‘壹’ 化学的历史由来
化学的历史渊源非常古老,可以说从人类学会使用火,就开始了最早的化学实践活动。我们的祖先钻木取火、利用火烘烤食物、寒夜取暖、驱赶猛兽,充分利用燃烧时的发光发热现象。
当时这只是一种经验的积累。化学知识的形成、化学的发展经历了漫长而曲折的道路。它伴随着人类社会的进步而发展,是社会发展的必然结果。而它的发展,又促进生产力的发展,推动历史的前进。
化学在发展过程中,依照所研究的分子类别和研究手段、目的、任务的不同,派生出不同层次的许多分支。
在20世纪20年代以前,化学传统地分为无机化学、有机化学、物理化学和分析化学四个分支。20年代以后,由于世界经济的高速发展,化学键的电子理论和量子力学的诞生、电子技术和计算机技术的兴起,化学研究在理论上和实验技术上都获得了新的手段。
导致这门学科从30年代以来飞跃发展,出现了崭新的面貌。化学内容一般分为生物化学、有机化学、高分子化学、应用化学和化学工程学、物理化学、无机化学等七大类共80项,实际包括了七大分支学科。
(1)物理和化学是什么时候出现的扩展阅读
化学起源说将生命的起源分为四个阶段。
第一个阶段
从无机小分子生成有机小分子的阶段,即生命起源的化学进化过程是在原始的地球条件下进行的。需要着重指出的是米勒的模拟实验。在这个实验中,一个盛有水溶液的烧瓶代表原始的海洋,其上部球型空间里含有氢气、氨气、甲烷和水蒸汽等“还原性大气”。
米勒分析其化学成分时发现,其中含有包括5种氨基酸和不同有机酸在内的各种新的有机化合物,同时还形成了氰氢酸,而氰氢酸可以合成腺嘌呤,腺嘌呤是组成核苷酸的基本单位。
米勒的实验试图向人们证实,生命起源的第一步,从无机小分子物质形成有机小分子物质,在原始地球的条件下是完全可能实现的。
第二个阶段
从有机小分子物质生成生物大分子物质。这一过程是在原始海洋中发生的,即氨基酸、核苷酸等有机小分子物质,经过长期积累,相互作用,在适当条件下(如黏土的吸附作用),通过缩合作用或聚合作用形成了原始的蛋白质分子和核酸分子。
第三个阶段
从生物大分子物质组成多分子体系。这一过程是怎样形成的?前苏联学者奥巴林提出了团聚体假说,他通过实验表明,将蛋白质、多肽、核酸、明胶、阿拉伯胶和多糖等放在合适的溶液中,它们能自动地浓缩聚集为分散的球状小滴,这些小滴就是团聚体。
第四个阶段
有机多分子体系演变为原始生命,包括以生化系统和遗传系统的建立为标志的细胞的诞生。这一阶段是在原始海洋中形成的,是生命起源过程中最复杂和最有决定意义的阶段。目前,人们还不能在实验室里验证这一过程。
‘贰’ 中国什么时候出现物理化学的概念
欧洲化学传入中国,大致可以分为两个阶段。
即从明朝末年到鸦片战争为第一阶段,传入的是欧洲的旧化学;
鸦片战争以后为第二阶段,传入的是新化学,即科学的化学。传播的途径主要有翻译和教育两个方面。在翻译方面,最早且成绩卓着的是上海江南制造局,突出的人物是中国化学启蒙者徐寿。光绪年间,废除了科举制度,广设各级学校,在这些学校的课程中就有化学。传播化学知识,刊物是一个重要的部分,所以要谈谈早期刊物及登载有关化学知识的情况。化学,在西方也是发展较迟的一门学科,西方化学知识传入中国,也比天文学和数学迟。绝大部分西方近代化学知识的传入是在鸦片战争之后。明朝末年传入中国的化学知识仅限于强酸和火药的制备。
欧洲物理传入中国也是在明朝万历年间,利玛窦传入中国。后来汤若望将光学也引入到中国。
‘叁’ 物理化学的发展历史
在1752年,“物理化学”这个概念被俄国科学家罗蒙索诺夫在圣彼得堡大学的一堂课程(A Course in True Physical Chemistry)上首次提出。
一般认为,物理化学作为一门学科的正式形成,是从1877年德国化学家奥斯特瓦尔德和荷兰化学家范托夫创刊的《物理化学杂志》开始的。从这一时期到20世纪初,物理化学以化学热力学的蓬勃发展为其特征。
热力学第一定律和热力学第二定律被广泛应用于各种化学体系,特别是溶液体系的研究。吉布斯对多相平衡体系的研究和范托夫对化学平衡的研究,阿伦尼乌斯提出电离学说,能斯特发现热定理都是对化学热力学的重要贡献。
