导航:首页 > 物理学科 > 博士后物理学学什么

博士后物理学学什么

发布时间:2022-08-20 23:32:27

1. 理论物理学要学哪些课程

理论物理学及其交叉科学若干前沿问题》
2004年项目指南

理论物理学是对自然界各个层次物质结构和运动基本规律进行理论探索和研究的学科。物理学及其相关交叉科学的基本理论的建立是一个艰苦的、需要长期积累的过程,它需要各种思维类型的科学工作者,特别是高素质的优秀人才相互合作、多方探索方可取得突破。而正确的理论一旦建立,常会出人意料地把许多表面上看起来互不相干的现象联系起来,发挥理论的指导作用,带动物理学、其他自然科学乃至技术科学的发展。这些充分显示出理论物理研究作为基础研究的长期性、前瞻性和先导性,同时也清晰地表明同相关学科之间的相互交叉是理论物理适用范围的自然延伸。理论物理几乎包容了从小到基本粒子、大到宇宙天体所有物质世界的物理规律的认识,它几乎渗透到现代一切科技领域,与数学、天文、化学、生物、材料、信息、能源、工程、环境、航空、航天等许多领域都有着深层次层面上的交叉,所以通过"研究计划"整合与集成不同学科背景、不同学术思路和不同层次的研究,选择有限的目标,突出几个最重要的基础性的前沿领域,是本计划的一项重要任务。深层次的基础理论队伍的存在,不仅是人类对认识世界的追求的要求,也是保证交叉学科持久兴旺的前提;同时,兴旺的交叉学科也为理论物理基础研究源源不断地提供源头创新的机会。前期的实施取得了显着的成绩。有的工作在国际上受到相当多的引用和重视;有的工作可能会开拓出新的研究方向;有的工作预言了新的实验,有的工作对实验工作有指导意义;有的工作成功地解释了国际上一些较为重要的实验。本重大研究计划的设立,旨在充分发挥理论物理研究的前瞻性、基础性和原始创新的作用,造就出一批理论研究的杰出人才,增强我国自然科学研究的原始创新能力,使我国理论物理及其交叉科学在21世纪前期步入国际最先进行列。

本"研究计划"在实施中贯彻"基础研究的长期性、前瞻性和包容性,以及注意学科交叉、促进不同观点的碰撞、开拓源头创新",明确了 "研究计划"的指导思想:1)要进行重大科学问题源头创新,2)要推动交叉学科的发展,3)要造就一批高水平理论物理人才,4)要服务于国家战略目标;在设立和实施过程中形成了"三大板块"、"9个前沿领域"相互交融、相互交叉的核心科学问题。

开展物质世界深层次规律的研究,是基于人类对认识物质世界的无限追求的要求,也是人类现代文明和发展的一个重要的原动力;同时,它也是推动自然科学整体发展的基础研究中一个最为基础的重要组成部分。作为占世界人口总数1/4的大国,我们也理应在这一关系到世界文明发展的重要方向上作出贡献。因此本计划选择物质世界深层次规律的探索作为本研究计划的第一大板块。自20世纪后半叶以来,凝聚态物理学基于物质结构规律已发展成为一个覆盖面宽广,同时又十分活跃的前沿研究领域,它的发展不仅深化和拓宽了我们对物质世界的认识,也为人类社会提供了多种多样高新技术的创新源头。对于这一层次物质形态的研究既是理论物理学的一个重要组成部分,在一定意义上也是物理学与众多学科交叉的中介。所以,本计划选择凝聚态理论为我们三大板块中的又一大板块。物理学及其所包含的理论物理学向其他学科的渗透,常常会形成一些新的交叉科学生长点。这种跨学科的基础研究也常常是未来高新技术的发展的重要源泉。历史也告诉我们,理论物理本身在向其他学科渗透和交叉中,也常因不断获得新的源泉而兴旺发达。现在理论物理已经与几乎一切科技领域有着紧密的交叉,根据对当前发展态势的认识,本计划将理论物理与生命、化学、材料和信息这四个交叉学科中的某些前沿领域,作为研究计划的第三大板块。这种交叉作用是双向的,相关学科也为理论物理发展提供了有意义的创新源头和机遇。

本重大研究计划要求所申请的项目应在科学上具有特色及创新思想,欢迎各方面高水平的研究人员参与,并鼓励进行学科交叉及理论与实验相结合的研究。

通过国家自然科学基金会组织的中期评估,本研究计划在总结评估前三年资助项目进展情况的基础上,明确今后2年(2004-2005年度)项目组织实施经费投入的基本思路是重点与面上项目之比为4:6(2004年度拟公布五个重点项目,见后),以对形成的优势、创新和交叉的方向给予相应强度的资助和保证适度的资助面,促进原始创新思想和新的交叉点的产生。加强学术交流,围绕某一方向形成项目群,是本研究计划的又一特色。

