Ⅰ 从近代物理讲座这门课学到了什么
近代物理 - 发展史
近代物理 - 经典物理与近代物理
第一,立足于牛顿
牛顿
力学的经典物理学和经典自然科学在很在程度上是关于自然事物,自然属性,自然过程和自然界
近代物理研讨会
规律性的知识,但它往往没有对这些事物,属性,过程和规律性的机制(道理)从因果性上作出解释;近代自然科学所能做到的或应当做到的,则是依据于对微观过程的了解,解决这些"为什么"的问题.
第二,经典自然科学有它的普遍性和整体性,但就对整个自然事物的反映看,经典理论基本上是关于特殊的,局部的自然领域的知识;近代自然科学则具有更高程度的普遍性和更大范围的全局性
近代物理 - 第一章发展中的物理学
1相对论
相对论是现代物理学的重要基石.它的建立20世纪自然科学最伟大的发现之一,对物理学,天文学乃至哲学思想都有深远的影响.相对论是科学技术发展到一定阶段的必然产物,是电磁理论合乎逻辑的继续和发展,是物理学各有关分支又一次综合的结果.相对论经迈克耳逊,莫雷实验,洛伦兹及爱因斯坦等人发展而建立.
2量子力学
1900年普朗克为了克服经典理论解释黑体辐射规律的困难,引入了能量了概念,为量子理论奠定了基石.随后爱因斯坦针对光电效应实验与经典理论的矛盾,提出了光量子假说,并在固体比热问题上成功地运用了能量子概念,为量子理论的发展打开了局面.1913年,玻尔在卢瑟福有核模型的基础上运用了量子化概念,对氢光谱作出了满意的解释,使量子论取得了初步的胜利.之后经过玻尔,索末菲海森堡,薛定谔,狄拉克等人开创性的工作,终于在1925年-1928年开成了完整的量子力学理论.
3原子核及基本粒子原子核物理学起源于放射性的研究,是19世纪末兴起的崭新课题.在这以前,人类对这年领域毫开所知.从事这项研究的物理学家,他们通过作新创制的简陋仪器进行各种实验和观察,从中收集数据,总结经验,寻找规律,探索不断开拓新的领域.1933年以后,原子核物理理论才逐渐形成.
4固体物理学
20世纪初,固体物理学就开始深入到微观领域,人们开始利用微观规律来计算实验观测量.量子力学首先应用于简谐振子及简单的原子上,并显示了其正确性,其次又在化学键的问题上取得了效果.二十世纪20年代后,固体物理学作为一门学科在物理学领域中诞生.
5物理学与技术
物理学的发展为新技术提供了基础,与此相反的关系也完全存在.假如不采用电子技术的各式各样的机器,今天的物理学,甚至整个科学研究都可能连一天也存在不下去.要建造超高能物理学所不可缺少的巨大加速器,必须要动员当前最先进的精密机械技术和电子学技术才行.同时由于对技术进步的不断要求,作为这些技术基础的物理学的研究也正在日益加强.可以说,没有上述各方面的条件,就不可能存在今天这种大规模,多方面的物理学研究.
6科学的体制化
近代物理学的基础工程学科化这种趋势,当然是由围绕科学的新的社会状况的出现所形成和促进的.
7物理学在地理上的扩大
物理学的变迁,同时也伴有物理学在地理上扩大.俄国(苏联),美国,日本,中国及欧洲,亚洲,非洲物理学在地理上的扩大,必将会进一步扩大在进行尖端物理学研究,所以,没有理由认为这些国家将来不会产生真正的物理学研究.
8研究技术化
可以把这一趋势同由物理学所支撑着的各种各样新技术所持有的可能性相结合,看作是社会进步的一个标志.
近代物理 - 第二章节近代物理学的序幕
一电子的发现
背景:电子的发现起源于对阴极射线的研究.阴极射线是低压气体放电过程中的一种奇特现象.这一观点得到赫兹等人的支持,赞成以太说的大多是德国人.英国物理学家克鲁克斯以及舒斯特根据各自的实验及解释都认为阴极射线是由粒子组成的.德国学派主张以太学说,英国学派主张带电微粒说.
J.J.汤姆生对电子研究
⒈定性研究:J.J.汤姆生还改进了赫兹的静电场偏转实验,他进一步提高了真空度,并且减小极间电压,以防止气体电离,终于获得了稳定的静电偏转.
⒉定量研究:一种方法是用静电场偏转管在管子两侧各加一通电线圈以产生垂直于电场方向的磁场,然后根据电场和磁场分别造成的偏转,计算出阴极射线的荷质比e/m,另一种方法是测量阴极的温升.因为阴极射线撞击到阴极,会引起阴极的温度升高.J.J.汤姆生把热电偶接到阴极,测量它的温度变化,两种不同的方法得到的结果相近,荷质比
⒊普遍性证明
二X射线的研究
1895年,德国的维尔茨堡大学,伦琴教授阴极射线研究发现了X射线
三,放射性的发现
对阴极射线研究引起了放射性物质的发现.1896年5月18日,贝克勒尔发现了放射性.
贝克勒尔发现放射性虽然没有伦琴发现X射线那样轰动一时,意义却更为深远.因为这是人类第一次接触到核现象,为后来居里夫妇,卢瑟福等对放射性研究发展开辟了道路.
近代物理 - 第三章相对论的建立
相对论的研究起源于"以太漂移"的探索以及光行差的观测.1678年惠更斯把光振动类比于声振动,看成是以太中的弹性脉冲.但是后来由于光的微粒说占了上风,以太理论受到压抑,牛顿就认为不需要以太,他主张超距作用.1800年以后,由于波动说成功地解释了干涉,衍射和偏振等现象,以太学说重新抬头.在波动说的支持者看来,光既然是一种波,就一定要有一种载体,这就是以太.他们把以太看成是无所不在,绝对静止,极其稀薄的刚性"物质".
机械波的波动方程与电磁波的波动方程
机械振动只有在弹性介质中传播才形成机械波,在弹性介质中应用牛顿定律和胡克定律,即可建立机械波的波动方程,一维横波的波动方程为
机械波的波动方程和波速这些性质是否也适用于电磁波(包括光波)呢电磁波有类似于机械波的波动方程,那么,电磁波的波动方程是相对于什么样的参考系建立的真空中速度是相对于什么参考系的.