当1906年路易斯提出处理非理想体系的逸度和活度概念,以及它们的测定方法之后,化学热力学的全部基础已经具备。劳厄和布喇格对X射线晶体结构分析的创造性研究,为经典的晶体学向近代结晶化学的发展奠定了基础。阿伦尼乌斯关于化学反应活化能的概念,以及博登施坦和能斯脱关于链反应的概念,对后来化学动力学的发展也都作出了重要贡献。
20世纪20~40年代是结构化学领先发展的时期,这时的物理化学研究已深入到微观的原子和分子世界,改变了对分子内部结构的复杂性茫然无知的状况。
1926年,量子力学研究的兴起,不但在物理学中掀起了高潮,对物理化学研究也给以很大的冲击。尤其是在1927年,海特勒和伦敦对氢分子问题的量子力学处理,为1916年路易斯提出的共享电子对的共价键概念提供了理论基础。1931年鲍林和斯莱特把这种处理方法推广到其他双原子分子和多原子分子,形成了化学键的价键方法。1932年,马利肯和洪德在处理氢分子的问题时根据不同的物理模型,采用不同的试探波函数,从而发展了分子轨道方法。
价键法和分子轨道法已成为近代化学键理论的基础。鲍林等提出的轨道杂化法以及氢键和电负性等概念对结构化学的发展也起了重要作用。在这个时期,物理化学的其他分支也都或多或少地带有微观的色彩,例如由欣谢尔伍德和谢苗诺夫两个学派所发展的自由基链式反应动力学,德拜和休克尔的强电解质离子的互吸理论,以及电化学中电极过程研究的进展——氢超电压理论。
第二次世界大战后到60年代期间,物理化学以实验研究手段和测量技术,特别是各种谱学技术的飞跃发展和由此而产生的丰硕成果为其特点。
电子学、高真空和计算机技术的突飞猛进,不但使物理化学的传统实验方法和测量技术的准确度、精密度和时间分辨率有很大提高,而且还出现了许多新的谱学技术。光谱学和其他谱学的时间分辨率和自控、记录手段的不断提高,使物理化学的研究对象超出了基态稳定分子而开始进入各种激发态的研究领域。
光化学首先获得了长足的进步,因为光谱的研究弄清楚了光化学初步过程的实质,促进了对各种化学反应机理的研究。这些快速灵敏的检测手段能够发现反应过程中出现的暂态中间产物,使反应机理不再只是从反应速率方程凭猜测而得出的结论。这些检测手段对化学动力学的发展也有很大的推动作用。
先进的仪器设备和检测手段也大大缩短了测定结构的时间,使结晶化学在测定复杂的生物大分子晶体结构方面有了重大突破,青霉素、维生素B12、蛋白质、胰岛素的结构测定和脱氧核糖核酸的螺旋体构型的测定都获得成功。电子能谱的出现更使结构化学研究能够从物体的体相转到表面相,对于固体表面和催化剂而言,这是一个得力的新的研究方法。
60年代,激光器的发明和不断改进的激光技术。大容量高速电子计算机的出现,以及微弱信号检测手段的发明孕育着物理化学中新的生长点的诞生。
70年代以来,分子反应动力学、激光化学和表面结构化学代表着物理化学的前沿阵地。研究对象从一般键合分子扩展到准键合分子、范德瓦耳斯分子、原子簇、分子簇和非化学计量化合物。在实验中不但能控制化学反应的愠度和压力等条件,进而对反应物分子的内部量子态、能量和空间取向实行控制。
在理论研究方面,快速大型电子计算机加速了量子化学在定量计算方面的发展。对于许多化学体系来说,薛定谔方程已不再是可望而不可解的了。福井谦一提出的前线轨道理论以及伍德沃德和霍夫曼提出的分子轨道对称守恒原理的建立是量子化学的重要发展。
物理化学还在不断吸收物理和数学的研究成果,例如70年代初,普里戈金等提出了耗散结构理论,使非平衡态理论研究获得了可喜的进展,加深了人们对远离平衡的体系稳定性的理解。
中国物理化学的发展历史,以1949年中华人民共和国成立为界,大致可以分为两个阶段。在30~40年代,尽管当时物质条件薄弱,但老一辈物理化学家不仅在化学热力学、电化学、胶体和表面化学、分子光谱学、X射线结晶学、量子化学等方面做出了相当的成绩,而且培养了许多物理化学方面的人才。
