导航:首页 > 物理学科 > 初中物理什么叫物态

初中物理什么叫物态

发布时间:2022-08-21 04:49:21

A. 六种物态变化

熔化: 固态→液态(吸热)
凝固: 液态→固态 (放热)
汽化(分蒸发和沸腾): 液态→气态 (吸热)
液化: 气态→液态 (放热)
升华: 固态→气态 (吸热)
凝华: 气态→固态 (放热)

B. 什么是物态变化

“物态变化:由于构成物质的大量分子在永不停息地做无规则热运动,并且不同的分子做热运动的速度不同,就形成了物质的三种状态:固态、液态和气态。

如何判断发生的是哪种物态变化:关键是找到物质在发生物态变化前后的两种状态,再根据定义进行比较,就可以得出正确的结论。

简介

温度是大量分子热运动的集体表现,含有统计意义。对于个别分子来说,温度是没有意义的。

温度与人类生活息息相关,人的正常体温为37°C或310K。无论人类如何改进低温技术,0K(-273.15℃)的温度都是达不到的,因此0K的温度又称为“绝对零度”或“绝对度”。

温度计:定义:能够快速准确测量出物体温度的仪器。

工作原理:a.常用温度计(温度计、体温计、寒暑表)是根据液体(如汞、水银、酒精、煤油)的热胀冷缩原理制成的;b.数字式温度计是根据物体的导电性与温度的关系制成的。

C. 物态有几种

然界的各种物质都是由大量微观粒子构成的。当大量微观粒子在一定的压强和温度下相互聚集为一种稳定的状态时,就叫做“物质的一种状态”,简称为物态。在19世纪,人们还只能根据物质的宏观特征来区分物质的状态,那时还只知道有三种状态,即固态、液态和气态。初中讲物态变化,就是讲这三种常见的物质状态间的变化问题。

气体物质处于高温条件下,原子分子激烈碰撞被电离,或者气体物质被射线照射以后,原子被电离,整个气体含有足够数量的离子和带负电的电子,而且一般情况下正负电荷量几乎处处相等,这种聚集态叫等离子态。如果物质处于极高的压力作用下,例如压强超过大气压的140万倍,组成物质的所有原子的电子壳层都会被“挤破”,电子都变成为“公有”,原子失去了它原来的化学特征。这些“光身”的原子核在高压作用下会紧密地堆积起来(当然,再紧密也会有电子存在和活动的空隙),成为密度非常大的(大约是水成密度的3万至6。5万倍)状态,称为超固态。有些书籍把等离子态称为物质的第四态,把超固态称为物质的第五种状态。

进一步从物质的内部结构去考虑,物态就远不止这几种了。例如,在固体物质中,有的其内部微观粒子呈周期性、对称性的规则排列,称为结晶态。而另外一些,如玻璃、沥青等物质,常温下虽然也有固定的形状和体积,不能流动,但其内部结构则更像液体,为玻璃态(非晶体)。还有一些有机物质,能够流动,又具有某些晶体的光学特性,是介于液态和结晶态之间的状态,称为液晶态,很多物质在极低的温度下,会出现电阻消失的现象,称为超导态;在极低的温度下,某些液体的粘滞性会完全消失,叫做超流态。在巨大的压力下,平时是气体的氢,可以转变为具有金属特性的固态,称为金属氢态。天文学家发现,在宇宙中存在着比超固态密度更大的物质状态,例如组成中子星的中子态,还有密度更高的超子态、反常中子态、黑洞等等。由于反粒子,如反质子、反电子、反中子等都已被发现,有人预言在宇宙中会存在着全部由反粒子构成的反物质世界,但还没有得到证实。1998年6月3日,美国发射的航天飞机“发现者”号装载了一台a磁谱仪,期望探测到宇宙空间中可能存在的反物质,其中一个关键部件是由中国科学院电工研究所制造的直径1200mm、高800mm、中心磁感强度为0。1340T的永久磁体。

总之,从物质的内部结构去分析,物态的种类很多,并且随着科学技术的进步,人们对物质世界的认识会继续深人,更多的物态会被发现和被人所认识。

有时同一种物质在某种温度和压力下,有几种不同的物态同时存在,例如水处于密闭的容器中,下部是水而上部是水蒸气,就是液态与气态共存的情形。其他还有固气两态共存、固液两态共存或固、液、气三态共存的情形。

有时物态也称为相,常见的物质三态也称为固相、液相、气相。进一步的研究发现,某些物质处于同一种物态,而其不同部分的物理性质均匀但可以互不相同,而且各部分之间有一定的分界面隔开。这种物质中物理性质均匀和其他部分之间有一定分界面隔开的部分称为物质的一个相。例如12C(碳)处于固态时,可以有金刚石、石墨、C60三种不同的相,它们的结构不同,物理性质也不同;液态氦有两种不同的相He1、HeП,He1具有普通粘滞液体的性质,而HeП具有超流性;固态冰在高压下可以有7种相。