1861年,英国物理学家麦克斯韦总结前人的实验规律基础上,推导真空中电磁波的波动方程,其一维形式的真空波动方程为:
3.迈克耳逊―莫雷实验
波动理论假定了真空中充满以太,光相对于以太的速度C传播,地球上的观察者所测到真空中光速的数值将是多大呢如果认为地球运动时以太完全没有被带动,地球上测到的真空光速应该是光对以太的速度与地球相对于以太速度的矢量差,为了能够显示出光相对于地球的传播速度不同于C,迈克耳逊设计了一个十分巧妙的实验.
在迈克耳逊最初装置中,采用地球公转速度可得0.04个条纹,这是一个很小的效应,但他的仪器装置观察到的只是0.02个条纹的变动,即使进一步改进,结果都没有观察到条纹的移动.
4.洛伦兹等人的贡献
斐兹杰惹于1889年,洛伦兹于1892年先后独立地提出了着名的洛伦兹―斐兹杰惹收缩假定.他们都承认以太的存在,在以太中静止的一个长为L的物体,当它沿长度方向相对于以太速率V运动时,将缩短到
5.爱因斯坦与狭义相对论
将相对性原理应用于电磁理论,如果认为电磁场的麦克斯韦方程组是正确的(方程组中真空中光速C的普适常数出现).则必须同时承认真空中光速C对所有惯性系相同,与波源的运动无关.然而,这却是于牛顿力学不相等的.在牛顿力学中,速度总是相对于一定的参考系,不允许在动力学方程中出现普适的速度.
6.广义相对论的建立
狭义相对论建立之后,爱因斯坦并没有止步,他认为狭义相对论还有许多问题没有解决,例如:为什么惯性质量随能量变化为什么一切物体在引力场中下落都具有同样的加速度1916年,爱因斯坦发表了《广义相对论的基础》,对广义相对论的研究作了全面的总结.在论文中,爱因斯坦证明了牛顿理论可以作为相对论引力理论的第一级近似,并且组给出了谱线红移,光线弯曲,行星轨道近日点进动的理论预言
7.爱因斯坦的成功分析
1.兼收并蓄
2.敢于创新,突破常规精神
3.哲学修养
美发射探测卫星验证88年前爱因斯坦的预言
近代物理 - 第四章量子力学的发展
一黑体辐射的研究
1859年基尔霍夫物体热辐射的发射本领e(v,T)和吸收本领a(v,T)的比值都相等,并等于该温度下黑体对同一波长的辐射度
1879年斯特潘根据实验总结出黑体辐射总能量与黑体温度四次方成正比的关系
1893年维恩经验式子
1900年瑞利
为了解决上述困难,普朗克利用内插法,将适用于短波的维恩公式和适用于长波的瑞利―金斯公式衔接起来.在1900年提出了一个新的公式
普朗克与统一思想的波动
普朗克对量子论的研究工作中犹豫徘徊,畏缩不前的主要原因是物理学的统一性问题,即如何对量子论的解释.
玻尔理论的形成
光谱
卢瑟福
量子理论
玻尔理论
1913年《原子构造和分子构造》提出了两条基本假设:定态,跃迁
1914年,夫兰克和G.赫兹以能量分立的指导思想,进行电子与原子的碰撞实验设计.他们利用慢电子与稀薄水银蒸气碰撞方法,来确定银原子的激发电位或电离电位.从而证实原子只能处在一定的分立能量状态当中.由此突破了"自然无飞跃"能量连续性的经典物理观点.这个实验成为玻尔原子理论的一个重要证据之一,
1918年,玻尔为了解释谱线强度这一当时原子理论无法解决的难题,提出了协调经典物理理论与微观量子理论之间相互关系的对应原理
玻尔的直觉与创新研究方法
玻尔的科研思想与他的直觉相联系在一起,他从不畏缩不前,也不遵循所谓严格的逻辑道路的方法.玻尔灵活的思维特点与思想方法在今天已成为越来越多的人所理解和赏识.
量子力学的建立
1924年泡利提出不相容原理.这个原理促使乌伦贝克和高斯密特,在1925年提出电子自旋的设想.从而使长期得不到解释的光谱精细结构,反常塞曼效应和斯特恩―盖拉赫实验等难题迎刃而解.同年,海森伯创立了阵矩力学,使量子理论登上了一个新的台阶.1923年德布罗意提出物质波假设,导致了薛定谔在1926年以波动方程的形式建立了新的量子理论.不久薛定谔证明,这两种量子理论是完全等价的,只不过形式不同罢了.1928年狄拉克提出电子的相对论性运动方程――狄拉克方程,奠定了相对论性量子力学的基础.
近代物理 - 第五章中国物理学者在近代物理学发展中贡献
一出国留学
中国学者出国留学可追溯到,在19世纪中叶,清朝赴欧留学得就达一百多人.清朝洋务活动的"求强","求富"过程中,为训练新式陆海军和创办近代军事工业和民安企业,曾陆续派出许多学生到各国求学.在1862―1900年间,有几百人,以官费,自费出国游学,但主要是学习语言,驾驶,架线,电工,炮术,造船,铸造,采矿,机织等实用技术和军事技术,当时不可能也没有眼光派学生去学习数理化基础学科.
二物理学教育的发展
在1895年和1897年分别创办了天津西学堂和上海南洋公学.中西学堂分设头等学堂,二等学堂,前者相当于大学.
1898年创办的京师在大学堂,
三研究机构的建立
1928年3月在上海成立国立理化实业研究所,同年6月中央研究院创立,同年11月理化实业研究所之一部分改名为物理学研究所,隶属中央研究院.
1929年9月在北平建立了北平研究院
20世纪20年代末,国家批准有条件大学设立研究部,在教学同时开展科学研究.
四中国物理学会
中国物理学会成立于1932年,它是中国物理学教学,研究发展的必然结果,截止1932年左右,物理学工作者约300人左右.
中国物理学报于1933年创刊.在1933―1935年出版了第一卷共三期,至1950年共出版了七卷.该学报以外文(主要为英文,个别为法文,德文)发表,附以中文摘要.它在国内外学术交流中起到了很好的作用.
五国外物理学家对我国近代物理学发展得作用
1国外物理学家对我国物理学者得培养与帮助.我国许多物理学家都得到了国外着名物理学者的培养.
2国外物理学家来华讲学极大地促进了我国物理学的发展.1921年蔡元培和夏元0访问爱因斯坦,并邀请他来中国讲学.朗之万于1931年底来华讲学.1937年5月31日至6月4日,玻尔来华进行了讲学.