(一)板块一:深层次物质结构和动力学规律的前沿领域

粒子物理的标准模型理论,它包含弱电统一规范理论和量子色动力学。这一理论成功地经受了大量实验的检验,但又面临着一些十分尖锐的挑战,有待进一步的检验和发展。电弱对称破缺机制、CP破坏产生的机制、夸克禁闭、费米子质量起源这样一些基本理论问题都尚未得到解决。正在运行的B介子工厂对于研究B介子衰变及其中的CP破坏机制提供了良好的条件。中微子实验已经证实中微子振荡和非零质量。作为描写强相互作用的量子色动力学面临非微扰求解困难。结合相对论重离子对撞机RHIC(BNL)的实验结果以及未来大型强子对撞机LHC的重离子碰撞实验(ALICE),探索高温高密QCD相变机制,夸克胶子等离子体和手征对称性恢复等,对了解新的物质状态及量子色动力学的非微扰性质有重要意义。自九十年代以来,天文观测已经积累了许多相当精确的宇宙学数据,进入了一个精确宇宙学年代,使得宇宙学中存在的大爆涨、暗物质、暗能量三大问题更加突出。越来越多、越来越精确的天文观测数据使得粒子物理、量子场论、引力理论、宇宙学等基本理论的发展相互交叉紧密地联系在一起提出了新的挑战和机遇。这些问题的解决与粒子物理和量子场论的发展密切相关,形成物理学和宇宙学的一个具有极大发展前景的交叉学科。

1.量子场论及与宇宙学相关的前沿理论问题
科学目标:
探索和解决量子场论中的非微扰问题(如夸克囚禁和超对称破缺)和四种相互作用的统一问题,着重发挥量子场论研究中提出的新概念、新方向、新方法和对其他领域的指导作用,争取在超弦基本问题和宇宙学常数问题等方面有重要进展。
资助方向:
(1)弦宇宙学和宇宙常数问题。
(2)量子场论中的对偶性和非微扰问题。
(3)弯曲空间中超弦理论的量子化和非交换几何。

2.粒子物理及与宇宙学相关的前沿理论问题
科学目标:
结合国际上LHC、B工厂实验和国内BEPC/BES实验进一步精确检验和发展粒子物理中标准模型理论,探索新物理、发展非微扰方法、重味物理和粒子宇宙学等方面取得重要进展。
资助方向:
(1)高能对撞机物理及新物理的理论研究。
(2)宇宙中暗物质、暗能量及与宇宙学相关的科学问题。
(3)味物理、BES物理和CP破坏机制。
(4)量子色动力学的微扰和非微扰理论。

3.高能重离子碰撞和强子物理中动力学规律的理论研究
科学目标:
结合RIHC和LHC相对论重离子碰撞实验物理探索夸克胶子等离子体的存在证据及其物理性质,研究QCD相变结构和高密天体结构。结合国际低能强子物理实验研究各种新强子态性质、强子结构和强子间相互作用。
资助方向:
(1)相对论重离子碰撞和夸克胶子等离子体。
(2)QCD相变机制和高密天体物理。
(3)强子结构和新强子态。

(二)板块二:凝聚态理论研究的两个前沿领域

强关联多电子系统和纳米尺度受限小量子系统是当今凝聚态领域最为突出的研究领域,这两者之间又有着非常紧密的联系。在低维小量子系统中,由于强的量子涨落,即使是非常一般强度的相互作用,其关联效应就非常重要,通常基于弱相互作用的多体量子理论,必须要由全新的适用于强关联的多电子量子理论所代替。强关联和无序是凝聚态物理中的两个重要基本问题,它们常常出现在同一个体系之中。强关联效应不仅与相互作用有关,而且也与空间维度和载流子浓度有关。高温超导体的正常态性质和超导机理、低维多电子系统的物性等等均涉及到我们对强关联多电子系统和低维凝聚态系统的认识和了解。当系统的量子相干长度与系统的尺度相比拟时,系统的特征时间尺度有可能短于各种元激发的产生和湮灭时间。在这类系统中量子态波函数的相位因子起着主导作用。受限系统中的相位干涉及其退相干、耗散、关联效应、物理过程的演化和控制以及纳米受限系统的非平衡态的输运理论等是这一研究方向的重要问题。本研究计划将继续突出这两前沿领域的研究,推动我国凝聚理论研究在深层次上质的飞跃。