1949年以后,经过几十年的努力,在各个高等学校设置物理化学教研室进行人才培养的同时,还在中国科学院各有关研究所和各重点高等学校建立了物理化学研究室,在结构化学、量子化学、催化、电化学、分子反应动力学等方面取得了可喜的成绩。
‘肆’ 有关化学学科的形成历史
化学
化学(chemistry)是研究物质的组成、结构、性质、以及变化规律的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。
化学的萌芽
古时候,原始人类为了他们的生存,在与自然界的种种灾难进行抗争中,发现和利用了火。原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。燃烧就是一种化学现象。(火的发现和利用,改善了人类生存的条件,并使人类变得聪明而强大。)掌握了火以后,人类开始食用熟食;继而人类又陆续发现了一些物质的变化,如发现在翠绿色的孔雀石等铜矿石上面燃烧炭火,会有红色的铜生成。这样,人类在逐步了解和利用这些物质的变化的过程中,制得了对人类具有使用价值的产品。人类逐步学会了制陶、冶炼;以后又懂得了酿造、染色等等。这些有天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。
古人曾根据物质的某些性质对物质进行分类,并企图追溯其本原及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成的,而五行则是由阴阳二气相互作用而成的。此说法是朴素的唯物主义自然观,用“阴阳”这个概念来解释自然界两种对立和相互消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。
公元前4世纪,希腊也提出了与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及其变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术已颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼丹术,阿拉伯炼丹术于中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。 炼丹术的指导思想是深信物质能转化,试图在炼丹炉中人工合成金银或修炼长生不老之药。他们有目的的将各类物质搭配烧炼,进行实验。为此涉及了研究物质变化用的各类器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、洁净、灼烧、熔融、升华、密封等。
与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改进后,仍然在今天的化学实验中沿用。炼丹家在实验过程中发明了火药,发现了若干元素,制成了某些合金,还制出和提纯了许多化合物,这些成果我们至今仍在利用。编辑本段化学的飞跃和化学学科的形成
16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际应用,继而更加注意物质化学变化本身的研究。在元素的科学概念建立后,通过对燃烧现象的精密实验研究,建立了科学的氧化理论和质量守恒定律,随后又建立了定比定律、倍比定律和化合量定律,为化学进一步科学的发展奠定了基础。
1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期,使化学沿着正确的轨道发展。19世纪初,英国化学家道尔顿提出近代原子学说,突出地强调了各种元素的原子的质量为其最基本的特征,其中量的概念的引入,是与古代原子论的一个主要区别。近代原子论使当时的化学知识和理论得到了合理的解释,成为说明化学现象的统一理论。接着意大利科学家阿伏加德罗提出分子概念。自从用原子-分子论来研究化学,化学才真正被确立为一门科学。这一时期,建立了不少化学基本定律。俄国化学家门捷列夫发现元素周期律,德国化学家李比希和维勒发展了有机结构理论,这些都使化学成为一门系统的科学,也为现代化学的发展奠定了基础。