物态变化也称为相变。初中物理讲的物态变化是指固、液、气三种物态间的变化,这种变化是相变中的一类,称为一级相变。它的特点是:①相变过程中,体积要发生明显的改变;②相变过程中要吸收或放出所谓的相变潜热、此外,还有另一类相变,它们没有以上两个特点,既不发生体积的突变,也不吸收或放出相变潜热,但它的某些特性,如热容量、热膨胀系数等要发生突变,这类相变称为二级相变。某些物质在温度低到一定程度时电阻会突然消失,成为超导体,就是一种二级相变。本书只讨论与一级相变有关的问题。

固态,从宏观上讲,是指具有一定的体积和形状的物体,从微观上讲,是指组成物质的微观粒子按一定规则周期性、对称性地排列,因此,我们讲的固态是结晶态。组成结晶态的物质微粒都有较强的相互作用力(这种相互作用力称为“键”,常见的有离子键、共价键、金属键等),这些微粒在各自的平衡位置附近做无规则的振动,一般不能离开自己的平衡位置,因此固体有一定的体积,也有一定的形状,并且熔化和凝固都有确定的温度,即有确定的熔点。此外,对于单晶体,它还具有规则的几何形状和物理性质各向异性的特点。

液态,从宏观上讲,是指具有一定的体积,不容易被压缩,但没有一定的形状,能够流动的物体。从微观上讲,组成物质的微粒(以下简称为分子)相互间也有较强的作用力,分子的排列情况更接近于固体,只是它们的有规则排列局限于很小的区域内(约在10-7m的范围内),而众多的这些小区域之间则是完全无序地聚合在一起。组成液体的分子的运动主要也是在某一平衡位置附近做无规则振动,但振动一小段时间就会挣脱周围分子的束缚而转移到另一个新的平衡位置附近,因此液体具有流动性。液体分子在同一位置附近做振动的时间长短并不相同,但每一种液体,在一定的温度和压力下,分子在同一位置附近振动的持续时间的平均值是确定的,称为“定居时间”。例如液态金属的分子定居时间的数量级为10-10S,水的分子定居时间数量级为10-11S。同一种液体,温度越高,分子定居时间越短,而分子定居时间越短,则表示液体的流动性越好。

气态,从宏观上讲,是指既没有一定的形状,也没有一定的体积的物体,它总是充满整个容器,很容易被压缩。从微观上讲,气体分子间距很大,它们的相互作用力很小,除了在相互发生碰撞或与器壁发生碰撞以外,气体分子的运动近似地可以看做是匀速直线运动,直到与其他分子或器壁发生碰撞为止,因此气体总是充满整个容器。两种不同的气体混合后,总是均匀地混合在一起,不会像两种不相溶的液体那样会出现明显的分界面。

一般说来,任何一种物质,在温度、压强等发生变化时,都会呈现不同的物态,研究物态变化(相变)对于深人了解物质的结构及性质,对于研制新材料及新物质,都具有很大的现实意义。

D. 物态变化的形式是什么

物态变化有六种具体形式,如升华和凝华、汽化和液化、熔化和凝固等等。我用Mind+思维导图做了张整理。希望可以帮助到各位。

E. 初中物理物态变化

物态变化:在物理学中,我们把物质从一种状态变化到另一种状态的过程,叫做物态变化。物态变化的过程(简介):由于物态有三种(实际上有好几种,但在这里我们只研究三种。
其他物态如:等离子态。),它们两两之间可以相互转化,
所以物态变化有6种:熔化、凝固、汽化、液化、升华、凝华

F. 物态变化的六个概念

物质的10种物态

在自然界中,我们看到物质以各种各样的形态存在着:花虫鸟兽、山河湖海、不同肤色的人种、各种美丽的建筑……大到星球宇宙,小到分子、原子、电子等极微小的粒子,真是千姿百态斗奇争艳。大自然自身的发展,造就了物质世界这种绚丽多彩的宏伟场面。物质具体的存在形态有多少,这的确是难以说清的。但是,经过物理学的研究,千姿百态的物质都可以初步归纳为两种基本的存在形态:“实物”和“场”。
“实物”具有的共同特点是:质量集中在某一空间,一般有比较确定的界面(气体的界面虽然模糊,但它又是由一个个实物粒子构成)。本文开头所举的各例都属于实物。
“场”则是看不见摸不着的物质,它可以充满全部空间,它具有“可入性”。例如大家熟知的电磁波,它可以将电台天线发射的信号通过空间传送到千家万户的收音机或电视机。可以概括地说,“场”是实物之间进行相互作用的物质形态。
什么是“物态”呢?日常所知的固态、液态和气态就是三种“物态”。为什么要有“物态”的概念?因为实物的具体形态太多了,将它们归纳一下能否分成较少的几类?这就产生了“物态”的概念。“物态”是按属性划分的实物存在的基本形态,它都表现为大量微小物质粒子作为一个大的整体而存在的集合状态。以往人们只知道有固态、液态和气态三种物态,随着科学的发展,在大自然中又发现了多种“物态”。入类迄今知道的“物态”已达10余种之多。
日常生活中最常见的物质形态是固态、液态和气态,从构成来说这类状态都是由分子或原子的集合形式决定的。由于分子或原子在这三种物态中运动状况不同,而使我们看到了不同的特征。