4.强关联多电子系统的理论研究
科学目标:
高温超导体的正常态性质和超导机理、低维多电子系统的物性等等均涉及到我们对强关联多电子系统和低维凝聚态系统的认识和了解。同时,也应努力发展强关联和低维凝聚态系统的数值模拟新方法,以求早日形成在国际上有影响的研究基地。力争在较短的时间内进入国际前沿行列。
资助方向:
(1)低维关联电子系统和一些模型体系的物理性质的理论研究;高温超导正常态性质和超导机理的研究;
(2)金属-绝缘体转变;不同有序态的竟争和共存及量子相变的理论研究;
(3)加强探索处理强关联系统的新理论方法和对强关联系统性质的数值计算和计算方法的研究。
(4)低维磁性系统的量子理论研究

5.受限小量子系统的理论研究
科学目标:
以小量子(纳米)系统国际前沿研究领域中的关键理论问题作为研究方向,受限系统中的相位干涉及其退相干、耗散、关联效应、物理过程的演化和控制以及纳米受限系统的非平衡态的输运理论等是这一研究方向的重要问题,争取在整体上取得国际一流的研究成果,并力争解释一些有重要意义的实验,提出一些原创性的受限小量子结构和检验基本原理的实验设计。
资助方向:
(1)介观系统输运理论、量子限制效应、载流客体性质的量子测量,超快过程的多体理论;
(2)自旋电子学中的基础理论问题研究;
(3)受限光子系统如光子量子点及类分子结构的理论研究。

(三)板块三:跨学科理论研究新领域

板块三是板块一与板块二的自然延伸,是向相关学科的渗透和结合,以推动相关学科的深入发展。如果说板块一和板块二是理论物理研究的主体,那么板块三是理论物理研究(特别是板块二)的交叉外延。生命、材料和信息是当前科技和经济发展中最具影响力的学科,也是迫切需要理论物理介入的学科。例如,生命科学的研究已经进入到定量化和系统建模的新阶段,其基因网络调控的解析、蛋白质折叠机制和三级结构预测等等都是重大的理论问题,也对理论物理提出的新挑战。这是考虑板块三的组成时的一个思路。另一个考虑是:要既顾选择与理论物理交叉有较好基础的学科,如理论化学(的新问题)、材料设计(的关键问题),也要选择一些新兴交叉学科,如生命、量子信息。于是,板块三由四个前沿研究领域组成。

6.理论物理与生命科学交叉的理论研究
科学目标:
围绕生物大分子理论及生物信息学中关键问题,在DNA链复杂性、基因组序列信息分析、编码区和非编码区的统计分析、基因组全信息的生物进化等方面提出新理论、建立新方法;开展多重时空尺度上的生物大分子和生物凝聚体的结构、相互作用、性质及其调控理论的创新研究。
资助方向:
(1)生物信息学研究:基因识别(包括编码区和启动子区域识别)的新方法;分析多个基因组新方法并应用于分子进化;基因网络与系统生物学研究。
(2)计算分子生物学与计算细胞生物学研究:单分子生物物理理论;蛋白质二、三级结构预测新方法;生物大分子的自组装(如生物膜、肌纤、蛋白微管等)理论等。

7.有机固体和聚合物的理论物理研究
科学目标:
围绕有机固体和聚合物的关键科学问题,发挥理论物理的先导作用,重视理论与实验结合,在有机固体的输运机制、光电磁性能及功能器件、聚合物链的折叠、结晶等方面有所创新。
资助方向:
(1)有机固体中载流子、自旋的激发、输运和复合过程。
(2)尺度、维度、各向异性与光电磁功能的相关性,以及器件理论研究。
(3)聚合物链的折叠、结晶与复杂流体的理论研究。
(4)外场作用下聚合物形态和结构演变的机制和理论。

8.材料设计的基础理论研究
科学目标:
以材料组分、结构设计和性能预测为主导,针对材料的关联效应和低激发态、纳米体系输运性质、物性计算等方面,在多层次、不同尺度上建立新模型,发展新方法,提出新理论,解释新实验,为材料性能预测和新材料设计提供坚实的理论物理基础。
资助方向:
(1)第一原理计算中的关联效应和低激发态计算模型和方法。
(2)材料物性的原子、电子层次高精度计算与动力学模拟。
(3)纳米体系力学性能、输运性质的计算和理论。
(4)材料设计中的多尺度计算方法和理论。

9.量子信息的理论研究
科学目标:
在量子信息领域,选择量子信息交换、量子信息传输、量子存储等重要问题,与国内的实验研究工作相结合,进行实质性的研究,争取在几个重要问题上有所突破。
资助方向:
(1)新型量子信息处理、计算或传输方案的理论探索。
(2)量子测量的理论研究,包括量子退相干、量子耗散等问题。
(3)新型量子信息载体产生与控制的理论研究。

