❶ 热力学常数有哪些分别的物理化学意义是什么 热力学常数一共有几个
1、热力学常数R。
物理化学意义:理想气体状态方程:pV=nRT,已知标准状况下,1mol理想气体的体积约为22.4Lp=101325Pa,T=273.15K,n=1mol,V=22.4L=0.0224m^3,R=8.314,单位J/(mol*K)。
2、阿伏伽德罗常数。
物理化学意义:在物理学和化学中,阿伏伽德罗常数(符号:NA或L)的定义是一个比值,是一个样本中所含的基本单元数(一般为原子或分子)N,与它所含的物质量n(单位为摩尔)间的比值,公式为NA=N/n。因此,它是联系一种粒子的摩尔质量(即一摩尔时的质量),及其质量间的比例常数。阿伏伽德罗常数用于代表一摩尔物质所含的基本单元(如分子或原子)之数量,而它的数值为:6.02x10^23/mol。
3、玻尔兹曼常量。
物理化学意义:玻尔兹曼常量是热力学的一个基本常量,记为“K”,数值为:K=1.3806505×10^-23J/K,玻尔兹曼常量可以推导得到,理想气体常数R等于玻尔兹曼常数乘以阿伏伽德罗常数。
❷ 谁能举五个化学意义的例子,五个物理意义的例子
H2O 1、表示水 2、表示水由氢氧两种元素组成
2H2+ O2 =(点燃)2H2O
从宏观看,1、氢气与氧气点燃生成水
2、每4份质量的氢气跟32份质量的氧气反应生成36份质量的水,即氢气跟氧气反应时的质量比为1:8.
从微观看,氢气、氧气和水都是由分子构成的,因此,这个化学方程式还表示了每2个氢分子跟1个氧分子反应生成了2个水分子.
❸ 什么是物理意义
在科学及工程领域,出于某种需求有时候我们需要进行一些计算。而计算的基础在于建模。
即我们对于事物的掌握进度是:
“客观世界”到“(物理)模型/(或其他模型如经济学模型)"再到“数学模型”。
因为数学作为一个特殊的学科,已经得到了充分的发展。因此利用数学模型来求解物理模型就十分准确而便利。但之于其他几位介绍的,数学的推导或者有可能没有太多假设,因此需要取舍结果;又可能存在另外一种情况,从数学求解获得的结果往往是抽象的,因此为了达到我们最初的目的(了解客观世界,比如了解大气运动、有天气预报的需求),我们需要把我们的数学结果或者数学模型赋予合适的物理解释,即对应“物理意义”。体运动状态及其变化过程的量。
定义:
它们通过物理定律及其方程建立相互间的关系。它们中有的有方向,有的无方向;有的有量纲、单位 ,有的无量纲、单位;有的描述状态,有的描述过程;有的和质量成正比,有的和质量无关;有的规定为互相独立的基本量,有的是从前者导出的导出量;有的是变量,有的是常量,其中普适性强的称基本物理常量。无方向的物理量称标量,有方向的称矢量(有3个分量)和张量(有9个分量)。直接描述物体和物质(包括场)的状态的物理量如力学中描述机械运动状态的速度、加速度、动量、动能、势能,热学中描述物体的状态是压强、体积、温度,电磁学中描述电磁场电场强度、电势、磁感应强度等称状态量,中国物理学界称直接描述状态变化过程的物理量如冲量、功、热量等为过程量。这些量只存在于过程中,体现为动量、机械能和内能的不断变化,过程完成后,这些量就不复存在。热学中将和质量成正比的状态量如体积、内能、热容等称广延量;而将它们对质量的比值,如比容、比内能、比热容,称强度量;其他的一些与质量无关的状态量,如温度、压强也称强度量。
物理意义定义:物理意义是比较通俗明白的直接表示物理量的说法.与概念有区别,概念是用简短,准确的学术性语言来描述一个物理定义。
就像你说的加速度,如果直接给出定义就是物体运动速度的变化量与对应的时间的比值。单看定义可能有些人看不懂,所以以通俗的语言直观的表述这个物理量,对这种表述的方法就称之为他的“物理意义”通过物理意义的研究,我们会以快慢、强弱、冷热等这些词语来表述以公式或人为定义的物理量,从而对这些物理量有感性的认识和理解
❹ 化学和物理有什么分别
究内容、学科分类、性质不同。
研究内容不同:
1、化学是研究在分子、原子层次上研究物质的组成、性质、结构与变化规律,从而创造新物质的科学。
2、物理学是研究物质运动最一般规律和物质基本结构的学科。是关于大自然规律的知识;更广义地说,物理学探索分析大自然所发生的现象,以了解其规则。
学科分类不同:
物理学分为:
1、牛顿力学与分析力学研究物体机械运动的基本规律及关于时空相对性的规律。
2、电磁学与电动力学研究电磁现象,物质的电磁运动规律及电磁辐射等规律。
3、热力学与统计力学研究物质热运动的统计规律及其宏观表现。
4、狭义相对论研究物体的高速运动效应以及相关的动力学规律。
5、广义相对论研究在大质量物体附近,物体在强引力场下的动力学行为。