1.固态
严格地说,物理上的固态应当指“结晶态”,也就是各种各样晶体所具有的状态。最常见的晶体是食盐(化学成份是氯化钠,化学符号是NaCl)。你拿一粒食盐观察(最好是粗制盐),可以看到它由许多立方形晶体构成。如果你到地质博物馆还可以看到许多颜色、形状各异的规则晶体,十分漂亮。物质在固态时的突出特征是有一定的体积和几何形状,在不同方向上物理性质可以不同(称为“各向异性”);有一定的熔点,就是熔化时温度不变。
在固体中,分子或原子有规则地周期性排列着,就像我们全体做操时,人与人之间都等距离地排列一样。每个人在一定位置上运动,就像每个分子或原子在各自固定的位置上作振动一样。我们将晶体的这种结构称为“空间点阵”结构。

2.液态
液体有流动性,把它放在什么形状的容器中它就有什么形状。此外与固体不同,液体还有“各向同性”特点(不同方向上物理性质相同),这是因为,物体由固态变成液态的时候,由于温度的升高使得分子或原子运动剧烈,而不可能再 保持原来的固定位置,于是就产生了流动。但这时分子或原子间的吸引力还比较大,使它们不会分散远离,于是液体仍有一定的体积。实际上,在液体内部许多小的区域仍存在类似晶体的结构——“类晶区”。流动性是“类晶区”彼此间可以移动形成的。我们打个比喻,在柏油路上送行的“车流”,每辆汽车内的人是有固定位置的一个“类晶区”,而车与车之间可以相对运动,这就造成了车队整体的流动。

3.气态
液体加热会变成气态。这时分子或原子运动更剧烈,“类晶区”也不存在了。由于分子或原子间的距离增大,它们之间的引力可以忽略,因此气态时主要表现为分子或原子各自的无规则运动,这导致了我们所知的气体特性:有流动性,没有固定的形状和体积,能自动地充满任何容器;容易压缩;物理性质“各向同性”。
显然,液态是处于固态和气态之间的形态。

4.非晶态——特殊的固态
普通玻璃是固体吗?你一定会说,当然是固体。其实,它不是处于固态(结晶态)。对这一点,你一定会奇怪。
这是因为玻璃与晶体有不同的性质和内部结构。
你可以做一个实验,将玻璃放在火中加热,随温度逐渐升高,它先变软,然后逐步地熔化。也就是说玻璃没有一个固定的熔点。此外,它的物理性质也“各向同性”。这些都与晶体不同。
经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。只不过“类晶区”彼此不能移动,造成玻璃没有流动性。我们将这种状态称为“非晶态”。
严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。因此,“非晶态”可以作为另一种物态提出来。
除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑料等。

5.液晶态——结晶态和液态之间的一种形态
“液晶”现在对我们已不陌生,它在电子表、计算器、手机、传呼机、微型电脑和电视机等的文字和图形显示上得到了广泛的应用。
“液晶”这种材料属于有机化合物,迄今人工合成的液晶已达5000多种。
这种材料在一定温度范围内可以处于“液晶态”,就是既具有液体的流动性,又具有晶体在光学性质上的“各向异性”。它对外界因素(如热、电、光、压力等)的微小变化很敏感。我们正是利用这些特性,使它在许多方面得到应用。
上述几种“物态”,在日常条件下我们都可以观察到。但是随着物理学实验技术的进步,在超高温、超低温、超高压等条件下,又发现了一些新“物态”。

6.超高温下的等离子态
这是气体在约几百万度的极高温或在其它粒子强烈碰撞下所呈现出的物态,这时,电子从原子中游离出来而成为自由电子。等离子体就是一种被高度电离的气体,但是它又处于与“气态”不同的“物态”——“等离子态”。
太阳及其它许多恒星是极炽热的星球,它们就是等离子体。宇宙内大部分物质都是等离子体。地球上也有等离子体:高空的电离层、闪电、极光等等。日光灯、水银灯里的电离气体则是人造的等离子体。

7.超高压下的超固态
在140万大气压下,物质的原子就可能被“压碎”。电子全部被“挤出”原子,形成电子气体,裸露的原子核紧密地排列,物质密度极大,这就是超固态。一块乒乓球大小的超固态物质,其质量至少在1000吨以上。
已有充分的根据说明,质量较小的恒星发展到后期阶段的白矮星就处于这种超固态。它的平均密度是水的几万到一亿倍。