通过对矿物的分析,发现了许多新元素,加上对原子分子学说的实验验证,经典性的化学分析方法也有了自己的体系。草酸和尿素的合成、原子价概念的产生、苯的六环结构和碳价键四面体等学说的创立、酒石酸拆分成旋光异构体,以及分子的不对称性等等的发现,导致有机化学结构理论的建立,使人们对分子本质的认识更加深入,并奠定了有机化学的基础。
19世纪下半叶,热力学等物理学理论引入化学之后,不仅澄清了化学平衡和反应速率的概念,而且可以定量地判断化学反应中物质转化的方向和条件。相继建立了溶液理论、电离理论、电化学和化学动力学的理论基础。物理化学的诞生,把化学从理论上提高到一个新的水平。
二十世纪的化学是一门建立在实验基础上的科学,实验与理论一直是化学研究中相互依赖、彼此促进的两个方面。进入20世纪以后,由于受到自然科学其他学科发展的影响,并广泛地应用了当代科学的理论、技术和方法,化学在认识物质的组成、结构、合成和测试等方面都有了长足的进展,而且在理论方面取得了许多重要成果。在无机化学、分析化学、有机化学和物理化学四大分支学科的基础上产生了新的化学分支学科。
近代物理的理论和技术、数学方法及计算机技术在化学中的应用,对现代化学的发展起了很大的推动作用。19世纪末,电子、X射线和放射性的发现为化学在20世纪的重大进展创造了条件。 在结构化学方面,由于电子的发现开始并确立的现代的有核原子模型,不仅丰富和深化了对元素周期表的认识,而且发展了分子理论。应用量子力学研究分子结构,产生了量子化学。
从氢分子结构的研究开始,逐步揭示了化学键的本质,先后创立了价键理论、分子轨道理论和佩位场理论。化学反应理论也随着深入到微观境界。应用X射线作为研究物质结构的新分析手段,可以洞察物质的晶体化学结构。测定化学立体结构的衍射方法,有X射线衍射、电子衍射和中子衍射等方法。其中以X射线衍射法的应用所积累的精密分子立体结构信息最多。
研究物质结构的谱学方法也由可见光谱、紫外光谱、红外光谱扩展到核磁共振谱、电子自选共振谱、光电子能谱、射线共振光谱、穆斯堡尔谱等,与计算机联用后,积累大量物质结构与性能相关的资料,正由经验向理论发展。电子显微镜放大倍数不断提高,人们以可直接观察分子的结构。 经典的元素学说由于放射性的发现而产生深刻的变革。从放射性衰变理论的创立、同位素的发现到人工核反应和核裂变的实现、氘的发现、中子和正电子及其它基本粒子的发现,不仅是人类的认识深入到亚原子层次,而且创立了相应的实验方法和理论;不仅实现了古代炼丹家转变元素的思想,而且改变了人的宇宙观。
作为20世纪的时代标志,人类开始掌握和使用核能。放射化学和核化学等分支学科相继产生,并迅速发展;同位素地质学、同位素宇宙化学等交叉学科接踵诞生。元素周期表扩充了,以有109号元素,并且正在探索超重元素以验证元素“稳定岛假说”。与现代宇宙学相依存的元素起源学说和与演化学说密切相关的核素年龄测定等工作,都在不断补充和更新元素的观念。
在化学反应理论方面,由于对分子结构和化学键的认识的提高,经典的、统计的反应理论以进一步深化,在过渡态理论建立后,逐渐向微观的反应理论发展,用分子轨道理论研究微观的反应机理,并逐渐建立了分子轨道对称守恒定律和前线轨道理论。分子束、激光和等离子技术的应用,使得对不稳定化学物种的检测和研究成为现实,从而化学动力学已有可能从经典的、统计的宏观动力学深入到单个分子或原子水平的微观反应动力学。
计算机技术的发展,使得分子、电子结构和化学反映的量子化学计算、化学统计、化学模式识别,以及大规模术技的处理和综合等方面,都得到较大的进展,有的已经逐步进入化学教育之中。关于催化作用的研究,以提出了各种模型和理论,从无机催化进入有机催化和僧物催化,开始从分子微观结构和尺寸的角度核生物物理有机化学的角度,来研究酶类的作用和酶类的结构与其功能的关系。
分析方法和手段是化学研究的基本方法和手段。一方面,经典的成分和组成分析方法仍在不断改进,分析灵敏度从常量发展到微量、超微量、痕量;另一方面,发展初许多新的分析方法,可深入到进行结构分析,构象测定,同位素测定,各种活泼中间体如自由基、离子基、卡宾、氮宾、卡拜等的直接测定,以及对短寿命亚稳态分子的检测等。分离技术也不断革新,离子交换、膜技术、色谱法等等。