六我国物理学者在近代物理学中得主要贡献
吴有训在美国研究Compton效应着称,他的关于Compton效应中变线与不变线的能量分布比率的两篇实验论文,确凿地证明了Compton效应的存在,丰富的和发展了Compton工作,并加速国际学术界对Compton效应的认识.吴有训回国后,或独自或带领研究生继续从事有关的研究.
赵忠尧在研究硬射线的吸收系数及其散射的实验中,最早观察到正负电子对的产生和湮没现象
萨本栋在30年代关于三相电路并矢代数的研究,是属于数学,物理和电机的三角地带,被美国电气工程师学会评为1937年度"理论和研究最佳文章荣获".40年代萨本栋从事交流电机研究,以标么值系统分析交流电机问题.他根据在厦门大学和美国讲课的素材编写的《交流电机基础》一书,被英国,美各国高等院采作教材.开创了中国科学家编写的教材被国外采用的先例.
1949年,张文裕在吸收介子的云室研究中,发现了子和子辐射现象,开拓了奇异原子物理研究的新领域.国际上曾称此二发现为"张辐射"和"张原子".
黄昆在1947年发现了后来被称为"黄散射",即固体中杂质缺陷导致X光漫散射,它直接有效地成为研究晶体微观缺陷的手段.1950年,黄昆和(李爱扶)共同提出了多声子辐射和无辐射跃迁的量子理论,在国际上被称为黄理论.1947-1951年间,黄昆与合着《晶格动力学》一书,它成为该领域的一本基本理论着作而在国际上享有盛名.
谢玉铭于1932-1934年间在美国与W.V.Houston合作研究氢原子光谱Balmer系的精细结构,发现了在40年代后期才得以肯定的"Lamb"移位,并提出了40年代后期有关重整化理论的发展方向相同的大胆建议.W.E.Lamb于1947-1948年间所作的类似实验及发现而获得1995年诺贝尔物理学奖.
Ⅱ 请问学习了物理课程之后,你有何学习感悟
一、多观察,勤思考。
物理学是研究万事万物道理的一门学科。日升日落,斗转星移,太空宇宙、生活设施,交通工具,家用电器......无不包含着丰富的物理知识。我们早晨起床用使用卫生间,照照镜子这就是平面镜成像,水龙头是个简单机械,水箱里充、放水的装置包含了浮力、简单机械、压强、力等知识。每天我们都会看到很多的事、物、丰富的现象,你有细心的观察过吗?思考过为什么会发生这种现象吗?这种现象包含着哪些知识呢?要如何解释这种现象呢?物理学习的能力就在这种细心观察和思考的过程中不断提高的。一定要养成这种好的习惯,“从生活走向物理,从物理走向社会”。
二、多动手,勤探究。
新课标提倡实验探究,同学们有了更多进入实验室进行实验的机会,有了更多“经历基本的科学探究过程”的经历。但是,很多同学对于探究的理解还是有些狭隘的,认为只有在学校、进实验室、使用专门的器材才可以进行实验探究。其实,并不是这样的。我们在学校可以探究,回家依然可以探究,实验室里的很多器材其实就是来自于生活中的各种物品。例如:学习光的折射时,我们可以在家里找个玻璃杯,然后装些水,在插入筷子,看看“筷子折了”,可以左看看、右看看,动一动筷子的位置,你会有很多发现;我们还可以准备好小盆、小筒,用塑料片剪成小鱼,坠上石头,用铁丝做鱼叉,亲自体验“叉鱼”时的快乐;我们还可以变个小魔术,来做一做“硬币再现”,感受硬币“再现”的惊喜等。学习透镜时,自己做个小相机;学习长度的测量时,生自己制作一把米尺,用自己制作的尺子测量物体的长度,相信你会有另一番感受;学习力与机械时,拿着自己的相机拍下“生活中的简单机械”,看谁拍得多;放假期间,去“科技馆”看一看,开阔了眼界,丰富了物理知识。我们会在不知不觉中学到了知识,增长了见识,提高了能力,增加了兴趣。这,才是真正的实验探究,而不是为了应付考试背背实验过程和实验结论。实验探究一直是中考的重点,也是同学们普遍感到力不从心的地方,相信,如果你本着真的探究精神进行真的探究,一定能够提高自己的能力,考试自然也就不再话下了。
三、重视基础、狠抓落实;严格规范,养成习惯。
基础是学习的根本,是学习的关键。学习和盖楼房是一样一样儿地。你如果想盖个鸡窝,找些树棍、木条,垒吧垒吧就行了;可是你如果想盖个牛舍,那就得要用砖头;如果你想盖个摩天大楼,那就必须掘地几十米,先在地下盖个几十层的楼房,这就是打地基。有些同学一看见难题就来劲儿,一看见怪题、偏题就想试试,一旦做出来感觉自己要比其他同学聪明很多。其实,这是大错而特错的。我们应该在基础知识、基本技能和基本方法上下大力气,从事实和现象出发,归纳出所要学习的概念,掌握知识与技能,体验过程与方法,并能熟练地应用,将学习落在实处,养成良好的学习习惯。良好的学习习惯是好好学习,学习好的前提。哪些是好习惯呢?比如记笔记就是个好习惯,好同学的笔记本都有自己的格式,哪些地方用来记板书,哪个地方记思考题,哪个地方记心得,都是经过斟酌地;比如“错题本”就是个好习惯,考试、练习中遇到错误,要及时地进行改错,并将错误积累在专门的本子上,也可以使用四中网校的错题本功能,就是一个非常好的学习资料;再比如,练习册做完了,不是被动地放在那儿就不管了,而是根据后面的答案,自己批改,对的画√,错的用红笔改过来,做自己的“小老师”,这也是一个好习惯。还有认真听课的好习惯,规范解题的好习惯,听老师的话的好习惯等等。还有自己能提出问题的好习惯,自己哪儿不明白,哪有问题,仔细都很清楚,而不是一想都“还行”,可是一考就都不行了。一段内容学习完了,自己做学习的总结,这还是一种好习惯,总结的过程既是复习的过程,更是一个升华提高的过程。
四、学会自我管理。
学习不是为了父母、为了老师,学习是自己的事儿,要自己管理好自己的一亩三分地儿。要有一个学习的目标,自己现在的位置如何,有哪些优势,哪个地方可以再提高,哪些方面还存在不足,要如何改进,每天自己学习的效率如何,学习的状态如何,学习的效果如何等等,都是自我管理的范畴,都要心里有数,心有对策。
Ⅲ 二、案例1:小明在物理课中学到了以下知识点“分子在气体中比在液体中相隔更远,所以气体比液体轻。”于
摘要 )组织策略:组织是对相关内容进行归纳整理的过程。组织策略是整合所学新知识之间、新知识之间的内在联系,形成新的知识结构。
Ⅳ 你在物理学科普书中学到过最令人震惊的知识是什么呢
如果光束照射到正确的圆盘直径,那么圆盘后面不是阴影,而是中心会有一个亮点,难道不令人惊讶吗?