8.超高压下的中子态
在更高的温度和压力下,原子核也能被“压碎”。我们知道,原子核由中子和质子组成,在更高的温度和压力下质子吸收电子转化为中子,物质呈现出中子紧密排列的状态,称为“中子态”。
已经确认,中等质量(1.44~2倍太阳质量)的恒星发展到后期阶段的“中子星”,是一种密度比白矮星还大的星球,它的物态就是“中子态”。
更大质量恒星的后期,理论预言它们将演化为比中子星密度更大的“黑洞”,目前还没有直接的观测证实它的存在。至于 “黑洞”中的超高压作用下物质又呈现什么物态,目前一无所知,有待于今后的观测和研究。
物质在高温、高压下出现了反常的物态,那么在低温、超低温下物质会不会也出现一些特殊的形态呢?下面讲到的两种物态就是这类情况。

9.超导态
超导态是一些物质在超低温下出现的特殊物态。最先发现超导现象的,是荷兰物理学家卡麦林·昂纳斯(1853~1926年)。1911年夏天,他用水银做实验,发现温度降到4.173K的时候(约-269℃),水银开始失去电阻。接着他又发现许多材料都又有这种特性:在一定的临界温度(低温)下失去电阻(请阅读“低温和超导研究的进展”专题)。卡麦林·昂纳斯把某些物质在低温条件下表现出电阻等于零的现象称为“超导”。超导体所处的物态就是“超导态”,超导态在高效率输电、磁悬浮高速列车、高精度探测仪器等方面将会给人类带来极大的益处。
超导态的发现,尤其是它奇特的性质,引起全世界的关注,人们纷纷投入了极大的力量研究超导,至今它仍是十分热门的科研课题。目前发现的超导材料主要是一些金属、合金和化合物,已不下几千种,它们各自对应有不同的“临界温度”,目前最高的“临界温度”已达到130K(约零下143摄氏度),各国科学家正在拼命努力向室温(300K或27℃)的临界温度冲刺。
超导态物质的结构如何?目前理论研究还不成熟,有待继续探索。

10.超流态
超流态是一种非常奇特的物理状态,目前所知,这种状态只发生在超低温下的个别物质上。
1937年,前苏联物理学家彼得·列奥尼多维奇·卡皮察(1894~1984年)惊奇地发现,当液态氦的温度降到2.17K的时候,它就由原来液体的一般流动性突然变化为“超流动性”:它可以无任何阻碍地通过连气体都无法通过的极微小的孔或狭缝(线度约10万分之一厘米),还可以沿着杯壁“爬”出杯口外。我们将具有超流动性的物态称为“超流态”。但是目前只发现低于2.17K的液态氦有这种物态。超流态下的物质结构,理论也在探索之中。
上面介绍的只是迄今发现的10 种物态,有文献归纳说还存在着更多种类的物态,例如:超离子态、辐射场态、量子场态,限于篇幅,这里就不一一列举了。我们相信,随着科学的发展,我们一定会认识更多的物态,解开更多的谜,并利用它们奇特的性质造福于人类。