合成各种物质,是化学研究的目的之一。在无机合成方面,首先合成的是氨。氨的合成不仅开创了无机合成工业,而且带动了催化化学,发展了化学热力学和反应动力学。后来相继合成的有红宝石、人造水晶、硼氢化合物、金刚石、半导体、超导材料和二茂铁等配位化合物。
在电子技术、核工业、航天技术等现代工业技术的推动下,各种超纯物质、新型化合物和特殊需要的材料的生产技术都得到了较大发展。稀有气体化合物的合成成功又向化学家提出了新的挑战,需要对零族元素的化学性质重新加以研究。无机化学在与有机化学、生物化学、物理化学等学科相互渗透中产生了有机金属化学、生物无机化学、无机固体化学等新兴学科。
酚醛树脂的合成,开辟了高分子科学领域。20世纪30年代聚酰胺纤维的合成,使高分子的概念得到广泛的确认。后来,高分子的合成、结构和性能研究、应用三方面保持互相配合和促进,使高分子化学得以迅速发展。
各种高分子材料合成和应用,为现代工农业、交通运输、医疗卫生、军事技术,以及人们衣食住行各方面,提供了多种性能优异而成本较低的重要材料,成为现代物质文明的重要标志。高分子工业发展为化学工业的重要支柱。
20世纪是有机合成的黄金时代。化学的分离手段和结构分析方法已经有了很大发展,许多天然有机化合物的结构问题纷纷获得圆满解决,还发现了许多新的重要的有机反应和专一性有机试剂,在此基础上,精细有机合成,特别是在不对称合成方面取得了很大进展。
一方面,合成了各种有特种结构和特种性能的有机化合物;另一方面,合成了从不稳定的自由基到有生物活性的蛋白质、核酸等生命基础物质。有机化学家还合成了有复杂结构的天然有机化合物和有特效的药物。这些成就对促进科学的发展起了巨大的作用;为合成有高度生物活性的物质,并与其他学科协同解决有生命物质的合成问题及解决前生命物质的化学问题等,提供了有利的条件。 20世纪以来,化学发展的趋势可以归纳为:由宏观向微观、由定性向定量、由稳定态向亚稳定态发展,由经验逐渐上升到理论,再用于指导设计和开创新的研究。一方面,为生产和技术部门提供尽可能多的新物质、新材料;另一方面,在与其它自然科学相互渗透的进程中不断产生新学科,并向探索生命科学和宇宙起源的方向发展。
‘伍’ 化学、物理,这两个词是从日语中来的吗是日本最先使用的吗
“化学”一词的由来
拉丁文chemia是从阿拉伯文的“炼金术”一词演变而来的,后者则可能来源于希腊语“浇铸”(或“浸液”)、埃及语“黑色”或汉语“金液”。汉译名“化学”一词首见于伟烈亚力主编的《六合丛谈》(1857年~1858年),它得自王韬,是来华传教士戴德生所创并口授于王韬的。
中文“物理”一词,最早出现于战国时期。《庄子·知北游》(BC369—BC286)说:“天地有大美而不言.四时有明法而不议,万物有成理而不说,圣人者.原天地之美而达万物之理”《庄子·秋水》也有:“语大义之方,论万物之理”之说。“万物之理”正是“物理”一词的基本含义。天地之运行.四时之交替.万物之生衰,古人都将其看作“物理”的表现。在此基础上,《荀子·解蔽》作了进一步总结:“凡已知,人之性也,可以知,物之理也。”这里“物理”一词虽未连用,但上下文看是专讲观物知理的。所以唐扬惊注目:“以知人之性推知,则可知物理也。”
“物理”一词后来出自《淮南鸿烈 览冥训》(《淮南子》又名《淮南鸿烈》,刘安(公元前179--前122)曾经召集众人一起编撰);:“夫燧之取火,磁石之引针,蟹之败漆。葵之乡(向)日,感慨道:“故耳目之察,不足以分物理;心意之论.不足以定是非”“物理”二字最早正式出现在中文中,即考察事物的形态和变化,总结研究它们的规律的意思。
