导航:首页 > 物理学科 > 物理中有哪些导数公式

物理中有哪些导数公式

发布时间:2022-08-16 01:21:27

⑴ 基本导数公式有哪些

常用导数公式表如下:

c'=0(c为常数)

(x^a)'=ax^(a-1),a为常数且a≠0

(a^x)'=a^xlna

(e^x)'=e^x

(logax)'=1/(xlna),a>0且 a≠1

(lnx)'=1/x

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=(secx)^2

(secx)'=secxtanx

导函数:

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。

⑵ 常见导数公式有哪些

常见导数公式有:(lnx)'=1/x、(sinx)'=cosx、(cosx)'=-sinx。

c'=0(c为常数)

(x^a)'=ax^(a-1),a为常数且a≠0

(a^x)'=a^xlna

(e^x)'=e^x

(logax)'=1/(xlna),a>0且 a≠1

(lnx)'=1/x

(sinx)'=cosx

(cosx)'=-sinx

(tanx)'=(secx)^2

(secx)'=secxtanx

(cotx)'=-(cscx)^2

基本初等函数的导数表

1.y=c y'=0

2.y=α^μ y'=μα^(μ-1)

3.y=a^x y'=a^x lna

y=e^x y'=e^x

4.y=loga,x y'=loga,e/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=(secx)^2=1/(cosx)^2

8.y=cotx y'=-(cscx)^2=-1/(sinx)^2

⑶ 高中导函数公式八个公式是什么

八个公式:

y=c(c为常数) y'=0

y=x^n y'=nx^(n-1)

y=a^x y'=a^xlna y=e^x y'=e^x

y=logax y'=logae/x y=lnx y'=1/x

y=sinx y'=cosx

y=cosx y'=-sinx

y=tanx y'=1/cos^2x

y=cotx y'=-1/sin^2x

含义

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数。

⑷ 导数的四则运算法则公式是什么

导数公式指的是基本初等函数的导数公式,导数运算法则主要包括四则运算法则、复合函数求导法则(又叫“链式法则”)。


复合函数导数公式


(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积”。



【例】求y=sin(2x)的导数。



解:y=sin(2x)可看成y=sinu与u=2x的复合函数。



因为(sinu)'=cosu,(2x)'=2,



所以,[sin(2x)]'=(sinu)'×(2x)'



=cosu×2=2cosu=2cos(2x)。



五、可导函数在一点处的导数值的物理意义和几何意义



(1)物理意义:可导函数在该点处的瞬时变化率。



(2)几何意义:可导函数在该点处的切线斜率值。



【注】一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k。

⑸ 常见导数有哪些呢

常见的导数公式有:

1、y=c(c为常数)y'=0。

2、y=xAn y'=nx^(n-1)。

3、y=aAx y'=aAxlna,y=eAxy'=eAx。

4、y=logax y'=logae/x,y=Inx y'=1/x。

5、y=sinx y'=cosx。

6、y=cosx y'=-sinx。

7、y=tanx y'=1/cos^2x。

8、y=cotx y'=-1/sin A2x。

9、y=arcsinx y'=1/V1-x^2。

10、y=arccosx y'=-1/V1-x^2。

11、y=arctanx y'=1/1+x^2。

12、y=arccotx y'=-1/1+xA2。

导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。

可以利用导数的性质对上述式子进行证明,导数即为函数在某点的切线的斜率,即为在该点附近函数值得增量与自变量的增量之比(当自变量增量趋近于0时)。

导数的性质:

奇函数求导不一定是偶函数,例如:令f(x)=x^2,(x0),f(x)在原点没有定义,同时不是偶函数。但f'(x)=2x(x不等于0)是奇函数。

求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。求导是微积分的基础。

同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。

⑹ 16个基本导数公式读法

十六个基本导数公式如下(y:原函数;y':导函数):

1、y=c,y'=0(c为常数)

2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。

3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。

4、y=logax, y'=1/(xlna)(a>0且 a≠1);y=lnx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=-sinx。

7、y=tanx,y'=(secx)^2=1/(cosx)^2。

8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。

9、y=arcsinx,y'=1/√(1-x^2)。

10、y=arccosx,y'=-1/√(1-x^2)。

11、y=arctanx,y'=1/(1+x^2)。

12、y=arccotx,y'=-1/(1+x^2)。

13、y=shx,y'=ch x。

14、y=chx,y'=sh x。

15、y=thx,y'=1/(chx)^2。

16、y=arshx,y'=1/√(1+x^2)。

(a(x),b(x)为子函数)

⑺ 导数公式有哪些

函数导数公式
这里将列举几个基本的函数的导数以及它们的推导过程:
1.y=c(c为常数)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]&8226;g'(x)‘f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量’
2.y=u/v,y'=(u'v-uv')/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到
y=e^x
y'=e^x和y=lnx
y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,当a=e时有y=e^x
y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,当a=e时有y=lnx
y'=1/x。
这时可以进行y=x^n
y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx&8226;(nlnx)'=x^n&8226;n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx
y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果。
参考资料:http://blog.163.com/kumeir____2006@126/blog/static/1927743220085111102993/

⑻ 函数求导公式是什么

高数常见函数求导公式如下图:

求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。

在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

一阶导数的变化

如果一个函数的定义域为全体实数,即函数在实数域上都有定义。函数在定义域中一点可导需要一定的条件。

首先,要使函数f在一点可导,那么函数一定要在这一点处连续。换言之,函数若在某点可导,则必然在该点处连续。可导的函数一定连续,不连续的函数一定不可导。

⑼ 16个基本导数公式是什么

16个基本导数公式(y:原函数;y':导函数):

1、y=c,y'=0(c为常数)。

2、y=x^μ,y'=μx^(μ-1)(μ为常数且μ≠0)。

3、y=a^x,y'=a^x lna;y=e^x,y'=e^x。

4、y=logax,y'=1/(xlna)(a>0且a≠1);y=lnx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=-sinx。

7、y=tanx,y'=(secx)^2=1/(cosx)^2。

8、y=cotx,y'=-(cscx)^2=-1/(sinx)^2。

9、y=arcsinx,y'=1/√(1-x^2)。

10、y=arccosx,y'=-1/√(1-x^2)。

11、y=arctanx,y'=1/(1+x^2)。

12、y=arccotx,y'=-1/(1+x^2)。

13、y=shx,y'=ch x。

14、y=chx,y'=sh x。

15、y=thx,y'=1/(chx)^2。

16、y=arshx,y'=1/√(1+x^2)。

导数的性质:

1、单调性:

(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

2、凹凸性:

可导函数的凹凸性与其导数的单调性有关。如果函数的导函数在某个区间上单调递增,那么这个区间上函数是向下凹的,反之则是向上凸的。

如果二阶导函数存在,也可以用它的正负性判断,如果在某个区间上恒大于零,则这个区间上函数是向下凹的,反之这个区间上函数是向上凸的。曲线的凹凸分界点称为曲线的拐点。

以上内容参考:网络-导数

⑽ 常用导数公式有哪些

基本初等函数导数公式主要有以下

f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)

f(x)=sinx f'(x)=cosx

f(x)=cosx f'(x)=-sinx

f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

f(x)=e^x f'(x)=e^x

导数运算法则如下

(f(x)+/-g(x))'=f'(x)+/- g'(x)

(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

(g(x)/f(x))'=(f(x)'g(x)-g(x)f'(x))/(f(x))^2

导数

是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

阅读全文

与物理中有哪些导数公式相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:709
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:993
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068