G. 物态变化是什么

1、物态:由于构成物质的大量分子在永不停息地做无规则热运动,且不同的分子做热运动的速度不同,就形成了物质的三种状态:固态、液态、气态,在物理学中,我们把物质的状态称为物态。 2.物态变化:在物理学中,我们把物质从一种状态变化到另一种状态的过程,叫做物态变化。 3.物态变化的过程(简介):由于物态有三种(实际上有好几种,但在这里我们只研究三种。其他物态如:等离子态。),它们两两之间可以相互转化,所以物态变化有六种(简记为:三态六变):熔化、凝固、汽化、液化、升华、凝华(具体详解见下面说明)。 4.如何判断发生的是哪种物态变化:关键是找到物质在发生物态变化前后的两种状态,再根据定义进行比较,就可以得出正确的结论。
编辑本段过程
三态六变及吸热放热情况:
熔化: 固态→液态(吸热) 凝固: 液态→固态 (放热) 汽化(分蒸发和沸腾): 液态→气态 (吸热) 液化(两种方法:压缩体积和降低温度): 气态→液态 (放热) 升华: 固态→气态 (吸热) 凝华: 气态→固态 (放热) (注意:这里所说的“吸热”与“放热”的“热”都是指的热量,而不是指的温度、内能、热值、比热容等热力学概念。即为“吸收热量”与“放出热量”的简称。在物理学中,热量不能说“含有多少热量”或“具有多少热量”,只能说“吸收了多少热量”或“放出了多少热量”)
编辑本段在物理中的重要性
物质由一种状态变为另一种状态的过程称为物态变化(change of state)。 首先是物质的固态和液态,这两者之间的关系,物质从固态转换为液态时,这种现象叫熔化,熔化要吸热,比如冰吸热熔化成水,反之,物质从液态转换为固态时,这种现象叫凝固,凝固要放热,比如水放热凝固成冰。在这些从固态转换为液态的固体又分为晶体和非晶体,晶体有熔点,就是温度达到熔点时(持续吸热)就会熔化,熔化时温度不会高于熔点,完全融化后温度才会上升。非晶体没有固定的熔点,所以熔化过程中的温度不定,如石蜡在融化过程中温度不断上升。晶体熔化时温度不变,存在三种状态,例:冰熔化时,温度为0℃,同时存在冰的固态,水的液态和冰与水的固液共存态。 然后是物质气态与液态的变化关系,物质从液态转换为气态,这种现象叫汽化,汽化又有蒸发和沸腾两种方式,蒸发发生在液体表面,可以在任何温度进行,是缓慢的。沸腾发生在液体表面及内部,必须达到沸点,是剧烈的。汽化要吸热,液体有沸点,当温度达到沸点时,温度就不会再升高,但是仍然在吸热;物质从气态转换为液态时,这个现象叫液化,液化要放热。例如水蒸气液化为水,水蒸发为水蒸气。加快液体的蒸发速度的方法一般有:1.增加液体的表面积;2.加快液体表面的空气流速;3.提高液体的温度;4.降低周围环境的水蒸气含量,使其无法饱和(就是使空气干燥。)。 最后是我们不常见的物质固态和气态的关系,物质从固态直接转换为气态,这种现象叫做升华,然后是物质直接从气态转换为固态,这叫凝华,升华吸热,凝华放热。 在发生物态变化之时,物体需要吸热或放热。当物体由高密度向低密度转化时,就是吸热;由低密度向高密度转化时,则是放热。而吸热或放热的条件是热传递,所以物体不与周围环境存在温度差,就不会产生物态变化。例如0℃的冰放在0℃的空气中不会熔化。 这就是物态变化三者之间的关系,他们转换的依据主要是温度。 物质从固态变为液态,从液态变为气态以及从固态直接变为气态的过程,需要从外界吸收热量;而物质从气态变为液态,从液态变为固态以及从气态直接变为固态的过程中,向外界放出热量。
编辑本段科学研究中的新型物态
1、超高温下的等离子态 朗穆尔,1881——1957,于1925年首次提出“等离子态”概念。 固态在一定温度下变成液态,液态在一定温度下变成气态,气态继续加温将变成等离子态。这是气体在约几百万度的极高温或在其它粒子强烈碰撞下所呈现出的物态,这时,电子从原子中游离出来而成为自由电子。等离子体就是一种被高度电离的气体,但是它又处于与“气态”不同的“物态”——“等离子态”。 太阳及其它许多恒星是极炽热的星球,它们就是等离子体。宇宙内大部分物质都是等离子体。地球上也有等离子体:高空的电离层、闪电、极光等等。日光灯、水银灯里的电离气体则是人造的等离子体。
2、超高压下的超固态
在140万大气压下,物质的原子就可能被“压碎”。电子全部被“挤出”原子,形成电子气体,裸露的原子核紧密地排列,物质密度极大,这就是超固态。一块乒乓球大小的超固态物质,其质量至少在1000吨以上。 已有充分的根据说明,由原子构成的质量较小的恒星发展到后期阶段的白矮星,由中子堆砌成的中子星,以及至今人们了解非常有限的黑洞都处于这种超固态。它的平均密度是水的几万到一亿倍。
3、超高压下的中子态
在更高的温度和压力下,原子核也能被“压碎”。我们知道,原子核由中子和质子组成,在更高的温度和压力下从原子核里放出的质子,在极大的压力下,质子吸收电子,和电子结合成为中子。这样一来,物质的构造发生了根本的变化,原来是原子核和电子,现在却都变成了中子。这样的物质呈现出中子紧密排列的状态,叫做“中子态”。 这种形态大部分存于一种叫“中子星”的星体中,它是由大质量恒星晚年发生收缩而造成的,所以,中子星是小得可怜的、没有生机的星球。 4.玻色-爱因斯坦凝聚态 ose-Einstein condensation (BEC) 玻色-爱因斯坦凝聚(BEC)是科学巨匠爱因斯坦在80年前预言的一种新物态。这里的“凝聚” 与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态(一般是基态)。即处于不同状态的原子“凝聚”到了同一种状态。
