手段,随时随地对物体进行信息采集和获取;可靠传送是指通过各种通信网络、互联网随时随地进行可靠的信息交互和共享;智能处理是指对海量的跨部门、跨行业、跨地域的数据和信息进行分析处理,提升对物理世界、经济社会各种活动的洞察力,实现智能化的决策和控制。相比互联网具有的全球互联.瓦通的特征,物联网具有局域性和行业性特征,已被公认为是继计算机、互联网与移动通信网之后的世界信息产业第三次浪潮。
㈦ 哪个不是物联网的传感器
为了获取信息,物联网传感器更具有突出的地位。 传感器就是把自然界中的各种物理量、化学量、生物量转化为可测量的电信号的装置与元件。
㈧ 我们身边的传感器有哪些
物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式
的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻
式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。
这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。
其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电
导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,
我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电
能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的
关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光
电式传感器。
物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推
测物理传感器在其他的方面也有重要的应用。
比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流
和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号
转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来
收缩压,在通过反相器和峰值检测器后,我们可以得到舒张压,通过积分器就可以得到平均压。
让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少
的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹
在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。
再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血
流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电
偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常
小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得
出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。
从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功
能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器
件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。
㈨ 传感器有哪些种类
1.按用途
压力敏和力敏传感器、位置传感器、液位传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器。
2.按原理
振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。
3.按输出信号
模拟传感器:将被测量的非电学量转换成模拟电信号。
数字传感器:将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。
膺数字传感器:将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。
开关传感器:当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
4.按其制造工艺
集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶、凝胶等)生产。完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。
5.按测量目
物理型传感器是利用被测量物质的某些物理性质发生明显变化的特性制成的。
化学型传感器是利用能把化学物质的成分、浓度等化学量转化成电学量的敏感元件制成的。
生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器。
6.按其构成
基本型传感器:是一种最基本的单个变换装置。
组合型传感器:是由不同单个变换装置组合而构成的传感器。
应用型传感器:是基本型传感器或组合型传感器与其他机构组合而构成的传感器。
7.按作用形式
按作用形式可分为主动型和被动型传感器。
主动型传感器又有作用型和反作用型,此种传感器对被测对象能发出一定探测信号,能检测探测信号在被测对象中所产生的变化,或者由探测信号在被测对象中产生某种效应而形成信号。检测探测信号变化方式的称为作用型,检测产生响应而形成信号方式的称为反作用型。雷达与无线电频率范围探测器是作用型实例,而光声效应分析装置与激光分析器是反作用型实例。
被动型传感器只是接收被测对象本身产生的信号,如红外辐射温度计、红外摄像装置等。