泊松不是很棒吗?这不是诺贝尔奖得主吗?
由于贵族头衔的地位,他是上帝,大家都认为光是一个粒子,上帝怎么会错。但是还有几个不信的人,比如托马斯·杨,他做了一个双缝干涉实验,证明光可以是波,可以这么说,先生?
于是,法国科学院决定开始一场比赛,这场比赛天生就比诺贝尔奖年长得多,但不多,现在每个人都被诺贝尔奖压得喘不过气来。
比赛的座右铭是光的衍射,而不是法国科学院。
年轻的菲涅尔提起名单,早些时候提交了文件,但没想到,陪审团主席泊松,不是一个普通人,是个大数学家,但泊松和他的哥哥一样,认为一切,贵族爵位所说的是对的,凡是与他的贵族爵位不一致的东西都是错的,并受“两件事”精神的驱使,泊松哈哈大笑地读了菲涅尔的文章。所有物质都是高温、高压下由金属氢聚合形成的,常温、常压下的化学反应是金属氢在“激发状态下”的特殊现象。
Ⅳ 物理学习感悟
写作思路及要点:以大学时学习物理的感悟为例,在此过程写出自己学习的更深层次理解。
正文:
在本学期,我们又有了一节物理学课程,本以为在大一学习物理学课程之后,大学生涯不会再碰到这门课程的我,却是非常的开心。因为我个人对于物理的学习非常喜欢。每当有物理的作业,每次都是放在首位的。
还记得第一次的物理课上的我,人满为患,由于去的晚,已经没有了座位,只能站着上课。但是即便如此,我也是听得津津有味。令我印象深刻的是,我的物理老师不是一个电视里那种懊糟的老头子,反而,他是一个思路清晰的老师。
于是,我便是站着,开始了我这个学期的物理学习。 在大学理科各科目中,物理是相对比较难学习的一门课程,学习物理的许多同学,特别是物理成绩徘徊在中游或者下游的同学,总会遇到这样的困扰;
在课上的时候,听着老师的讲课觉得有理有据,自己明白的也七七八八,但是一旦要自己动手去解决书本上的一些物理知识时,却已经束手无策了。
在大学物理慢慢的学习之中,我明白在正式开始物理学习之前,最好是能根据老师第一天第一节课对于物理课程体系的笼统介绍,以及在众多学姐学长那里得到的有用信息,弄清物理学习的课程特点和必备的基础知识,结合自己在高中学学习物理的情况,提前做好充分准备的准备工作和预习工作。
因为大学物理与高中的物理是紧密相关的,是高中物理知识的提高和拓展,所以复习高中物理学知识的物理概念和公式是十分重要的,还有一些常用的物理模型也是很有必要的。
当然,在大一时候所学习的许多高等数学知识也是需要及时复习的,毕竟数学算数也算是物理学习的基础。
然后要有科学的学习方法。每个人都有自己长久积累的不同的学习习惯和方法,同时每个人的基础知识也不尽相同,要正确认识自身,熟悉周围学习条件和适应学校的学习环境,根据物理课程的特点,把自己一天中最具有效率的时间安排给最难学习课程的学习。这便是我由大学物理学习所得出的一点经验与体会。
我认为学习大学物理,是锻炼个人思维运用的一个重要方式,物理这门课在大学的学习已经不同于你高中和初中的物理学习,很多大学物理的内容在以前看起来也许就是天方夜谭,非常的抽象。
这就要求我们以一种新的学习态度来对待这门课程的学习,比如各种抽象理论章节的学习,我们就不能按照以前的旧观点和旧思想来强制自己来接受,这样对于学习是没有任何好处的,反而会使那部分的内容更难理解,也会使得学习的过程枯燥无比,渐渐失去兴趣。
所以说,学习大学物理对我们的思维来说是一种锻炼,也是对于我们学习能力的一种锻炼,同时这对于我们学习机械制造及其自动化专业的大学生来说是弥足珍贵的,这也是一种学习能力的考验。
而物理对于我的提高,不止是专业上面的帮助,也是在生活和其他学习上面的。例如在于生活之中,面对受力的问题,我可以巧妙的应用物理知识,来明白力的`大小以及如何做到省力,从而在生活中做到巧妙的运用和快速的解决问题。
还有就是对于我的兼职生涯也是有一定的帮助。大一的时候,在安吉我曾经给当时高三的同学辅导过物理方面的知识。在当时,由于要给他辅导物理实验,我也是找了好多高中的学习资料,温习以前学习过的知识,保证自己教学的准确性。
由此我也增强了自身的各方面的能力,同时,也缓解了我当时的经济压力。所有说,学习物理对我的帮助不可谓不大!