6、量子力学研究微观物质运动现象以及基本运动规律
此外,还有:粒子物理学、原子核物理学、原子与分子物理学、固体物理学、凝聚态物理学、激光物理学、等离子体物理学、地球物理学、生物物理学、天体物理学等等。
化学分为:
1、无机化学:元素化学、无机合成化学、无机高分子化学、无机固体化学、配位化学(即络合物化学)、同位素化学、生物无机化学、金属有机化学、金属酶化学等。
2、有机化学:普通有机化学、有机合成化学、金属和非金属有机化学、物理有机化学、生物有机化学、有机分析化学。
3、物理化学:结构化学、热化学、化学热力学、化学动力学、电化学、溶液理论、界面化学、胶体化学、量子化学、催化作用及其理论等。
4、分析化学:化学分析、仪器和新技术分析。包括性能测定、监控、各种光谱和光化学分析、各种电化学分析方法、质谱分析法、各种电镜、成像和形貌分析方法,
在线分析、活性分析、实时分析等,各种物理化学性能和生理活性的检测方法,萃取、离子交换、色谱、质谱等分离方法,分离分析联用、合成分离分析三联用等。
5、高分子化学:天然高分子化学、高分子合成化学、高分子物理化学、高聚物应用、高分子物理。
6、核化学:放射性元素化学、放射分析化学、辐射化学、同位素化学、核化学。
7、生物化学:一般生物化学、酶类、微生物化学、植物化学、免疫化学、发酵和生物工程、食品化学、煤化学等。
其它与化学有关的边缘学科还有:地球化学、海洋化学、大气化学、环境化学、宇宙化学、星际化学等。
性质不同:
物理:物理学是人们对无生命自然界中物质的转变的知识做出规律性的总结。这种运动和转变应有两种。一是早期人们通过感官视觉的延伸,二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果,间接认识物质内部组成建立在的基础上。
物理学从研究角度及观点不同,可分为微观与宏观两部分,宏观是不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的,微观物理学随着科技的发展理论逐渐完善。
化学:是物质在化学变化中表现出来的性质。如所属物质类别的化学通性:酸性、碱性、氧化性、还原性、热稳定性及一些其它特性
望采纳,谢谢!
❺ 热力学常数有哪些它们的物理化学意义是什么
热力学常数有:
1、热力学常数R
物理化学意义:理想气体状态方程:pV=nRT,已知标准状况下,1mol理想气体的体积约为22.4L p=101325Pa,T=273.15K,n=1mol,V=22.4L=0.0224m^3,R=8.314,单位J/(mol*K)。
2、阿伏伽德罗常数
物理化学意义:在物理学和化学中,阿伏伽德罗常数(符号:NA或L)的定义是一个比值,是一个样本中所含的基本单元数(一般为原子或分子)N,与它所含的物质量n(单位为摩尔)间的比值,公式为NA=N/n。因此,它是联系一种粒子的摩尔质量(即一摩尔时的质量),及其质量间的比例常数。阿伏伽德罗常数用于代表一摩尔物质所含的基本单元(如分子或原子)之数量,而它的数值为:6.02x10^23/mol。
3、玻尔兹曼常量
物理化学意义:玻尔兹曼常量是热力学的一个基本常量,记为“K”,数值为:K=1.3806505×10^-23J/K,玻尔兹曼常量可以推导得到,理想气体常数R等于玻尔兹曼常数乘以阿伏伽德罗常数。
❻ 物理和化学的关系是什么
物理学与化学,作为自然科学的两个分支,关系十分密切,任何一种化学变化总是伴随着物理变化,物理因素的作用也会引起化学变化,自然科学中物理和化学历来是亲如兄弟、相辅相成的两个基本学科,它们虽曾有过约定俗成的分工,各司其职,但非各自为战,化学和物理合在一起,子自然科学中形成了一个轴心。历史上化学家合物理学家的研究是相互合作、相互促进中进行的,许多科学家的研究兼及物理和化学每当化学家们对取得的实验经验试图做出解释,并提高为理论时,每当他们在研究中遇到难以逾越的障碍时,总是求助于当时的物理成就,而且受益良多。物理包含着所有物质系统的化学行为的原理、规律和方法,化学也同样涵盖从宏观到微观与性质的关系、规律、化学过程机理及其控制的研究。由此便产生了物理化学这一学科,也是化学以及在分子层次上研究物质变化的其他学科领域的理论基础。
❼ 物理跟化学有什么区别
1、物理研究的是外在,化学研究的是本质及变化。
2、化学是研究物质的组成、结构、性质以及变化规律的科学。分子的破裂和原子的重新组合是化学变化
3、物理是研究物质结构、物质相互作用和运动规律的自然科学。是一门以实验为基础的自然科学,物理学的一个永恒主题是寻找各种序、对称性和对称破缺、守恒律或不变性。
化学的研究范畴是什么?
