❶ 高中文科物理总结(概念+公式)
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt2 -Vo2=2as
3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2 +Vt2)/2]1/2 6.位移S= V平t=Vot + at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=Vot- gt2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推论Vt2 -Vo2=-2gS 4.上升最大高度Hm=Vo2/2g (抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx2+ Sy2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/R=ω2R=(2π/T)2R 4.向心力F心=mV2/R=mω2R=m(2π/T)2R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r2 G=6.67×10-11N•m2/kg2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R3)1/2 T=2π(R3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步卫星GMm/(R+h)2=m4π2(R+h)/T2 h≈36000 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
三、力(常见的力、力矩、力的合成与分解)
1)常见的力
1.重力G=mg方向竖直向下g=9.8m/s2 ≈10 m/s2 作用点在重心 适用于地球表面附近
2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)
3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)
4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反 fm为最大静摩擦力
5.万有引力F=Gm1m2/r2 G=6.67×10-11N•m2/kg2 方向在它们的连线上
6.静电力F=KQ1Q2/r2 K=9.0×109N•m2/C2 方向在它们的连线上
7.电场力F=Eq E:场强N/C q:电量C 正电荷受的电场力与场强方向相同
8.安培力F=BILsinθ θ为B与L的夹角 当 L⊥B时: F=BIL , B//L时: F=0
9.洛仑兹力f=qVBsinθ θ为B与V的夹角 当V⊥B时: f=qVB , V//B时: f=0
注:(1)劲度系数K由弹簧自身决定(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定。(3)fm略大于μN 一般视为fm≈μN (4)物理量符号及单位 B:磁感强度(T), L:有效长度(m), I:电流强度(A),V:带电粒子速度(m/S), q:带电粒子(带电体)电量(C),(5)安培力与洛仑兹力方向均用左手定则判定。
2)力矩
1.力矩M=FL L为对应的力的力臂,指力的作用线到转动轴(点)的垂直距离
2.转动平衡条件 M顺时针= M逆时针 M的单位为N•m 此处N•m≠J
3)力的合成与分解
1.同一直线上力的合成 同向: F=F1+F2 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成
F=(F12+F22+2F1F2cosα)1/2 F1⊥F2时: F=(F12+F22)1/2
3.合力大小范围 |F1-F2|≤F≤|F1+F2|
4.力的正交分解Fx=Fcosβ Fy=Fsinβ β为合力与x轴之间的夹角tgβ=Fy/Fx
注:(1)力(矢量)的合成与分解遵循平行四边形定则。(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立。(3)除公式法外,也可用作图法求解,此时要选择标度严格作图。(4)F1与F2的值一定时,F1与F2的夹角(α角)越大合力越小。(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化成代数运算。
四、动力学(运动和力)
1.第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
2.第二运动定律:F合=ma 或a=F合/m a由合外力决定,与合外力方向一致。
3.第三运动定律F= -F´ 负号表示方向相反,F、F´各自作用在对方,实际应用:反冲运动
4.共点力的平衡F合=0 二力平衡 5.超重:N>G 失重:N<G
注:平衡状态是指物体处于静上或匀速度直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1. 简谐振动F=-KX F:回复力 K:比例系数 X:位移 负号表示F与X始终反向。
2.单摆周期T=2π(L/g)1/2 L:摆长(m) g:当地重力加速度值 成立条件:摆角θ<50
3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固 共振的防止和应用A140
5.波速公式V=S/t=λf=λ/T 波传播过程中,一个周期向前传播一个波长。
6.声波的波速(在空气中) 0℃:332m/s 20℃:344m/s 30℃:349m/s (声波是纵波)
7.波发生明显衍射条件: 障碍物或孔的尺寸比波长小,或者相差不大。
8.波的干涉条件: 两列波频率相同 *(相差恒定、振幅相近、振动方向相同)
注:(1)物体的固有频率与振幅、驱动力频率无关。(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处。(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式。(4)干涉与衍射是波特有。(5)振动图象与波动图象。