总之,学习物理对于我们的生活有着巨大的帮助,同时物理学的发展在人类文明发展史中起着相当大的作用。我们应该明白,大学的学习是人生事业的真正开始,每一门大学课程的内容都是自己专业知识体系的有机组成部分。
我们作为学生,应该端正自己的学习态度,浓厚自己的学习兴趣,改进自身的学习方法,提高所有课程的学习的重视,投入足够的精力和时间,争取在每一门课程的学习中取得最大收获,充实地度过大学这段宝贵时光。
对于物理的学习,我们不能轻视物理,也不能小瞧物理,要做到喜欢不喜欢的学科都一视同仁,并且我们在学习大学物理的过程中我们也应该踏踏实实,不要出现那些三天打鱼,两天晒网的事;
我们要一步一个脚印,踏踏实实的学习所有大学课程,相信最终我们会牢固掌握其中的知识,一步步的走下去,在学习的道路上走得更远。
Ⅵ 学习物理对以后有什么作用
学习物理的作用:
1、物理是一门自然科学,它能帮助解决、认识生活中很多现象。如电学,光学,力学的应用。在平时的日常生活,我们也应该掌握有关的用电知识,对用电器的用电环境,电路,功率等都需要有一定的认识,通过学习物理才能完善我们这一方面的知识,才能做到安全用电。
2、由于物理涉及的范围广,有很多职业是和物理有关的,学好物理也为就业提供了比较好的条件。
3、学好物理也能培养自己的逻辑思维能力,对事物的理解认识也会有一定的帮助的。总之,学好物理能让你更好的生活。
(6)从物理中学到了什么扩展阅读
学好物理的学习方法:
1、基本概念要清楚,基本规律要熟悉,基本方法要熟练。
2、要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。
3、要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器等,以显示几何关系。
4、上课要认真听讲,不走思或尽量少走思。不要自以为是,要虚心向老师学习。
5、要虚心向别人学习,向同学们学习,向周围的人学习,看人家是怎样学习的,经常与他们进行“学术上”的交流,互教互学,共同提高,千万不能自以为是。
Ⅶ 学习物理后对物理学科有什么认识和感受
重视物理实验教学,激发学生对物理学习的兴趣
对初中的学生来说,有时他们的求知欲不如好奇心更强烈,他们往往对一些物理现象产生较强的兴趣,所以对教师来说,必须认真做好每一个实验,让学生认真观察、带着问题形成积极思考的气氛,从而学到物理知识。例如:在学习液体的沸点和压强的关系时,让学生看图(同时强调实验过程中的注意事项)让学生观察,而后让学生自己在描素一边,通过实验使学生真正的掌握液体的沸点与压强大小的关系,极大地激发学生的学习兴趣,进而把单纯的兴趣转化为学习知识的乐趣。这样让学生认识到物理学是一门以实验为基础的自然科学。
课堂上教师的语言要生动有趣
在课堂上教学中教师的语言表达艺术运用的好坏,直接影响着教学效果和学生学习兴趣。特别是天真、活泼、好奇、敏锐的中学生,如果教师的语言风趣、讲解生动、精炼准确又带有幽默感,同时语速适中,那么学生就会愿意听,使得学生在轻松的环境中接受知识。教师的语言规范、准确,又使得学生得到严格的 训练形成一丝不苟的学风。反之讲课模棱两可、结论似是而非,学生学的便糊里糊涂,因此做一名合格的物理教师不允许有半点的疏忽,必须有较强的语言表达能力,才能有效地激发学生的学习兴趣,提高教学质量。
Ⅷ 对物理的看法
这是一个十分基础的问题。翻开任何一本物理教科书,都不难找到这样的定义:物理学是研究物质结构、物质相互作用和运动规律的自然科学。但这只是对于物理这门科学在学术意义上的一种界定。而我们所面对的“物理”,它同时又是一门课程,于是就有必要从教育意义的层面上去进行一番再认识、再分析,以挖掘蕴含在其中的丰富内涵。
首先,物理是一门科学。
物理学是一门以实验为基础的自然科学,它是发展最成熟、高度定量化的精密科学,又是具有方法论性质、被人们公认为最重要的基础科学。物理学取得的成果极大地丰富了人们对物质世界的认识,有力地促进了人类文明的进步。正如国际纯粹物理和应用物理联合会第23届代表大会的决议《物理学对社会的重要性》指出的,物理学是一项国际事业,它对人类未来的进步起着关键性的作用:探索自然,驱动技术,改善生活以及培养人才。
上世纪初相对论和量子力学的建立,为物理学的飞速发展插上了双翅,取得了空前辉煌的成就,以致于人们将20世纪称誉为“物理学的世纪”。什么21世纪呢?有一种流行的说法:21世纪是生命科学的世纪。其实,这句话更确切的表述应该是:21世纪是物理科学全面介入生命科学的世纪。生命科学只有与物理相结合,才有可能取得更大的发展。
展望物理学的未来,充满着机遇与挑战。李政道先生在《物理的挑战》一文中,曾提出21世纪物理领域所面对的四大难题:为什么一些物理现象在理论上对称但实验结果不对称?为什么一半的基本粒子不能单独存在而且看不见?为什么全宇宙90%以上的物质是暗物质?为什么每个类星体的能量竟然是太阳能量的1015倍?这些问题极大地激励着人们不懈探索的勇气与热情。可以预见,一旦拨去这几朵笼罩在物理天空中的乌云,物理学将会展现出更加灿烂的前景。
其次,物理又是一种智能。
诚如诺贝尔物理学奖得主、德国科学家玻恩所言:“如其说是因为我发表的工作里包含了一个自然现象的发现,倒不如说是因为那里包含了一个关于自然现象的科学思想方法基础。”物理学之所以被人们公认为一门重要的科学,不仅仅在于它对客观世界的规律作出了深刻的揭示,还因为它在发展、成长的过程中,形成了一整套独特而卓有成效的思想方法体系。正因为如此,使得物理学当之无愧地成了人类智能的结晶,文明的瑰宝。
大量事实表明,物理思想与方法不仅对物理学本身有价值,而且对整个自然科学,乃至社会科学的发展都有着重要的贡献。有人统计过,自20世纪中叶以来,在诺贝尔化学奖、生物及医学奖,甚至经济学奖的获奖者中,有一半以上的人具有物理学的背景;——这意味着他们从物理学中汲取了智能,转而在非物理领域里获得了成功。——反过来,却从未发现有非物理专业出身的科学家问鼎诺贝尔物理学奖的事例。这就是物理智能的力量。难怪国外有专家十分尖锐地指出:没有物理修养的民族是愚蠢的民族!