“物理”一词后来再见于三国时期杨泉的《物理论》(虽然由于当时对世界认知的局限性,很多理论现在看来是不正确的;比如:“所以立天地者,水也。夫水,地之本也。吐元气,发日月,经星辰,皆由水而兴。”--------大概的意思是:天地之所以这样是因为水,水,是地之根本,水蒸汽=云(吐元气),水蒸汽越过日月,直通星辰所在之地的天,而日月星辰的运作都是因为水蒸汽)《物理论》力图从当时可能达到的理论水平.去解释自然界各种事物的本质.即自然之理。相当于自然哲学,当属大物理范畴。
“物理”《名理探》(1628完成翻译)原名为《亚里士多德辩证法概论》,是由李之藻(1569—1630)翻译的书籍。1631年陆续印行的《名理探》中已有“物理”的译名:“物理者,物有性情先后。宗也、殊也、类也,所以成性者,因在先;独也,依也,所以具其情者.因在后。”此文原意是阐述宗、殊、类三公为本然之属,所反映的是事物的本质属性,因在先;而独,依二公为依然之称,所反映的是事物的非本质属性,因在后。
《名理探》是17世纪初葡萄牙的高因盘利大学耶稣会会士的逻辑讲义.用拉丁文写成。原名《亚里士多穗辩证法概论》,原书刊于1611年。我们尚未查到拉丁文原版书.因此还不敢说“物理”一词肯定对译于拉丁文“PHYSICA,但从《名理探》中有关“物理”的引文来看实际上是讲形性学的,仍属中国古代“大物理的范畴!因而这种翻译是准确的。
直到1666年巴黎科学院成立时科学仍分成数学和物理两大类,只不过数学包括力学和天文学;而物理学还包括化学、植物学、解剖学、生理学等等[7]。可见法国直到17世纪,物理学也是大物理或广义物理学。
再后来是明末学士王宣《物理所》(资料缺乏,是方以智的师塾),以及对此书进行模仿借鉴的方以智(1611—1671[辛亥年]十月七日[11月8日])着作的《物理小识》
方以智(1611—1671[辛亥年]十月七日[11月8日])的《物理小识》被收入了《四库全书》,终清之世,不乏被人引用,而且在17世纪晚期传入日本,为知识阶层争相阅读。此书并影响到日本学者把“物理学”作为Physics的译名。所以日语中“物理”一词起自于明末清初科学家方以智的网络全书式着作《物理小识》。
《物理小识》里面的物理指的是万物之理,但是方以智首先将学科分为自然科学(物理),社会科学(宰理),哲学(物之至理)三类。日本人的翻译,溯及辞源也是这本书。
1839年渡边喀山在他的《外国情况书》中使用了“物理の学<ウェースベゲールデ>”,但是荷兰语wijsbegeerte对应于当今的“哲学”。 西周将physics翻译为“格物学”,但他是将“天文学”和“化学”所共有的物理学称为“物理学”。
1851年玛高温(Daniel Jerome Macgowan,1814—1893)翻译了第一本中文电学着作《博物通书》:电器通标序二:……见东土人士博稽典坟,鲜究“物理”……这应该的近代中文可查证的第一次物理对应现代含义的使用。
1875年日本出版的小学教材《物理阶梯》使用了“物理”一词。
1876年<片山淳一>对物理一词进行了注释:“物理学有必要解释万物的特性以及物质世界中发生的各种变化的原因。”
因为日本人不懂物理一词的含义,所以有人就说因为日本人对物理一词进行了注释;所以物理一词是日本人翻译的。个人认为这明显是不正确的,毕竟从词义上来讲玛高温早已经使用了。如果从分类含义上来讲,方以智(1611—1671[辛亥年]十月七日[11月8日])也早就将物理从自然哲学里分类出来了;而且方以智是世界上第一个将物理从自然哲学里面分类出来的科学家。此前无论东西方,都是将物理归类于自然哲学的。晚了方以智几十年的牛顿也是如此。
(在1687年牛顿发表其运动定律时还是用自然哲学来命名的,他当时的书名为《自然哲学的数学原理》,用拉丁文所写亚里士多德的“自然哲学”---“φυσιкα”)
‘陆’ 有谁知道物理学,化学,数学的发展史啊/
自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器,都是化学技术的应用。正是这些应用,极大地促进了当时社会生产力的发展,成为人类进步的标志。
今天,化学作为一门基础学科,在科学技术和社会生活的方方面面正起着越来越大的作用。从古至今,伴随着人类社会的进步,化学历史的发展经历了哪些时期呢?