六、冲量与动量(物体的受力与动量的变化)
1.动量P=mV P:动量(Kg/S) m:质量(Kg) V:速度(m/S) 方向与速度方向相同
3.冲量I=Ft I:冲量(N•S) F:恒力(N) t:力的作用时间(S) 方向由F决定
4.动量定理I =ΔP 或 Ft= mVt - mVo ΔP: 动量变化ΔP=mVt - mVo 是矢量式
5.动量守恒定律P前总=P后总 P=P´ m1V1+m2V2= m1V1´+ m2V2´
6.弹性碰撞ΔP=0;ΔEK=0 (即系统的动量和动能均守恒)
7.非弹性碰撞ΔP=0;0<ΔEK<ΔEKm ΔEK:损失的动能 EKm:损失的最大动能
8.完全非弹性碰撞ΔP=0;ΔEK=ΔEKm (碰后连在一起成一整体)
9.物体m1以V1初速度与静止的物体m2发生弹性正碰(见教材C158):
V1´=(m1-m2)V1/(m1+m2) V2´=2m1V1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度Vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损 E损=mVo2/2-(M+m)Vt2/2=fL相对 Vt:共同速度 f:阻力
注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上。(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算(3)系统动量守恒的条件:合外力为零或内力远远大于外力,系统在某方向受的合外力为零,则在该方向系统动量守恒(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒。(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加。
七、功和能(功是能量转化的量度)
1.功W=FScosα (定义式) W:功(J) F:恒力(N) S:位移(m) α:F、S间的夹角
2.重力做功Wab=mghab m:物体的质量 g=9.8≈10 hab:a与b高度差(hab=ha-hb)
3.电场力做功Wab=qUab q:电量(C) Uab:a与b之间电势差(V)即Uab=Ua-Ub
4.电功w=UIt (普适式) U:电压(V) I:电流(A) t:通电时间(S)
6.功率P=W/t (定义式) P:功率[瓦(W)] W:t时间内所做的功(J) t:做功所用时间(S)
8.汽车牵引力的功率 P=FV P平=FV平 P:瞬时功率 P平:平均功率
9.汽车以恒定功率启动、 以恒定加速度启动、 汽车最大行驶速度(Vmax=P额/f)
10.电功率P=UI (普适式) U:电路电压(V) I:电路电流(A)
11.焦耳定律Q=I2Rt Q:电热(J) I:电流强度(A) R:电阻值(Ω) t:通电时间(秒)
12.纯电阻电路中I=U/R P=UI=U2/R=I2R Q=W=UIt=U2t/R=I2Rt
13.动能Ek=mv2/2 Ek:动能(J) m:物体质量(Kg) v:物体瞬时速度(m/s)
14.重力势能EP=mgh EP :重力势能(J) g:重力加速度 h:竖直高度(m) (从零势能点起)
15.电势能εA=qUA εA:带电体在A点的电势能(J) q:电量(C) UA:A点的电势(V)
16.动能定理(对物体做正功,物体的动能增加) W合= mVt 2/2 - mVo2/2 W合=ΔEK
W合:外力对物体做的总功 ΔEK:动能变化ΔEK =( mVt 2/2- mVo2/2)
17.机械能守恒定律ΔE=0 EK1+EP1=EK2+EP2 mV12/2+mgh1=mV22/2+ mgh2
18.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG= - ΔEP
注:(1)功率大小表示做功快慢,做功多少表示能量转化多少。(2)O0≤α<90O 做正功; 90O<α≤180O 做负功;α=90o 不做功(力方向与位移(速度)方向垂直时该力不做功)。 (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少。(4)重力做功和电场力做功均与路径无关(见2、3两式)。(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化 (6)能的其它单位换算:1KWh(度)=3.6×106J 1eV=1.60×10-19J。*(7)弹簧弹性势能E=KX2/2 。
八分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol 2.分子直径数量级10-10米
3.油膜法测分子直径d=V/s V:单分子油膜的体积(m3) S:油膜表面积(m2)
4.分子间的引力和斥力(1) r<r0 f引<f斥 F分子力表现为斥力
(2) r=r0 f引=f斥 F分子力=0 E分子势能=Emin(最小值)
(3) r>r0 f引>f斥 F分子力表现为引力
(4) r>10r0 f引=f斥≈0 F分子力≈0 E分子势能≈0
5.热力学第一定律W+Q=ΔE (做功和热传递,这两种改变物体内能的方式,在效果上是等效的) W:外界对物体做的正功(J) Q:物体吸收的热量(J) ΔE:增加的内能(J)
注:(1)布朗粒子不是分子,布朗粒子越小布朗运动越明显,温度越高越剧烈。(2)温度是分子平均动能的标志。(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快。(4)分子力做正功分子势能减小,在r0处F引=F斥且分子势能最小。(5)气体膨胀,外界对气体做负功W<0。(6)物体的内能是指物体所有的分子动能和分子势能的总和。对于理想气体分子间作用力为零,分子势能为零。(7)能的转化和定恒定律,能源的开发与利用见教材A195。(8)r0为分子处于平衡状态时,分子间的距离。