当今,物理学的触角已经伸向众多领域,并取得了越来越大的成就,以至我们很难再用传统的眼光去界分什么是物理学了。1995年在我国厦门举行了第十九届国际统计物理学大会,会上交流论文的涉及面十分广泛,诸如植物的花序、DNA药物系统、交通的流量、文字的存储等等,光看这些篇目,似乎都不太象是物理。什么,究竟什么是物理呢?几年前,美国《今日物理》杂志,曾就此问题向读者广泛征求意见。最后,他们推崇的答案是:物理学家所做的就是物理学。这话乍听似觉偏颇,其实不无道理。因为在今天看来,物理学更多的是体现出一种智能,“代表着一套获取知识、组织和应用知识的有效步骤和方法,把这套方法用到什么问题上,这问题就变成了物理学。”(赵凯华语)
再次,物理还是一种文化。
从广义来说,文化指的是人类历史实践过程中创造的物质财富和精神财富的总和。它包括科学文化和人文文化。同样地,物理学家在长期科学实践中所创造的大量物质产品与精神产品,也就构成了物理文化。物理文化是科学文化的重要组成部分。
大家知道,物理学是以实验为基础的科学,它的基本研究方式就是实践,因而在客观性上表现为“真”;物理学创造的成果最终是为了造福于人类,它在目的性上体现出“善”;另外,物理学还在人的情感、意识等多方面反映了“美”。正因为物理学本身兼具真、善、美的三重属性,我们完全有理由说,物理不仅是一种文化,而且是一种高层次、高品位的文化。
物理学是求真的。物理最讲究实证,物理学家在科学研究活动中最基本的态度就是实事求是,坚守“实践是检验真理唯一标准”的原则。正如物理学家费曼所说:“不论你的想法有多美,不论你什么聪明,更不论你名气有多大,只要与实验不符便是错了,简简单单,这就是科学”。可以说,物理学的发展史,就是一部不断修正错误、不断逼近真理的“求真”史。
物理学是从善的。物理学致力于将人从自然中解放出来,从必然王国走向自由王国,帮助人们不断认识自己,促使人的生活趋于高尚。这是物理学的价值取向和终极目标,因而物理学的本质是从善的;另外,物理学家的行为也是从善的。爱因斯坦曾这样评价居里夫人和以她为代表的杰出物理学家:“第一流人物对时代和历史进程的意义,在其道德方面,也许比单纯的才智成就更大”。他们那种严谨求实的态度、献身科学的精神,热爱人民的情怀等等,对于后人无疑是一份尤为珍贵的人文财富。
物理学是至美的。德国物理学家海森伯说过:美是真理的光辉;罗马哲学家普洛丁又说过:善是美的本原。由此,物理学因真而美、因善而美就是十分自然的了。物理的美属于科学美,主要体现于简单、对称和统一;对称则统一,统一则简单,它们构成了物理学的基本美学准则。
翻开物理学的篇章,可以发现到处都跳动着美的音符,体现了人们对美的追求与创造。仅以统一性为例。当代物理学的发展,正朝着两个相反的研究方向延伸:最宏大的宇宙与最微小的粒子。令人感到惊讶的是,随着研究的深入,它们两者并非是分道扬镳、越走越远,反倒显示出不少殊途同归、相反相成的迹象。例如,粒子物理学的一些研究成果常被天体物理学家所借鉴,用来探寻宇宙早期演化的图象;(正由于此,粒子物理学在某种意义上也被称为“宇宙考古学”。) 反过来,宇宙物理学的研究也为粒子物理学家提供了丰实的信息与印证。于是,物理学中两个截然相反的分支,就这般奇妙地衔接在了一起——犹如一条怪蟒咬住了自己的尾巴。
又如,英国物理学家狭拉克首先发现,在自然界的某些物理量之间存在着下列引人注目的关系:
宇宙半径/电子半径≈1040,宇宙年龄/强衰变粒子寿命≈1040,
氢核与电子的电力/氢核与电子的引力≈1040,……
在上述比数中,宇宙这个最大的系统,与基本粒子这个最小系统之间,竟然珠联璧合达到了如此完美的统一,让我们再次领略到了物理世界的美,一种动人心弦的壮丽的美。正是这许多美不胜收的事例,激发起人们对大自然由衷的赞叹与敬畏,难怪爱因斯坦会说:“宇宙间最不可理解的,就是宇宙是可以理解的”。
通过以上分析,我们对于物理有了一个较为全面的认识:它既是一门科学,又是一种智能,更是一种文化。作为一名物理教师,能对自己所任教的物理作一番全方位的审视与剖析,这是十分必要的。一方面可使我们看到,物理原来有着如此丰富的的内涵,从而会更自觉、有意识的去挖掘和开发它的育人功能,全面提升教学质量;另一方面又使我们看到,物理原来有着如此美好的禀性,从而会更加钟爱物理,更有激情地去从事物理教学。我以为,只有真正热爱物理的物理教师,才能做到不仅教会学生理解物理、应用物理,而且还进一步引导他们去感悟物理、欣赏物理。
二、为什么教物理
这是一个看似简单却又十分根本的问题,要正确回答并非易事。笔者对此问题的认识,就经历过从“知识本位”到“学科本位”,最后又回归到“学生本位”这样一个曲折渐进的过程。
有很长一段时期,我都把物理教学的目标锁定在知识层面上,认为教物理就是要把物理知识尽可能多地传授给学生,以供他们今后一生的受用。因为我信奉“知识就是力量”。然而令人困惑的是,我们授予学生什么多的物理知识,其中不乏象“F=ma”这类极其重要的知识,但在他们往后的生活和工作中,却很少显示出有什么直接的功用。以至过了若干年后,许多学生把所学的物理知识几乎忘得一干二净,用他们的话说,“全部都还给老师了”。我为此感到深深的失落;但每当我向他们提出“高中三年岂不白读了”的反诘时,这些离开学校多年的学生,却又都会异口同声地作出否定的回答,一致认为高中阶段的学习,对于他们的成长起到了重要的奠基作用,可又说不清究竟是哪些具体知识所起的作用。我想,这大概好比晚饭,谁都不会否认吃饭对于生存的意义,然而谁又都说不清楚,吃了这顿饭究竟是在身上的什么地方长了块肉。
