导航:首页 > 物理学科 > 物理有哪些思想方法是什么

物理有哪些思想方法是什么

发布时间:2022-08-17 14:14:55

物理实验思想方法有哪些谢谢了,大神帮忙啊

这是自己整理了一些(我是高中的……): 解题思想: 1、力(运动)的合成与分解 2、补偿法(一般求非实心天体质量) 3、隔离法,整体法 4、微元法(求面积) 5、对称法 6、等分法 7、假设法(电场线不相交) 8、动态分析法(磁场中粒子的动态圆轨迹) 9、极值法(极限思想) 10、守恒法 11、模型法 12、模式法 13、转化法 14、平衡法 15、通式法 16、比例法(相似三角形求力大小) 17、放缩法 18、特殊位置法 实验思想: 1、等效替代法 2、控制变量法 3、留迹法 4、累积法 5、模拟法 6、放大法(将实验效果放大,例:测光线夹角变化来放大微小形变) 数据处理思想: 1、算术平均值法 2、作图法 3、描迹法 4、逐差法 5、列表法

Ⅱ 高中物理的思想和方法

定义法和控制变量法是两种物理方法,定义法就是给某个你不熟悉的概念或比较正式的物理量一个具体详尽的解释,是你看完这个概念明白的的内涵甚至是外延,在物理中他是非常常用的方法,控制变量法是针对一个公式中如果有多个变量,且他们之间存在一定的联系,但你要研究某两个两之间的关系时往往会涉及到其他两,所以为了方便研究或简化问题、降低研究难度,就假定这两个量之外的其他量是不变的。高中用到的物理方法有很多,例如等效法(合力与分力的关系、复杂电路简化为简单的电路的过程就是等效法),放缩法(在研究形变时,手捏玻璃瓶,细管中的红色水柱上升,研究桌子的微笑形变等都是放大法)

Ⅲ 物理思想是什么

意思是学物理常用的思维方法,思维其活动的结果,属于认识。

一、逆向思维法

逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果.

二、对称法

对称性就是事物在变化时存在的某种不变性.自然界和自然科学中,普遍存在着优美和谐的对称现象.利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤。

从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径。

(3)物理有哪些思想方法是什么扩展阅读

意识运动的引起是为思,思是意识的顺向运动。

生命体在生命活动中,在意识的形态作用下,在原本意识里的事物形态与新出现的事物的形态出现了形态里的差异时,生命体的意识在差异中达成意识运动形式的引起,这引起的意识的运动就是思的本身,意识的运动的引起的内容就是问题的实质,实质的问题就是问题的主体。

意识的顺向是以意识的主体的意识为参照来说明的,意识的参照是事物惯性的参照,也就是惯性行为在意识里的表现的形式表达。事物的发展变化已经超出了意识的印象时,意识在印象里的留恋是意识的惯性,以意识来讲是意识的顺向,在意识惯性的顺向运动行为里,思进行着变化的考量。