远古的工艺化学时期。这时人类的制陶、冶金、酿酒、染色等工艺,主要是在实践经验的直接启发下经过多少万年摸索而来的,化学知识还没有形成。这是化学的萌芽时期。
炼丹术和医药化学时期。从公元前1500年到公元1650年,炼丹术士和炼金术士们,在皇宫、在教堂、在自己的家里、在深山老林的烟熏火燎中,为求得长生不老的仙丹,为求得荣华富贵的黄金,开始了最早的化学实验。记载、总结炼丹术的书籍,在中国、阿拉伯、埃及、希腊都有不少。这一时期积累了许多物质间的化学变化,为化学的进一步发展准备了丰富的素材。这是化学史上令我们惊叹的雄浑的一幕。后来,炼丹术、炼金术几经盛衰,使人们更多地看到了它荒唐的一面。化学方法转而在医药和冶金方面得到了正当发挥。在欧洲文艺复兴时期,出版了一些有关化学的书籍,第一次有了“化学”这个名词。英语的chemistry起源于alchemy,即炼金术。chemist至今还保留着两个相关的含义:化学家和药剂师。这些可以说是化学脱胎于炼金术和制药业的文化遗迹了。
燃素化学时期。从1650年到1775年,随着冶金工业和实验室经验的积累,人们总结感性知识,认为可燃物能够燃烧是因为它含有燃素,燃烧的过程是可燃物中燃素放出的过程,可燃物放出燃素后成为灰烬。
定量化学时期,既近代化学时期。1775年前后,拉瓦锡用定量化学实验阐述了燃烧的氧化学说,开创了定量化学时期。这一时期建立了不少化学基本定律,提出了原子学说,发现了元素周期律,发展了有机结构理论。所有这一切都为现代化学的发展奠定了坚实的基础。
科学相互渗透时期,既现代化学时期。二十世纪初,量子论的发展使化学和物理学有了共同的语言,解决了化学上许多悬而未决的问题;另一方面,化学又向生物学和地质学等学科渗透,使蛋白质、酶的结构问题得到逐步的解决。
化学的英文词为Chemistry,法文Chimie,德文Chemie,它们都是从一个古字、即拉丁字chemia,希腊字Xηwa(Chamia),希伯莱字Chaman或Haman,阿拉伯字Chema或Kema,埃及字Chemi演化而来的.它的最早来源难以查考.从现存资料看,最早是在埃及第四世纪的记载里出现的.所以有人认为可以假定是从埃及古字Chemi来的,不过这个名字的意义很晦涩,有埃及、埃及的艺术、宗教的迷惑、隐藏、秘密或黑暗等意义。
其所以有这些意义,大概因为埃及在西方是化学记载诞生的地方,也是古代化学极为发达的地方,尤其是在实用化学方面。例如,埃及在十一朝代进已有一种雕刻表示一些工人下在制造玻璃,可见至少在公元前2500年以前,埃及已知道玻璃的制造方法了。再从埃及出土的木乃伊看,可知在公元前一、二千年时已精于使用防腐剂和布帛染色等技术。所以古人用埃及或埃及的艺术来命名“化学”。至于其它几种意义,可能因为古人认为化学是一种神奇和秘密的事业以及带有宗教色彩的缘故。
中国的化学史当然也是毫不逊色的。大约5000-11000年前,我们已会制作陶器,3000多年前的商朝已有高度精美的青铜器,造纸、磁器、火药更是化学史上的伟大发明。在十六、十七世纪时,中国算得上是世界最先进的国家。“化学”二字我国在1856年开始使用。最早出现在英国传教士韦廉臣在1856年出版的《格物探原》一书中。
化学的发展可以说是日新月异,尤其是它的边缘学科或者说是它的分支学科,譬如生物化学、物理化学、晶体化学等等,令人目不暇接。就眼下炒得过热的基因工程、克隆技术以及共轭电场论等,更是令人眼花缭乱。而古往今来,有多少化学家为化学的发展做出了难以估量的贡献。你想了解他们吗?化学名人风采将带您走近他们....
‘柒’ 我国何时开始使用“物理学”一词
“物理学” 一词是怎样来的,我国的物理教学起源于何时?是怎样发展起来的?这是很多学习物理的同学所共同关心的问题.
我们今天所说的“物理学”一词,有两个来源:一个是由西方经日本转译到中国的;另一个则是“土生”的,即出自中国的“物理”一词.下面对此分别介绍.
“物理学” 最早属于哲学的一部分.素有“古代西方最博学的人”之称的古希腊哲学家亚里士多德(Aristotle,384BC—322BC)用希腊文写作“φυσιкα”,指自然哲学.(早在1687年牛顿发表其运动定律时还是用自然哲学来命名的,他当时的书名为《自然哲学的数学原理》,用拉丁文所写)亚里士多德的“自然哲学”(“φυσιкα”)后来被译为拉丁文“physica”,再转译为英文“physics”;1851年日本人川本幸民将英文的“physics”译为日本汉字“物理学”;1879年日本人钣盛挺造出版“物理学”一书;1900年中国的王季烈和日本人藤田丰八将该书译为汉译本“物理学”,该名称一直沿用至今.
“物理”一词早在我国的晋代就出现了,泛指事物之理.这一说法起源于我国战国时期庄子(BC369—BC286)的“析万物之理”一句.1607年徐光启和利马窦翻(意大利人,Mateo Ricci,1552—1633)译的欧几里德(Euclid,330BC—275BC)的《几何原本》前六卷时,徐光启作的该书序言中也谈到了“物理” 一词.明末清初方以智着《物理小识》一书,内容很广,包括历法、医药、器用、金石等.但它跟由西方经日本传入我国的“物理学”具有不同的内涵.