一位毕业已有二十余年的学生,曾与笔者聊起他“印象最深”的一堂物理课。原来那堂课讲的是重力势能。当时为了说明重力势能的相对性,我曾向学生提出过这样的问题:有人站在五楼的窗台上要往下跳,你说危险吗?开始大家都认为这太玩命了,后来仔细一琢磨,又全都乐了:你别往窗外跳,往窗里跳不就没事了吗?这位学生觉得这个例子特有意思,于是经久不忘;但问他该例说明了什么物理知识时,他说忘了。正当我面露憾色时,他紧接着的一番话却令人宽慰,他说:“这个例子使我懂得凡事都是相对的,从不同角度看会有不同的结果”。尽管这堂课所传授的物理知识,这位学生已经遗忘殆尽,但通过有关知识的学习而凝炼成的思想、方法等,却在他的心里铭刻上深深的印记。从这个意义上说,二十多年前的这堂物理课,对他不也是极有价值的吗?学生从高中毕业后,他们中的大多数可能将告别物理,所学的物理知识终究会被忘记,到那时再回头审视一下:物理教学留给他们的还有些什么呢?如果在他们的身上,体现不出物理所给予的才智与启迪,那将是物理教学的失败。由此看来,具体的知识通常只是作为教学的载体,在知识的背后还有更多值得我们去追求的东西。正如我国资深科学家钱伟长教授说的:“我在大学里学的是物理学,……. 以物理学为对象我学到了调查研究,收集资料,分析资料和逻辑思维的能力,物理学的知识有时是很有用的,但通过物理学学到的这些能力,比物理学知识更有用。”钱老在读书时就是通过“物理学”这个载体,获得了很多比物理知识更重要的能力。所以,那种将物理教学等同于物理知识教学的看法是偏面的,而以“知识本位”来确立物理教学目标取向的做法同样是短视的。
随着教学实践的深入,教师一般都会对自己所任教的学科日臻熟悉,从而格外钟爱。可能是受了这种职业情感的影响,我还一度把物理教学的目标,定位于“将尽可能多的学生培养成为物理学家或物理工作者”。尤其是当我从农村普通中学调入重点高中,面对的是一个个聪颖好学的学生时,这种愿望愈显强烈。但我不久就发现,其它学科的教师大概也出于各自的职业偏好,都对学生有着与我类似的期望。这样一来,大家自扫门前雪,各唱各的调,没能将各学科的分力凝聚成一股合力,实际效果当然就差强人意了。尤其令我沮丧的是,班上那些物理学习优秀的“得意门生”,日后直接从事物理专业的竟然也少之又少。正当我陷于迷惘之时,复旦大学原校长杨福家先生的一则事例给了自己极大的启迪。当年复旦大学曾对核物理专业的毕业生的去向做过一次调查,结果发现,只有不到十分之一的学生毕业后从事与核物理有关的工作,其余的都纷纷改行,活跃在金融、企业或行政等岗位上。对此,多数人都断言这是物理系的失败,而杨福家却认为这正是“复旦”的成功。因为,通过这四年本科的物理教育,使学生具备了良好的素质,为他们今后的发展打下了坚实的基础,于是毕业后都能很快适应各种不同领域的工作。这也印证了赵凯华先生的话:“一个人学了物理之后干什么都可以,他的物理没有白学。在我看来,对于学物理的人无所谓‘改行’……。”
经过上述曲折的认识历程,使我逐渐看清了物理教学最终目标的聚焦点,既不在知识的本位上,也不在学科的本位上,而应该落实在我们的教育对象——学生的本位上。
对于“为什么教物理”这个问题,也可以反过来设问:“如果我们不教物理,学生不学物理,将会对他们今后的发展留下那些缺憾?”一种显而易见的回答是,学生将因此学不到许多重要的物理知识。这话没错,但不够全面。因为除此之外,学生还将失去更为重要的,有关科学方法、科学精神等方面的培养与熏陶,从而最终影响他们的科学素养的提高。当前,物理已经深入到社会的方方面面,成为每一位有教养的公民都必须懂得的知识。对于大多数学生来说,他今天学习物理的目的,恐怕不是为了明天去进一步研究物理,而是有助于他去面对或决策所遇到的大量非物理的问题,为他们今后一生的文明、健康,高质量的生活奠定基础。正如《面向全体美国人的科学》一书中所说的:“教育的最高目标是为了使人们能够过一个实现自我和负责任的生活作准备。” 据此,对于“为什么教物理”这个问题,最确切的答案就是:为提高全体学生的科学素养而教。——这应该成为我们的物理教学观。
众所周知,生物基因对于生物进化有着非同小可的作用,极其细微的基因差异,往往会导致生物之间的巨大差别。受此启发,有不少社会学者正致力于寻求在人类文化传承与发展过程中,有着哪些最为核心的要素,从而提出了“文化基因”的概念,并将其定义为人类文化系统中的“遗传密码”。文化基因的核心是思维方式和价值观念。人类的进化比一般的生物进化更为复杂,它具有双重进化机制,除了生物基因进化机制外,还有文化基因进化机制。教育正是推动文化基因机制的重要途径。学校教育的要义,不只是文化现象的展示与诠释,而在于文化基因的传承和发展。物理教育当然也不例外。什么,蕴含在物理教学中的“文化基因”究竟有些什么呢?笔者以为主要体现为三个方面,即科学知识、科学方法和科学精神,因为这三者是构成科学素养最基本的要素。如果将科学素养比拟为一座金字塔,什么科学知识犹如塔基,科学方法就是塔身,科学精神则是塔尖。物理教学的最高宗旨,就是为了构建这座宏伟的科学素养之塔而添砖加瓦。换言之,物理教学的核心价值就在于促进学生实现三个转化:一是把人类社会积累的知识转化为学生个体的知识,使他们知识世界是什么样的,成为一个客观的人;二是把前人从事智力活动的思想方法转化为学生认识能力,使他们明白世界为什么是这样的,成为一个理性的人;三是把蕴含在知识中的观念、态度等转化为学生的行为准则,使他们懂得怎样使世界更美好,成为一个创造的人
Ⅸ 物理的重要性体现在哪些方面
学好初中物理的重要性摘要学习物理不仅能学习到物理知识,提高生活的能力,而且能学到一些研究问题的方法,物理的学习能够培养学生的思维能力,同时物理实验的教学还能够培养学生的动手操作能力以及事实求是的科学态度。关键词物理学习兴趣物理实验创新能力物理概念初中物理共有两册,从初二开始就有物理教学任务。初中物理的主要内容是按照力学、热学、声学、光学、电学这几大部分展开的。但它的要求很低,仅仅是向学生简单介绍和讲解一些生活中的物理现象和规律。使学生明白一些基础的实用的物理原理。如杠杆、连通器原理、像的形成等。虽然书本当中也写入了一些理论性的东西,但也只停留在向学生介绍的这个层面上。而反观高中物理的知识结构,虽然也是围绕力、热、声、光、电这几个内容进行展开,但它对学生的要求就高得很多了。学科与学科间的特点这时候体现了出来。学好初中物理对学好高中物理有着非常重要的基础作用,那么如何让学生学好初中物理呢?下面是笔者的一些粗略认识。一、对物理学史的引入,提高学生对物理学习的兴趣在这里不是告诉学生某个物理学家是多么聪明,在小时候就能够通晓很多的物理知识,显示出与别人不一样的天赋。向学生讲解物理学史的目的主要还是让他们知道物理作为一门自然科学他的历史发展规律,它在社会中应当起的作用。中学阶段适当的向学生引入一些物理学史,在增长了他们的见闻的同时,让他们明白任何理论的得出必须付出艰辛的劳动。