Ⅳ 在物理学计算中,常用的思想和方法有哪些

你真的没有找到学习物理的窍门,物理的学习不强调死记硬背,要注重理解概念规律的内涵与外延,注重把握基本的物理模型,更特别注重掌握常用的物理思想方法,主要有:
一、逆向思维法
逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果.
二、对称法
对称性就是事物在变化时存在的某种不变性.自然界和自然科学中,普遍存在着优美和谐的对称现象.利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径.
三、图象法
图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点.运用物理图象处理物理问题是识图能力和作图能力的综合体现.它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效. 四、假设法
假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立.求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径.在分析弹力或摩擦力的有无及方向时,常利用该法.
五、整体、隔离法
物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件.这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法.
六、图解法
图解法是依据题意作出图形来确定正确答案的方法.它既简单明了、又形象直观,用于定性分析某些物理问题时,可得到事半功倍的效果.特别是在解决物体受三个力(其中一个力大小、方向不变,另一个力方向不变)的平衡问题时,常应用此法.
七、转换法
有些物理问题,由于运动过程复杂或难以进行受力分析,造成解答困难.此种情况应根据运动的相对性或牛顿第三定律转换参考系或研究对象,即所谓的转换法.应用此法,可使问题化难为易、化繁为简,使解答过程一目了然. 八、程序法
所谓程序法,是按时间的先后顺序对题目给出的物理过程进行分析,正确划分出不同的过程,对每一过程,具体分析出其速度、位移、时间的关系,然后利用各过程的具体特点列方程解题.利用程序法解题,关键是正确选择研究对象和物理过程,还要注意两点:一是注意速度关系,即第1个过程的末速度是第二个过程的初速度;二是位移关系,即各段位移之和等于总位移.
九、极端法
有些物理问题,由于物理现象涉及的因素较多,过程变化复杂,同学们往往难以洞察其变化规律并做出迅速判断.但如果把问题推到极端状态下或特殊状态下进行分析,问题会立刻变得明朗直观,这种解题方法我们称之为极限思维法,也称为极端法.
运用极限思维思想解决物理问题,关键是考虑将问题推向什么极端,即应选择好变量,所选择的变量要在变化过程中存在极值或临界值,然后从极端状态出发分析问题的变化规律,从而解决问题.
有些问题直接计算时可能非常繁琐,若取一个符合物理规律的特殊值代入,会快速准确而灵活地做出判断,这种方法尤其适用于选择题.如果选择题各选项具有可参考性或相互排斥性,运用极端法更容易选出正确答案,这更加突出了极端法的优势.加强这方面的训练,有利于同学们发散性思维和创造性思维的培养.
十、极值法
常见的极值问题有两类:一类是直接指明某物理量有极值而要求其极值;另一类则是通过求出某物理量的极值,进而以此作为依据解出与之相关的问题. 物理极值问题的两种典型解法.
(1) 解法一是根据问题所给的物理现象涉及的物理概念和规律进行分析,明确题中的物理量是在什么条件下取极值,或在出现极值时有何物理特征,然后根据这些条件或特征去寻找极值,这种方法更为突出了问题的物理本质,这种解法称之为解极值问题的物理方法. (2)解法二是由物理问题所遵循的物理规律建立方程,然后根据这些方程进行数学推演,在推演中利用数学中已有的有关极值求法的结论而得到所求的极值,这种方法较侧重于数学的推演,这种方法称之为解极值问题的物理—数学方法.
此类极值问题可用多种方法求解:
①算术—几何平均数法,即
a.如果两变数之和为一定值,则当这两个数相等时,它们的乘积取极大值. b.如果两变数的积为一定值,则当这两个数相等时,它们的和取极小值.
②利用二次函数判别式求极值 一元二次方程ax2+bx+c=0(a≠0)的根的判别式,具有以下性质:
Δ=b2- 4ac>0——方程有两实数解; Δ=b2-4ac=0——方程有一实数解; Δ=b2-4ac<0——方程无实数解.
利用上述性质,就可以求出能化为ax2+bx+c=0形式的函数的极值. 十一、估算法
物理估算,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对物理量的数量级或物理量的取值范围,进行大致的推算.物理估算是一种重要的方法.有的物理问题,在符合精确度的前提下可以用近似的方法简捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确的计算.在这些情况下,估算就成为一种科学而又有实用价值的特殊方法.
十二、守恒思想
能量守恒、机械能守恒、质量守恒、电荷守恒等守恒定律都集中地反映了自然界所存在的一种本质性的规律——“恒”.学习物理知识是为了探索自然界的物理规律,那么什么是自然界的物理规律?在千变万化的物理现象中,那个保持不变的“东西”才是决定事物变化发展的本质因素.
从另一个角度看,正是由于物质世界存在着大量的守恒现象和守恒规律,才为我们处理物理问题提供了守恒的思想和方法.能量守恒、机械能守恒等守恒定律就是我们处理高中物理问题的主要工具,分析物理现象中能量、机械能的转移和转换是解决物理问题的主要思路.在变化复杂的物理过程中,把握住不变的因素,才是解决问题的关键所在.