5、“复杂流体”——软物质
1991年,诺贝尔奖获得者、法国物理学家德热纳(P. G. De Gennes)在诺贝尔奖授奖会上以“软物质”为演讲题目,用“软物质”一词概括复杂液体等一类物质,得到广泛认可。从此软物质这个词逐步取代美国人所说的“复杂流体”,开始推动一门跨越物理,化学,生物三大学科的交叉学科的发展。软物质如液晶、聚合物、胶体、膜、泡沫、颗粒物质、生命体系等,在自然界、生命体、日常生活和生产中广泛存在。它们与人们生活息息相关相关,如橡胶、墨水、洗涤液、饮料、乳液及药品和化妆品等等;在技术上也有广泛应用,如液晶、聚合物等;生物体基本上软物质组成,如细胞、体液、蛋白、DNA等。在我们日常所说的“软”的概念里,主要的特征就是容易形变。在软物质这个名词里也有类似的含义。 例如: 熔化:铁变成铁水,石蜡变成液态,海波变成液态 凝固:铁水变成铁,液态沥青放热凝固,液态石蜡放热凝固 汽化:沸腾,蒸发,酒精挥发 液化:露,雾,“白气” 升华:碘变成碘蒸气,冰变成水蒸汽,樟脑片不见了 凝华:霜,雾凇,冰花 ,雪 除此之外,还有等离子态、超固态、中子态。
编辑本段生活中的物态变化
更多自然界中所发生的物态变化现象: 1.夏天从冰糕上滴落的水滴(熔化) 2.冰粒变成雨滴降落下来(熔化) 3.修柏油马路时,用大熔灶熔沥青(熔化) 4.冰放在太阳下,一会儿就变成了水(熔化) 5.将钢放在炼钢炉内,一会儿就变成了钢水(熔化) 6.纯水凝结,结成冰块(凝固) 7.钢水浇铸成车轮(凝固) 8.雪灾中电线杆结起了冰柱(凝固) 9.钢水烧铸成火车轮(凝固) 10.火山喷发(先熔化后凝固) 11.秋天,清晨的雾在太阳出来后散去(汽化——蒸发) 12.洒在地面上的水不见了(汽化——蒸发) 13.擦在皮肤上的酒精马上干了(汽化——蒸发) 14.游泳上岸后身上感觉冷(汽化——蒸发) 15.烧开一壶水(汽化——沸腾) 16.夏天,冰棍周围冒“白气”(液化) 17.夏天,水缸外层“出汗”(液化) 18、早晨,草木上的小水滴(液化) 19.早晨的浓雾、露水(液化) 20.夏天,从冰箱里拿出来的饮料罐“出汗”(液化) 21、洗热水澡后,卫生间的玻璃变得模糊不清,一会儿又变得清晰起来(先液化后汽化) 22、用电热水器烧水,沸腾时不断有“白汽”冒出(先汽化后液化) 23、高温加热碘,碘的体积变小(升华) 24.衣箱中的樟脑丸渐渐变小(升华) 25.冬天,室外冰冻的衣服也会干(升华) 26.寒冷的冬天,堆的雪人变小了(升华) 27.灯丝(钨丝)变细(升华) 28.干冰(固态二氧化碳)用来人工降雨(升华) 29.冬天,玻璃窗内表面上形成的冰花(或“窗花”)(凝华) 30.屋顶的瓦上结了一层霜(凝华) 31.北方冬天的树挂(凝华) 32.南方雪灾中见到的雾淞(凝华) 33.灯泡(钨丝)发黑(凝华) 34.雪糕纸中发现的“白粉”(凝华) 35.干冰(固态二氧化碳)用来打造绝妙的舞台效果(先升华后液化) 36.雨的形成:①汽化(或蒸发)→液化→凝华→熔化;②汽化(或蒸发)→凝固→熔化 ③汽化(或蒸发)→液化 水的三大名称: 固态:冰(凝固)、霜(凝华)、雪(凝华)、凇、“窗花”(凝华)、雹(凝固)、白冰 液态:水、露(液化)、雨(液化)、雾(液化)、“白气”(升华) 气态:水蒸气 【注:水蒸气不可见,可见的是水蒸气液化形成的水珠。】
编辑本段物态变化知识梳理
教科版物理八年级上册第五章物态变化
(注意:第一节 地球上水的物态变化、 第四节 物态变化与我们的世界 知识合并在一起的) 一、地球上水的物态变化 物态变化与我们的世界 ⑴物态变化:①定义:物质由一种形态变为另一种形态的过程 ②物质三态:固态、液态、气态;物体三态:固体、液体、气体 ③种类:a.熔化:物质由固态变到液态的过程 b.凝固:物质由液态变到固态的过程 c.汽化:物质由液态变到气态的过程 d.液化:物质由气态变到液态的过程 e.升华:物质由固态直接变到气态的过程 f.凝华:物质由气态直接变到固态的过程(简记为“三态六变”)。 ⑵水循环:①雪、雨、水蒸气是水的三态;雨、雪、雹统称降水 ②水循环过程:海水汽化→水蒸气遇冷液化(或汽化→凝华→熔化) ③地球的三大生态系统:湿地、森林、海洋。 ⑶物态种类:固态、液态、气态、等离子体(气体被加热至上万℃时,将成为正负带电粒子组成的集合体)、超固态(白矮星、中子星、黑洞)、软物质(液晶、聚合物、胶体、膜、泡沫、颗粒物质、生命物质) 【液晶:a.定义:在特定条件下具有晶体结构的液体 b.特点:用极其微小的电流就能控制和改变其分子排列 c.应用:液晶电视机、液晶电脑、移动电话、电子地图】 补充:(在新物态的研究中作出卓越贡献的物理学家:朗缪尔发现等离子体,热纳发现软物质) ⑷物态变化的利用: ①热管:a.构造:一根密封的真空金属管,管内衬有一层叫吸液芯的多孔材料,里面装有酒精或其他液体; b.工作原理:热端受热,液体吸收热量汽化,蒸汽在管子里跑到冷端,在管壁遇冷液化,放出热量,冷凝后回到热端,循环往复;c.优点:把高温部分的热迅速传递到低温部分,使物体各部分温度基本均匀。 ②电冰箱:目前常用的电冰箱利用了一种叫做氟利昂的物质作为热的“搬运工”,电动压缩机把冰箱里的“热”“搬运”到冰箱的外面的冷凝器中(先汽化吸热,再液化放热) ③人类文明进展:蒸汽机时代→电气化时代→信息时代 ④水污染物:生活污水、工业废水、工业固体废物、生活垃圾 ⑤水污染会造成赤潮和水华等灾害。 