有时候甚至在不被别人理解的基础上来进行艰苦的探索。帮助他们在人生观、价值观上做出一个正确的选择二、端正学习态度,明确学习目的,掌握好基本概念、方法和规律物理是一门自然科学,学习过程中要有严密的科学方法和认真务实的科学态度,不能马虎行事,随主观意想得出结论,要遵循科学研究的三大基本工作方法:观察、实验和理论。基础教育的首要任务是培养学生的能力,密切联系实际体现物理学的实用价值,要让学生明白为什么学习物理,学习物理有什么用处,对学习目的的意义理解越深刻,学生的学习动机就越强烈。对基本概念要清楚、基本的规律要熟悉,基本的方法要熟练。关于基本概念,例如速度,它是表示物体在单位时间里通过的路程:即v=s/t。关于基本规律,比如说平均速度的计算公式也是v=s/t。它适用于任何情况,例如一个百米运动员他在通过一半路程时的速度是10m/s,到达终点时的速度是8m/s,跑完整个100m花的时间是12.5s,问该运动员在百米赛跑过程中的平均速度是多少?按平均速度的规律平均速度等于:v=100m/12.5s=8m/s。再说一下基本方法,研究初中物理问题有时也要注意选取“对象”,例如:在用欧姆定律解题时,就要明确欧姆定律用到整个电路即整体上,还是用到某个电阻即离单独的某一个电阻上。三、记忆理解物理公式时要深入体会它的物理意义,防止物理公式数学化物理学中有许多公式,有些同学把物理当数学去学,而忽视公式中各物理量的物理概念和公式的使用条件,结果在使用这些公式时常常出错。他们在记忆物理公式时,只记住公式的形,而忽视公式的质,忘记了公式成立的条件。这样的例子俯拾皆是,比如万有引力定律公式,从数学角度来看当这个结论是正确的,许多同学也确是这样认为的,而事实上这个结论是错误的。原因是此公式成立的条件是质点,当两个物体之间的距离很小时,原来能够看成质点的两个物体不再能够被看成质点了。再譬如对加速度的定义公式。许多学生� �纯数学角度出发,就产生了这样的错误理解:末速度大,物体运动的加速度a就大,末速度小,加速度a就小,初速度大,加速度a小,初速度小,加速度a就大。但物。四、在实验过程中,培养学生的创新能力和动手解决问题的能力物理本身就是一门以实验为基础的学科,物理中很多的规律、公式都是从实验现象中得来的,学习过程中,要注意观察教师和课本中给出的物理现象,如课本中提出的问题、给出的图片、实验及教师的演示实验等。观察的主要方面有:物理现象?或事实产生的条件、表现的形式?如运动、变形、温度变化、结果等;要有意识培养自己观察生活中物理现象的习惯和兴趣。尽可能多动手做实验。不会做实验就不能说学好了物理。实验动手能力,主要指观察、操作和制作等动手能力。开始学习物理时,可注意观察老师是如何做各类演示实验的,如实验的步骤?先做什么、后做什么,实验的方法。做实验时,按老师要求的实验步骤和方法认真实验、练习。对老师和教材中给出的有关学习物理概念和规律的探索性小实验、小制作都要积极想办法动手做。这对增强动手能力是非常有利的。另外,还可以自己主动设计实验。如对教材中插图、习题里隐含的实验内容,就可以自己动手动脑设计实验步骤和方法,进行实验。这能培养你的创新能力和动手解决问题的能力。五、对数学知识的补充在物理与化学的计算题目以及一些理论知识中都与数学知识有着不可分割的关系,数学知识的补充非常重要,初中物理和高中物理的学习里面有很多地方要用到数学方面的知识,数学基础的好坏直接影响着物理成绩的高低。比如物理学常用数学表示物理概念、描述物理规律。例如应用数学中的比例关系描述物质的密度(ρ=m/v)。物体的运动速度(v=s/t),牛顿第二定律(a=F/m)等。应用数学中的坐标图象方法描绘出温度——时间图象(表示某种物质的熔解与凝固过程),在力的正交分解时要涉及到平面直角坐标系和三角函数的知识。而匀变速直线运动的规律中就是一次函数和二次函数及有关图象的斜率问题。所以对一些在高中物理中要用到的数学知识,如一次函数图象、图线的斜率和截距、几何中心、三角函数、解比例、二次函数的极值等等,都有必要对学生进行复习与补充。
Ⅹ 通过对大学物理力学的学习,你学到了什么谈谈你的认识
大学物理共分五大部分:力学、热学、光学、电磁学、近代物理,中学物理也是学习这五大部分,但它们所研究的外延有所不同,中学物理主要研究特殊情况,如力学部分中,对于运动学的研究,中学物理主要研究匀速或与变远的直线运动和曲线运动,动力学中所涉及的功是恒力的功。
所研究的对象是质点,而大学物理研究的运动是变速的运动,功是变力做的功,研究的对象不仅是质点,还包括质点系,对于概念、定理的阐达都在中学的基础上进行了扩展,需要矢量及微积分知识的支撑。
在热学部分中,大学物理与中学物理最大的不同是研究的广度大了,从微观的角度解释了热学中的宏观量,更能体现热学与力学的联系。在光学部分中,中学所研究的主要是几何光学,而大学物理研究的是波动光学,这是光学的两个不同的侧面。
因此无论从内容上还是从方法上都有很大的不同,但其共同点是都能锻炼学生的形象思维,在波动光学的学习中,需要同学们多归纳多总结。
电磁学部分中大学物理与中学物理的衔接比较大,从物理概念和定理、定律的理解相对来说要容易一些,但是在大学物理中,微积分知识在这里得到极大的发挥,在做题时,由于学生在高中时所形成的思维定式,所以往往用高中时所用的方法来解决他们所遇到的问题。
这是大多数学生容易犯错误的地方,也是高数与物理结合的难点,近代物理的学习中,大学物理比中学物理要广泛的多,由于没有思维定式,反而不容易出现似是而非的问题。通过对大学物理的学期,我也认识到大学物理更多地依赖于高等数学。
因此对于我们大一新生来说,在高等数学的学习中,不仅要会计算微分与积分,更要理解微分与积分的物理意义,为大学物理的学习打下厚实的数学基础。
(10)从物理中学到了什么扩展阅读:
在学习大学物理过程中,对于基本概念、基本定要有清晰的认识,充分认识这些概念、定理与中学物理的异同,在充分理解概念和定理的基础上要做一定量的习题,做题过程中充分体现题目中所涉及到的知识点,许多科学大师都曾津津乐道
总之,物理是培养学生逻辑思维能力的一门最重要的学科,我们应该正确的对待物理,认识物理,认真学习物理知识。