Ⅳ 物理学的研究方法有哪些

一、控制变量法:通过固定某几个因素转化为多个单因素影响某一量大小的问题.

二、等效法:将一个物理量,一种物理装置或一个物理状态(过程),用另一个相应量来替代,得到同样的结论的方法.

三、模型法:以理想化的办法再现原型的本质联系和内在特性的一种简化模型.

四、转换法(间接推断法)把不能观察到的效应(现象)通过自身的积累成为可观测的宏观物或宏观效应.

五、类比法:根据两个对象之间在某些方面的相似或相同,把其中某一对象的有关知识、结论推移到另一个对象中去的一种逻辑方法.

六、比较法:找出研究对象之间的相同点或相异点的一种逻辑方法.

七、归纳法:从一系列个别现象的判断概括出一般性判断的逻辑的方法.

(5)物理有哪些思想方法是什么扩展阅读:

物理学的本质:物理学并不研究自然界现象的机制(或者根本不能研究),我们只能在某些现象中感受自然界的规则,并试图以这些规则来解释自然界所发生任何的事情。我们有限的智力总试图在理解自然,并试图改变自然,这是物理学,甚至是所有自然科学共同追求的目标。

六大性质

1.真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。

2.和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下,显出多么的和谐有序。物理学上的几次大统一,也显示出美的感觉。

牛顿用三大定律和万有引力定律把天上和地上所有宏观物体统一了。麦克斯韦电磁理论的建立,又使电和磁实现了统一。爱因斯坦质能方程又把质量和能量建立了统一。光的波粒二象性理论把粒子性、波动性实现了统一。爱因斯坦的相对论又把时间、空间统一了。

3.简洁性:物理规律的数学语言,体现了物理的简洁明快性。如:牛顿第二定律,爱因斯坦的质能方程,法拉第电磁感应定律。

4.对称性:对称一般指物体形状的对称性,深层次的对称表现为事物发展变化或客观规律的对称性。如:物理学中各种晶体的空间点阵结构具有高度的对称性。竖直上抛运动、简谐运动、波动镜像对称、磁电对称、作用力与反作用力对称、正粒子和反粒子、正物质和反物质、正电和负电等。

5.预测性:正确的物理理论,不仅能解释当时已发现的物理现象,更能预测当时无法探测到的物理现象。例如麦克斯韦电磁理论预测电磁波存在,卢瑟福预言中子的存在,菲涅尔的衍射理论预言圆盘衍射中央有泊松亮斑,狄拉克预言电子的存在。

6.精巧性:物理实验具有精巧性,设计方法的巧妙,使得物理现象更加明显。

对于物理学理论和实验来说,物理量的定义和测量的假设选择,理论的数学展开,理论与实验的比较是与实验定律一致,是物理学理论的唯一目标。

人们能通过这样的结合解决问题,就是预言指导科学实践这不是大唯物主义思想,其实是物理学理论的目的和结构。

在不断反思形而上学而产生的非经验主义的客观原理的基础上,物理学理论可以用它自身的科学术语来判断。而不用依赖于它们可能从属于哲学学派的主张。在着手描述的物理性质中选择简单的性质,其它性质则是群聚的想象和组合。

通过恰当的测量方法和数学技巧从而进一步认知事物的本来性质。实验选择后的数量存在某种对应关系。一种关系可以有多数实验与其对应,但一个实验不能对应多种关系。也就是说,一个规律可以体现在多个实验中,但多个实验不一定只反映一个规律。