2004年度重点资助项目
(1)宇宙中暗能量、暗物质的理论研究
(2)味物理和量子色动力学研究
(3)受限小量子系统中量子相干性研究
(4)细胞与分子生物学系统的统计物理学研究
(5)有机固体和聚合物中新效应的理论探索

本研究计划2004年度经费投入预算为1300万元,以面上项目和重点项目方式组织实施,面上项目的平均资助强度为25万元,重点项目平均资助强度为150万元。

申请者应根据项目指南确定的研究内容,针对某一研究方向中的一个或者几个问题,提出选题新颖,开拓性强的研究项目,组织好研究队伍,向国家自然科学基金委员会提出申请(对于既有"另辟蹊径"的独到想法,又有科学根据的项目申请,可以不受本《指南》研究内容的限制)。以下是有关项目申请的一些具体问题,请申请者给予特别注意:

本重大研究计划由数理科学部、化学科学部、生命科学部,工程与材料科学部和信息科学部组成学科联合工作组受理申请。
申请者必须填写《国家自然科学基金申请书》,基本信息表中的"资助类别"栏选择"重大研究计划","亚类说明"栏选择"面上项目"或"重点项目","附注说明"栏选择"理论物理学及其交叉科学若干前沿问题"。申请代码根据实际研究内容选择,对于申请板块三的项目,申请代码按项目研究内容选择生命、化学、工程与材料、或信息科学部相应的申请代码。
申请者和参加者(不包括博士后和博士生等年轻人)都需在申请书的研究基础部分的申请者和项目组主要成员的学历和研究工作简历中,提供各自近5年发表的代表性论文5~10篇(不要超过10篇)的目录和相应的SCI他引次数,以及各自已发表的全部论文的他引总数。鼓励年轻人参加,年轻人可根据各自的实际情况附代表性论文。

2. 大学物理系学什么

1、力学

力学(mechanics) 研究物质机械运动规律的科学。自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子。

2、热学

热学是研究物质处于热状态时的有关性质和规律的物理学分支,它起源于人类对冷热现象的探索。人类生存在季节交替、气候变幻的自然界中,冷热现象是他们最早观察和认识的自然现象之一。

3、光学

光学(optics)是物理学的重要分支学科。也是与光学工程技术相关的学科。狭义来说,光学是关于光和视见的科学,optics词早期只用于跟眼睛和视见相联系的事物。

4、电磁学

电磁学是研究电磁现象的规律和应用的物理学分支学科,起源于18世纪。广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。主要研究电磁波,电磁场以及有关电荷,带电物体的动力学等等。

5、电动力学

电动力学(electrodynamics)电磁现象的经典的动力学理论。通常也称为经典电动力学,电动力学是它的简称。它研究电磁场的基本属性、运动规律以及电磁场和带电物质的相互作用。

3. 物理学到博士 基础学科 主要研究什么

分很多方向。研究宇宙的产生发展,弦理论等。寻找各种预言中存在的粒子。通过实验验证各种理论,通过计算寻找可能存在的某些特定材料。量子计算量子。science上有总结过未来要解决的问题,可以去找找看。如果真的感兴趣总有一款适合你。

4. 博士后是做什么的

博士后,不是学位,通常是指获准进入博士后科研流动站从事科学研究工作的博士学位获得者,也可以说博士后表示的是一种工作经历,但在国外也有一些不具有博士学位的博士后研究人员,所以博士后更确切地说是临时的科研工作经历。
1876年(丙子年),美国约翰·霍普金斯大学设立了一项研究基金,用以资助优秀的青年学者在较好的研究条件下从事科学研究工作。由于在最初基金资助的20人中有4人已经获得了博士学位,故人们称之为“博士后”。1983年至1984年,诺贝尔奖获得者、华裔物理学家李政道先生两次致信邓小平同志,建议中国实行博士后制度。1984年5月,邓小平同志在人民大会堂会见了李政道,并仔细听取其关于实施博士后制度的意见和方案,当即表示:“这是一个新的方法,是培养使用科技人才的制度。”1985年7月,国务院批准了设立博士后科研流动站,试行博士后制度方案——博士后制度在我国正式确立。

5. 美国留学物理学博士就业方向好么

美国博士热门专业有哪些?由于美国博士申请中理工科专业获得奖学金的几率比较高,因此申请理工科学生申请博士学位的数量相对较多。比较热门的专业包括:

理科专业:物理(包括天文)、数学、化学、生物

物理学

物理属于好出国的专业,各大美国研究生院物理人才短缺,因此也比较容易获得奖学金。但是物理专业学生出路堪忧。学习理论物理的优秀学生,如果数理基础很好,在经济形势好的情况下选修些金融课程,毕业后可以去金融机构做数量分析,年薪可达15万至30万美元。如果想钻研学术的话,物理学教授一般都需要1至2轮博士后经历,还要有学术界的人脉,过硬的研究文章。物理学一些领域的学生还可去ge等公司的基础研究部门,年薪7万以上。

化学

化学也属于好出国的行业。就业前景在美国相当不错。其中,有机化学最容易进大的制药公司,如辉瑞,礼来等,博士毕业起薪可达8万至9万美元,硕士起薪约5万至7万美元。但是有机化学比较对身体有害,同时为了去好的制药公司,读书期间要注意积累很多技能,如写作、语言、参加行业学术研讨会、认识行业内人士等。分析化学同样可以去制药公司,分析仪器公司等。无机化学与物理化学就业稍微窄些,但是化学整体上不错,因为化学化工产业比较成规模,有很多大公司需要化学人才。

数学

同样是理科,同样属于比较好出国的专业, 而且就业前景还不错, 将来可去金融,保险,银行,地产,信用卡,制药等行业,博士年薪在8万至15万美元以上。优秀的数学博士很多可以不用做博士后就直接做助理教授,一切在美国都是供求关系决定的。
http://www.liuxue315.e.cn/HomePage/country/31862.shtml#T2

6. 研究生(硕士 博士 博士后)都学什么科目也是学数学语文英语物理化学天文地理历史政治类的科目吗

不是的。本科相当于是基础,研究生就细分到某个方向上了。学的科目是研究方向相关的课程。比如研究生学的专业是国际金融,那么学习的科目有 微观经济学 宏观经济学 国际贸易 等,就是这些类似的课程,还有英语和政治

7. 物理研究生有哪些方向 详细 谢谢 ^_^

很多呀,所有和物理有相关研究的内容都基本上有研究生方向。
举一些例子吧:
当然是凝聚态物理专业比较好

其实凝聚态物理主要做的就是材料研究

当今材料很热门

国家十一五规划中有很大科研基金都是材料

郑州大学凝聚态物理专业,物理学一级学科,国家重点学科,博士后流动站

报考郑州大学吧

1.理论物理(070201)(理学)

研究方向:01、引力理论与宇宙学;02、粒子物理理论;03、凝聚态理论;04、统计物理。

2.粒子物理与原子核物理(070202)(理学)

研究方向:01、粒子物理 ;02、粒子物理与核物理实验技术及其应用。

3.凝聚态物理(070205) (理学)

研究方向:01、金属材料与金属物理;02、超导物理与器件;03、半导体光电材料;04、表面物理与薄膜物理;05、纳米材料物理;06、陶瓷功能材料;07、太阳能薄膜电池;08、材料计算设计与模拟。

4.光学(070207) (理学)

研究方向:01、激光光谱学;02、激光与物质相互作用;03、光电材料与器件;04、光子生物学 。

5.生物物理学(071011)(理学)

研究方向:01、离子束生物效应;02、离子束生物工程

6.测试计量技术与仪器(080402)(工学)

研究方向:01、智能化仪器仪表;02、传感器技术;03、医学信息处理;04、嵌入式技术及应用。

7.材料物理与化学(080501)(工学)

研究方向:01、合金材料;02、结构与功能陶瓷材料;03、纳米与复合材料。

8.物理电子学(080901) (工学)

研究方向:01、微控制器及其应用;02、信号检测与处理。

9.核技术及应用(082703) (工学)

研究方向:01、核分析技术及应用;02、核医学仪器与方法;03、 加速器技术及应用

10.光学工程(0803) (工学)

研究方向:01、激光加工;02、光电材料与光电技术。
其他的交叉学科,比如说物理课程教学论、科技哲学等等

8. 物理专业要学什么

物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同...但是你可能只会从事一方面或几方面的学习而不是所有的
物理学专业课程包括:普通物理(力学、热学、光学、电磁学、原子物理学),理论物理(理论力学、电动力学、热力学和统计物理学、量子力学),以及你们学院擅长的相关电子、机械知识。

9. 物理学专业学什么

物理专业课程:
高等数学、力学、热学、光学、电磁学、原子物理学、数学物理方法、理论力学、热力学与统计物理、电动力学、量子力学、固体物理学、结构和物性、计算物理学入门等。
主要实践性教学环节:包括生产实习,科研训练,毕业论文等。

阅读全文

与博士后物理学学什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:991
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068