在西方发展起来的自然科学作为教学内容是于1845年出现于我国的某些私立学校的课堂的.当时设“格致”课(“格致” 一词最早出自《大学》中“致知在格物”,即穷究事物的原理以获得知识.鲁迅在《呐喊自序》一文中还用该词表示清末所开的物理、化学等内容)但该课最初的内容与前面所说的由“physics”转译过来的“物理学”的内容并不一样.当时的“格致”课的内容除物理外,还有数学、化学、动物、植物和矿物等.1862年公立学堂同文馆成立,数学从格致中分出;1899年在前京师大学堂,化学被分出.
1902年我国中学开的课就开始分设物理、化学与博物.这里的“物理”就已经是西方经日本传入我国的“物理学”了.由此可见,“物理学”作为专门的独立学科在我国讲授也只有100年左右的历史,作为物理教师,对这一点知识有所了解,我觉得还是有必要的.
随着科学和技术的进步,物理学的内容也在不断地丰富和发展.比如,有关原子核、核能、量子力学、相对论、场论等内容就远不是当年由日本传入我国的“物理学”所能包含的.
就拿力学来说吧,目前“非线性系统的复杂行为”、“混沌与分形”等概念也已经引入物理学的学科领域.作为物理教师,在理解物理学的词源时,也必须看到学科的发展. 要用“与时俱进”的眼光看待“物理学”
主要参考文献
1.漆安慎,杜婵英<力学基础>
2.郭奕铃,沈慧君.《物理学史 》 清华大学出版社,2002.8
3.吴国盛.《科学的历程》,北京:北京大学出版社,2002,10
4.河南师范大学 万凌德教授
‘捌’ 初中物理化学是从什么时候开始的
大部分学校从初三开始,小部分学校是初二学物理
‘玖’ 物理学的发展史
近代意义的物理学诞生于欧洲15—17世纪。人们一般将欧洲历史作为物理学史的社会背景。从远古到公元5世纪属古代史时期;5—13世纪为中世纪时期;14—16世纪为文艺复兴运动时期;16—17世纪为科学革命时期,以N.哥白尼、伽利略、牛顿为代表的近代科学在此时期产生。
从此之后,科学随各个世纪的更替而发展。近半个世纪,人们按照物理学史特点,将其发展大致分期如下:从远古到中世纪属古代时期。从文艺复兴到19世纪,是经典物理学时期。牛顿力学在此时期发展到顶峰,其时空观、物质观和因果关系影响了光、声、热、电磁的各学科。
甚而影响到物理学以外的自然科学和社会科学。随着20世纪的到来,量子论和相对论相继出现;新的时空观、概率论和不确定度关系等在宇观和微观领域取代牛顿力学的相关概念,人们称此时期为近代物理学时期。
(9)物理和化学是什么时候出现的扩展阅读:
伽利略·伽利雷(1564~1642年)人类现代物理学的创始人,奠定了人类现代物理科学的发展基础。1900~1926年 建立了量子力学。1926年 建立了费米狄拉克统计。1927年 建立了布洛赫波的理论。1928年 索末菲提出能带的猜想。1929年 派尔斯提出禁带、空穴的概念。
同年贝特提出了费米面的概念。1947年贝尔实验室的巴丁、布拉顿和肖克莱发明了晶体管,标志着信息时代的开始。1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子。1958年杰克.基尔比发明了集成电路。20世纪70年代出现了大规模集成电路。
发展前景:
应用物理学专业的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开 发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。
应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理 论和实践于一体,并与多门学科相互渗透。应用物理学专业的学生如具有扎实的物理理论的功底和应用方面的经验,能够在很多工程技术领域成为专家。我国每年培养本科应用物理专业人才约12000人。
和该专业存在交叉的专业包括物理专业,工程物理专业,半导体和材料专业等。人才需求方面,我国对应用物理专业的人才需求仍旧是供不应求。
‘拾’ 中国历史上,什么时候有“物理”一词出现
中文里的“物理”一词,最早出现在战国时期,《鹖冠子·王𫓧》一文中最早出现:“庞子云:‘愿闻其人情物理’,意思是事物的道理,之后被广泛运用,在《淮南子》,《庄子》,《荀子》等中国典籍中都有运用。
而外语中的“物理”(physics)一词最早出现于古希腊文φυσικ,原意是指自然。