这问题放高中的标准答案应该是,化学研究的是原子间作用和分子间作用。
实际上化学的前沿领域很多物理的东西,从头算(计算化学)这样的东西实际上都是量子力学的应用,在元素层面的研究比如放射性同位素的研究更多是物理方面,居里夫人发现镭获得的是诺贝尔物理学奖而不是化学奖。
个人感觉化学更偏特定领域的应用(比如材料)或者是实验(有机全合成),有“理论物理”这个二级学科,但是没有“理论化学”。化学的二级学科都是化学在某个领域的应用:材料化学、化学化工、高分子化学,或者是一个研究范围:无机化学、有机化学、物理化学。毕竟初中生课本第一章就写了化学是一门以实验为基础的学科。
举个例子,有机全合成,目前也是有机化学相当前沿活跃的领域,目前人类生产大分子最常用的方法还是生物手段(也就是培养各种微生物等方法),全合成的意思就是通过纯粹的实验室操作从小分子获得一个有价值的大分子,有时候还包括了对生物活性比如手性选择。
当年R.B.伍德沃德全合成维生素B12,使用了超过70步的合成方法,每一步都是对实验技术的考验,每一步的难度都是累积的。有机化学文献一般会在反应中记录产率,而最终产率是每一步的乘积,维生素B12首次合成出来的产率是小数点后面n个0(具体数字手机一时半会查不到)。
然而40年过去了,直到今天维生素的生产依旧离不开生物手段,抗癌药物紫杉醇的合成是利用自然界现有的有机物作为原材料进行的半合成。全合成的意义更多存在于研究新的实验手段、探讨新的反应机理、总结新的经验理论。
我说这个例子想说明什么呢?化学其实是一个经验性很强的学科,它所研究的东西常常有比较明确的目的性或者经验性,它很实在,没有物理学那么多外行听起来就觉得高大上的名词和理论体系(托这的福化学方面民科比物理民科少得多)。
化学往抽象里走就都是物理和数学了。也就是说化学没有和理论物理或数学理论这种纯理论研究意义上的方向。大概和生命科学反而比较像一些,今年屠呦呦获得诺贝尔生理学奖并没有涉及到合成或者是理论研究,更多的是实践上取得的成果。
要说物理只是研究粒子的学科,我认为过于狭隘了,大一统理论应该算是物理的一大终极目标,与其说研究粒子不如说是研究各种场和相互作用。
为什么化学作为一门实验的、技巧的、经验的学科长期存在,我认为主要是数学上的局限性,比如多电子体系的薛定谔方程是不可解的,目前计算机模拟化学反应一直且将长期停留在近似的阶段。基础科学的进展和数学其实是十分相关的,也许和计算机科学发展也有关系。
说来说去化学理论体系上这几十年来有什么革命性的突破性的进展?并没有。
❽ 求热力学第一定律的物理和化学意义
热力学第一定律(the first law of
thermodynamics)就是不同形式的能量在传递与转换过程中守恒的定律,表达式为Q=△U+W。表述形式:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。其推广和本质就是着名的能量守恒定律。
物理意义大概就是近代物理基石。
化学意义是化学能量守恒的总定律,也是化学生最讨厌的东西。
❾ 什么是“物理意义”
物理意义是比较通俗明白的直接表示物理量的说法。与概念有区别,概念是用简短,准确的学术性语言来描述一个物理定义。
在物理学的领域中,研究的是宇宙的基本组成要素:物质、能量、空间、时间及它们的相互作用;借由被分析的基本定律与法则来完整了解这个系统。物理在经典时代是由与它极相像的自然哲学的研究所组成的,直到十九世纪物理才从哲学中分离出来成为一门实证科学。
大量事实表明
物理思想与方法不仅对物理学本身有价值,而且对整个自然科学,乃至社会科学的发展都有着重要的贡献。有人统计过,自20世纪中叶以来,在诺贝尔化学奖、生物及医学奖,甚至经济学奖的获奖者中,有一半以上的人具有物理学的背景——这意味着他们从物理学中汲取了智能,转而在非物理领域里获得了成功。
❿ 物理性质与化学性质是什么概念
物理性质是物质不需要发生化学变化就表现出来的性质,例如颜色、状态、气味、密度、熔点、沸点、硬度、溶解性、延展性、导电性、导热性等,这些性质是能被感观感知或利用仪器测知的。
化学性质是物质在化学变化中表现出来的性质。如所属物质类别的化学通性:酸性、碱性、氧化性、还原性、热稳定性及一些其它特性。