导航:首页 > 物理学科 > 卷积公式物理意义是什么

卷积公式物理意义是什么

发布时间:2022-08-16 03:09:31

‘壹’ 卷积和、卷积积分的物理意义是什么

对于初学者,我推荐用复利的例子来理解卷积可能更直观一些:

小明存入100元钱,年利率是5%,按复利计算(即将每一年所获利息加入本金,以计算下一年的利息),那么在五年之后他能拿到的钱数是,如下表所示:

相信通过上面这个例子,大家应该能够很清晰地记住卷积公式了。下面我们再展开说两句:

如果我们将小明的存款函数视为一个信号发生(也就是激励)的过程,而将复利函数视为一个系统对信号的响应函数(也就是响应),那么二者的卷积就可以看做是在时刻对系统进行观察,得到的观察结果(也就是输出)将是过去产生的所有信号经过系统的“处理/响应”后得到的结果的叠加,这也就是卷积的物理意义了。

‘贰’ 卷积的物理意义

卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。因为是对模拟信号论述的,所以常常带有繁琐的算术推导,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?
卷积表示为
y(n) = x(n)*h(n)
使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成
y(0),y(1),y(2) and so on;
这是系统响应出来的信号。
同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;
其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。
假设0时刻系统响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(m-n),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。
再拓展点,某时刻的系统响应往往不一定是由当前时刻t和前一时刻t-1这两个响应决定的,也可能是再加上t-2时刻,t-3时刻,t-4时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(m-n)中的m的范围来约束的。即说白了,就是当前时刻的系统响应与多少个之前时刻的响应的“残留影响”有关。
当考虑这些因素后,就可以描述成一个系统响应了,而这些因素通过一个表达式(卷积)即描述出来不得不说是数学的巧妙和迷人之处了。

‘叁’ 卷积公式指的是什么

卷积公式是指两个函数f和g生成第三个函数的一种数学算子。表征函数f与经过翻转和平移的g的重叠部分的累积,如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是滑动平均的推广。

卷积公式特点

在卷积神经网络中会用卷积函数表示重叠部分,这个重叠部分的面积就是特征,卷积公式是用来求随机变量和的密度函数pdf的计算公式,卷积公式是一种积分变换的数学方法,在许多方面得到了广泛应用。

用卷积公式解决试井解释中的问题,早就取得了很好成果,而反褶积直到最近Schroeter,Hollaender和Gringarten等人解决了其计算方法上的稳定性问题,使反褶积方法很快引起了试井界的广泛注意。

‘肆’ 卷积积分公式是什么

卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。

分析数学中一种重要的运算,设f(x), g(x)是R1上的两个可积函数,作积分可以证明,关于几乎所有的x∈(-∞,∞) ,上述积分是存在的。

这样,随着x的不同取值 ,这个积分就定义了一个新函数h(x),称为f与g的卷积,记为h(x)=(f *g)(x),容易验证(f *g)(x)=(g *f)(x),并且(f *g)(x)仍为可积函数,这就是说把卷积代替乘法,L1(R1)1空间是一个代数,甚至是巴拿赫代数。


卷积积分的物理意义:

在激励条件下,线性电路在t时刻的零状态响应=从激励函数开始作用的时刻(ξ=0)到t时刻( ξ=t)的区间内,无穷多个强度不同的冲激响应的总和,可见冲激响应在卷积中占据核心地位。