Ⅵ 物理学中常用的几种科学思维方法

1.模型法
物理模型是一种理想化的物理形态,将复杂的问题抽象化为理想化的物理模型是研究物理问题的基本方法。科学家通常利用抽象化、理想化、简化、类比等把研究对象的物理学本质特征突出出来,形成概念或实物体系,即为物理模型。模型思维法就是对研究对象或过程加以合理的简化,突出主要因素忽略次要因素,从而解决物理问题的方法。从本质上说,分析物理问题的过程,就是构建物理模型的过程。通过构建物理模型,得出一幅清晰的物理图景,是解决物理问题的关键。实际中必须通过分析、判断、比较,画出过程图(过程图是思维的切入点和生长点)才能建立正确合理的物理模型。
2.等效法
当研究的问题比较复杂,运算又很繁琐时,可以在保证研究对象的有关数据不变的前提下,用一个简单明了的问题来代替原来复杂隐晦的问题,这就是所谓的等效法。在中学物理中,诸如合力与分力、合运动与分运动、总电阻与各支路电阻以及平均值、有效值等概念都是根据等效的思想引入的。教学中若能将这种方法渗透到对物理过程的分析中去,不仅可以使问题的解决变得简单,而且对知识的灵活运用和知识向能力转化都会有很大的促进作用。
3.极端法
所谓极端法,就是依据题目所给的具体条件,假设某种极端的物理现象或过程存在并做科学分析,从而得出正确判断或导出一般结论的方法。这种方法对分析综合能力和数学应用能力要求较高,一旦应用得恰当,就能出奇制胜。常见有三种:极端值假设、临界值分析、特殊值分析。
4.逆思法
在解决问题的过程中为了解题简捷,或者从正面入手有一定难度,有意识地去改变思考问题的顺序,沿着正向(由前到后、由因到果)思维的相反(由后到前、由果到因)途径思考、解决问题,这种解题方法叫逆思法。是一种具有创造性的思维方法,通常有:运用可逆性原理、运用反证归谬、运用执果索因进行逆思。
5.估算法
所谓估算法就是对某些物理量的数量级进行大致推算或精确度要求不太高的近似计算方法。估算题与一般的计算题相比较,它虽然是不精确不严密的计算,但确是合理的近似,它可以避免繁琐的计算而着重于简捷的思维能力的培养。解估算题的基本思路是:(1)抓住主要因素,忽略次要因素,从而建立理想化模型。(2)认真审题,注意挖掘埋藏较深的隐含条件。(3)分析已知条件和所求量的相互关系以及物理过程所遵守的物理规律,从而找到估算依据。(4)明确解题思路,步步为营层层剥皮求出答案,答案一般保留一到两位有效数字。
6.虚设法
在物理解题中,我们常常用到一种虚拟的思维方法,即从给定的物理条件出发,假设与想象某种虚拟的东西,达到迅速、准确地解决问题的目的,我们把这种方法较虚设法。虚设法常见的几种情形是:虚设条件、虚设过程、虚设状态、虚设结论等。
7.图像法
所谓图像法,就是利用图像本身的数学特征所反映的物理意义解决物理问题(根据物理图像判断物理过程、状态、物理量之间的函数关系和求某些物理量)和由物理量之间的函数关系或物理规律画出物理图像,并灵活应用图像来解决物理问题。

Ⅶ 高中物理实验的主要思想方法都有哪些

(1)等效法
等效法是物理学研究中的重要方法,也是物理实验中常用的方法。如在“验证动量守恒定律”的实验中,用小球的水平位移代替小球的水平速度;在画电场中等势线的分布时,用电流场模拟静电场等等。
(2)累积法
累积法是把某些难以直接准确测量的微小量累积后测量,以提高测量的精确程度。如测单摆振动的周期时,常采用测量单摆多次全振动的时间除以全振动次数的办法,以减小个人反应时间对实验结果的过大影响,减小测量误差。
(3)控制变量法
在多因素的实验中,可以先控制一些量不变,依次研究某一个因素的影响。如在“验证牛顿第二定律”的实验中,可以先保持质量一定,研究加速度和力的关系;再保持力一定,研究加速度和质量的关系;最后综合得出加速度与质量、力的关系。
(4)留迹法
它是一种把转瞬即逝的现象(位置、轨迹等)记录下来的方法。如通过纸带上打出的小点记录小车的位置;用描迹法画出平抛物体的运动轨协;用沙摆品

Ⅷ 中学物理思想方法有哪些,以及作用

隔离法整体法极限法等效法微元法图像法等等

阅读全文

与物理有哪些思想方法是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:993
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068