二、温度 温度计(补充内容) ⑴温度:①定义:表示物体的冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度 ②用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位,有华氏温标(°F)、摄氏温标(°C)、热力学温标(K)和国际实用温标 ③单位换算:T(表示热力学温标)=273.15+t(表示摄氏温度),T(表示华氏温度)=1.8t(同上)+32 ④温度是大量分子热运动的集体表现,含有统计意义。对于个别分子来说,温度是没有意义的 ⑤温度与人类生活息息相关,人的正常体温为37°C或310K。无论人类如何改进低温技术,0K的温度都是达不到的,因此0K的温度又称为“绝对零度”或“绝对度”。 ⑵温度计:①定义:能够快速准确测量出物体温度的仪器 ②工作原理:a.常用温度计(温度计、体温计、寒暑表)是根据液体(如汞、酒精、煤油)的热胀冷缩原理制成的; b.数字式温度计是根据物体的导电性与温度的关系制成的 c.彩色温度表:根据物体在高温条件下所发的光的颜色来估测温度 ③注意:a.一切物体都具有热胀冷缩的性质。水在4℃以上会热胀冷缩而在4℃以下会冷胀热缩。这意味着,冰将会浮在水面 b.汞(又称水银)是唯一一种在常温下呈液态的金属物质 ④常用温度计的量程和分度值:一般温度计量程-20℃—100℃,分度值1℃ 寒暑表量程-20℃—60℃,分度值2℃ 体温计量程35℃—42℃,分度值0.1℃ ⑤使用方法:a.观察其量程、分度值、零刻度线 b.要使玻璃泡与被测液体充分接触,且不能碰到容器的底部和侧壁 c.要待其示数稳定后再读数,读数时视线要与凸液面最高处相平,且要注意示数是在零刻度线的上部还是下部(用负数读数) d.记数由数字和单位构成 ⑥体温计特点:玻璃泡上端有缩口,使体温计离开人体后温度稳定不变(第二次测量时只需轻轻甩动使温度降至正常温度即可)【除体温计外,其他温度计不可以甩动】 ⑦错误操作:a.用温度计直接测量燃烧的酒精灯的温度;b.用寒暑表测量沸水的温度;c.用水银温度计测量南北两极的温度;d.使用时碰到容器的底部和侧壁等。 【拓展:(摄氏温度的由来)冰水混合物的温度始终为0℃,在常温常压下,水的沸点为100℃,在0℃~100℃之间由100个分度值划分,每个分度值表示1℃】 三、熔化和凝固 ⑴固体的分类:①晶体:a.定义:有规则结构的固体;b.实例:雪花、钻石、食盐、糖、海波、许多矿石和所有金属; ②非晶体:a.定义:无规则结构的固体;b.实例:玻璃、松香、蜂蜡、沥青、塑料、橡胶等。【注意:晶体分为单晶体和多晶体,非晶体在一定条件下可以转化成晶体,可见,晶体和非晶体之间并没有绝对的界限】 ⑵固体的熔化特点:①晶体在熔化过程中,不断从外界吸收热量,温度保持不变;非晶体在熔化过程中不断吸收热量,温度持续上升 ②晶体在熔化时的温度叫做熔点。不同的晶体有不同的熔点,非晶体没有固定的熔点; ③晶体在熔化时是固液共存态;而非晶体是由硬变软,然后逐渐变成液态 ④晶体熔化条件:温度达到熔点,继续吸热(二者缺一不可) ⑶液体的凝固特点:①晶体在凝固过程中,不断放出热量,温度保持不变;非晶体在凝固过程中不断放出热量,温度不断下降 ②晶体在凝固时的温度叫凝固点。晶体有一定的凝固点,而非晶体没有 ③晶体在凝固过程中有固液共存态,而非晶体没有 ④凝固是熔化的逆过程,同种物质的熔点和凝固点相同 ⑤液体凝固的条件:温度达到凝固点,继续放热(缺一不可) ⑷补充:a.冰水混合物的温度始终为0℃ b.晶体的熔点跟气压的大小有关,熔化时体积变大的物体,在气压增大时熔点升高 c.晶体中含有杂质时,其熔点会发生变化(当冰中含有酸碱盐糖时,其熔点会降低) ⑸火山喷发与太空材料(如砷化镓)的制造过程:先熔化后凝固。 四、汽化和液化 Ⅰ、汽化:⑴两种方式:蒸发和沸腾 ⑵蒸发:①定义:液体在任何温度下均可发生,并且只在液体表面发生的汽化现象 ②影响蒸发快慢的因素:a.液体的温度; b.液体上方空气流动速度; c.液体的表面积 d.液体的种类 ③特点:蒸发吸热,有制冷作用 ⑶沸腾:①定义:在一定温度下,液体内部和表面同时发生的剧烈汽化现象 ②液体在沸腾过程中温度保持不变,此时的温度叫做沸点,不同物质的沸点不同 ③液体沸腾的条件:温度达到沸点,继续从外界吸热(缺一不可) ④影响沸点的因素:液体的沸点与气压的大小有关,气压减小,沸点降低,气压增大,沸点升高。 Ⅱ、液化:①两种方式:降低温度或压缩体积;(亦可简称为“降温”或“加压”) ②液化要放热 ③降低温度适用于所有气体,而压缩体积只适用于部分气体 ④补充:水蒸气是看不见的,我们看得见的“白汽”“白雾”都不是水蒸气,都是液态的小水珠,是水蒸气遇冷后液化形成的。 五、升华和凝华: Ⅰ、升华(吸热),凝华(放热) Ⅱ、判断物态变化是不是升华或凝华,要看变化中间是否经历了液态,若经历了液态,则不是升华或凝华现象;若没有经历液态,则一定是升华或凝华现象。 Ⅲ、生活中常见的升华现象:①灯丝(或钨丝)变细 ②冬天,室外冰冻的衣服晾干了 ③衣箱中的樟脑丸(或卫生球)渐渐变小 ④高温加热碘,碘的体积变小 ⑤寒冷的冬天,堆的雪人变小了 ⑥干冰(固态二氧化碳)升华用来打造绝妙的舞台效果,也可用来人工降雨 Ⅳ、生活中常见的凝华现象: ①冬天,玻璃窗内表面上结的冰花 ②北方冬天的树挂 ③霜的形成 ④南方雪灾中见到的雾淞 ⑤灯泡(或钨丝)发黑 ⑥雪糕纸中发现的“白粉”。