‘伍’ 卷积的作用与意义

卷积其实就是为冲击函数诞生的。“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”。在t时间内对一物体作用F的力,倘若作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。于是在用t做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底边被挤的窄窄的,高度被挤的高高的,在数学中它可以被挤到无限高,但即使它无限瘦、无限高、但它仍然保持面积不变(它没有被挤没!),为了证实它的存在,可以对它进行积分,积分就是求面积嘛!于是“卷积”这个数学怪物就这样诞生了。
卷积是“信号与系统”中论述系统对输入信号的响应而提出的。
2 意义
信号处理是将一个信号空间映射到另外一个信号空间,通常就是时域到频域,(还有z域,s域),信号的能量就是函数的范数(信号与函数等同的概念),大家都知道有个Paserval定理就是说映射前后范数不变,在数学中就叫保范映射,实际上信号处理中的变换基本都是保范映射,只要Paserval定理成立就是保范映射(就是能量不变的映射)。
信号处理中如何出现卷积的。假设B是一个系统,其t时刻的输入为x(t),输出为y(t),系统的响应函数为h(t),按理说,输出与输入的关系应该为
Y(t)=h(t)x(t),
然而,实际的情况是,系统的输出不仅与系统在t时刻的响应有关,还与它在t时刻之前的响应有关,不过系统有个衰减过程,所以t1(<t)时刻的输入对输出的影响通常可以表示为x(t)h(t-t1),这个过程可能是离散的,也可能是连续的,所以t时刻的输出应该为t时刻之前系统响应函数在各个时刻响应的叠加,这就是卷积,用数学公式表示就是
y(s)=∫x(t)h(s-t)dt,
离散情况下就是级数了。
3 计算
卷积是一种积分运算,它可以用来描述线性时不变系统的输入和输出的关系:即输出可以通过输入和一个表征系统特性的函数(冲激响应函数)进行卷积运算得到。(以下用$符号表示从负无穷大到正无穷大的积分)
1)一维卷积:
y(t)=g(k)*x(k)=$g(k)x(t-k)
先把函数x(k)相对于原点反折,然后向右移动距离t,然后两个函数相乘再积分,就得到了在t处的输出。对每个t值重复上述过程,就得到了输出曲线。   
2)二维卷积:
h(x,y)=f(u,v)*g(u,v)=$$f(u,v)g(x-u,y-v)
先将g(u,v)绕其原点旋转180度,然后平移其原点,u轴上像上平移x,   v轴上像上平移y。然后两个函数相乘积分,得到一个点处的输出。

‘陆’ 卷积的物理意义是什么

卷积的物理意义. 对于线性系统而言,系统的输出y(t)是任意输入x(t)与系统脉冲响应
函数h(t)的卷积。

‘柒’ 卷积的物理意义是什么

卷积的物理意义:卷积可代表某种系统对某个物理量或输入的调制或污染。

在泛函分析中,卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。

卷积定理

卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。

这一定理对拉普拉斯变换、双边拉普拉斯变换、Z变换、Mellin变换和Hartley变换(参见Mellin inversion theorem)等各种傅里叶变换的变体同样成立。在调和分析中还可以推广到在局部紧致的阿贝尔群上定义的傅里叶变换。

利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。

‘捌’ 有人能告诉我卷积和、卷积积分的物理意义,谢谢,诸位!

卷积和的物理意义:在LTI离散系统中,可用与上述大致相同的方法进行分析。由于离散信号本身是一个序列,因此,激励信号分解为单位序列的工作很容易完成。如果系统的单位序列响应为已知,那么,把这些序列相加就得到系统对于该激励信号的零状态响应。

卷积积分的物理意义:在激励条件下,线性电路在t时刻的零状态响应=从激励函数开始作用的时刻(ξ=0);到t时刻( ξ=t)的区间内,无穷多个强度不同的冲激响应的总和。可见,冲激响应在卷积中占据核心地位。

(8)卷积公式物理意义是什么扩展阅读:

卷积积分的应用:

卷积积分法已知电路的冲激响应为h(t),则任意激励e(t)的零状态响应r(t)求得拉普拉斯变换法(也称运算法);即:

(1)先将表示电压或电流的时域形式的任意激励f()做拉氏变换,得到复频域的电压或电流激励的象,从等效运算电路求解以象函数为变量的线性代数方程,得到电压或电流响应的象函数。

(2)再利用拉氏反变换(通常可以查表)求原函数,即可得任意激励e(t)的时域形式的零状态响应。

参考资料来源:网络-卷积和

参考资料来源:网络-卷积积分

‘玖’ 卷积公式的假定

卷积的物理意义是将输入信号用时移加权的单位冲激信号和(积分)表示,然后输出就是各个冲激信号作用系统后再求和,而时移量u(f(t-u)),再对u积分,就产生了反转。

阅读全文

与卷积公式物理意义是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:709
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:993
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068