H. 物态变化的定义是什么三种物态之间的关系是什么

物态变化的定义:物质由一种状态变为另一种状态的过程称为物态变化。物质通常有固态、液态、气态三种状态,这三种状态在一定条件下可以互相转化。

三种物态之间的关系如下图所示。从图可以看出:凝固是熔化的逆过程;液化是汽化的逆过程;凝华是升华的逆过程。但要注意:汽化包括蒸发和沸腾。


希望帮助到你,若有疑问,可以追问~~~

祝你学习进步,更上一层楼!(*^__^*)


附图如下:

阅读全文

与初中物理什么叫物态相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:744
乙酸乙酯化学式怎么算 浏览:1409
沈阳初中的数学是什么版本的 浏览:1360
华为手机家人共享如何查看地理位置 浏览:1051
一氧化碳还原氧化铝化学方程式怎么配平 浏览:891
数学c什么意思是什么意思是什么 浏览:1418
中考初中地理如何补 浏览:1309
360浏览器历史在哪里下载迅雷下载 浏览:707
数学奥数卡怎么办 浏览:1398
如何回答地理是什么 浏览:1032
win7如何删除电脑文件浏览历史 浏览:1061
大学物理实验干什么用的到 浏览:1491
二年级上册数学框框怎么填 浏览:1710
西安瑞禧生物科技有限公司怎么样 浏览:991
武大的分析化学怎么样 浏览:1253
ige电化学发光偏高怎么办 浏览:1342
学而思初中英语和语文怎么样 浏览:1662
下列哪个水飞蓟素化学结构 浏览:1428
化学理学哪些专业好 浏览:1491
数学中的棱的意思是什么 浏览:1068