九、气体的性质
1.标准大气压 1atm=1.013×105Pa=76cmHg ( 1Pa=1N/m2 )
2.热力学温度与摄氏温度关系T=t+273 T:热力学温度(K) t:摄氏温度(℃)
3. 理想气体 PV/T=恒量 P:气体压强 V:气体体积 T:热力学温度
十、电场
1.两种电荷、电荷守恒定律、元电荷(e=1.60×10-19C)
2.库仑定律F=KQ1Q2/r2(在真空中)*F=KQ1Q2/εr2(在介质中) F:点电荷间的作用力(N)
K:静电力常量K=9.0×109N•m2/C2 Q1、Q2:两点荷的电量(C) ε:介电常数 r:两点荷间的距离(m) 方向在它们的连线上,同种电荷互相排斥,异种电荷互相吸引。
3.电场强度E=F/q (定义式、计算式) E :电场强度(N/C) q:检验电荷的电量(C) 是矢量
4.真空点电荷形成的电场E=KQ/r2 r:点电荷到该位置的距离(m) Q:点电荷的电亘
5.电场力F=qE F:电场力(N) q:受到电场力的电荷的电量(C) E:电场强度(N/C)
6.电势与电势差UA=εA/q UAB=UA- UB UAB =WAB/q=- ΔεAB/q
7.电场力做功WAB= qUAB WAB:带电体由A到B时电场力所做的功(J) q:带电量(C)
UAB:电场中A、B两点间的电势差(V) (电场力做功与路径无关)
8.电势能εA=qUA εA:带电体在A点的电势能(J) q:电量(C) UA:A点的电势(V)
9.电势能的变化ΔεAB =εB- εA (带电体在电场中从A位置到B位置时电势能的差值)
10.电场力做功与电势能变化ΔεAB= -WAB= -qUAB (电势能的增量等于电场力做功的负值)
11.电容C=Q/U (定义式,计算式) C:电容(F) Q:电量(C) U:电压(两极板电势差)(V)
12.匀强电场的场强E=UAB/d UAB:AB两点间的电压(V) d:AB两点在场强方向的距离(m)
13.带电粒子在电场中的加速(Vo=0) W=ΔEK qu=mVt2/2 Vt=(2qU/m)1/2
14.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类似于平 垂直电杨方向:匀速直线运动L=Vot (在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动 d=at2/2 a=F/m=qE/m
15.*平行板电容器的电容C=εS/4πKd S:两极板正对面积 d:两极板间的垂直距离
注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分。(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直。(3)常见电场的电场线分布要求熟记,(见图、[教材B7、C178])。(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关。(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面.导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面。(6)电容单位换算1F=106μF=1012PF (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J。(8)静电的产生、静电的防止和应用要掌握。
❷ 几道物理题 文科的
1.由AB-OA= BC- AB=12mm=0.012m,可知小车的运动可看作匀加速运动。
由B到C的时间为T=0.1s
由△S=aT²得 加速度a=△S/T²=0.012/0.1²=1.2m/s²
设B点和C点速度分别为v′和v〃,BC间平均速度v=0.36m/s(你已算出)
由平均速度公式得(v′+v〃)/2=v
由速度公式得到 v〃 =v′=aT
由以上两人民得,v〃=v+aT/2=(0.36+1.2X0.1/2)m/s=0.42m/s
2.铁路弯道内轨低于外轨,速度正常时,重力和路面支持力提供向心力。当火车速率小于规定的速率时,向心力减小,而内轨对车轮向外产生了侧向压力,才会使向心力减小。
3.万有引力提供向心力。GMm/(R+h)²=m(R+h)(2π/T)²
即 GM/(R+h)²=(R+h)(2π/T)²
上式万有引力恒量G,地球质量M,地球半径R,地球自转周期T都是恒量。所以卫星离地面的高度h 是唯一确定的,不可以选择。
4.可能有重力以外的力对物体做功。比如用升降机加速提升物体。
5.由动能定律可知,物体减小的动能等于物体克服阻力所做的功。如减小的动能相等,则克服阻力所做的功就相等。
对文科生的理科学业水平测试的分数要求各省要求不一致。一般还是达到A放心些。
❸ 高中文科物理所有相关公式、概念
(1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。
例1 了解亚里士多德关于力与运动的主要观点和研究方法。
例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。
(2)通过对质点的认识,了解物理学研究中物理模型的特点,体会物理模型在探索自然规律中的作用。
例3 认识在哪些情况下,可以把物体看成质点。
(3)经历匀变速直线运动的实验研究过程,理解位移、速度和加速度,了解匀变速直线运动的规律,体会实验在发现自然规律中的作用。
例4 用打点计时器、频闪照相或其他实验方法研究匀变速直线运动。
例5 通过史实,了解伽利略研究自由落体运动所用的实验和推理方法。
(4)能用公式和图像描述匀变速直线运动,体会数学在研究物理问题中的重要性。
(二)相互作用与运动规律
1.内容标准
(1)通过实验认识滑动摩擦、静摩擦的规律,能用动摩擦因数计算摩擦力。
(2)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。
例1 调查日常生活和生产中所用弹簧的形状及使用目的(如获得弹力或减缓振动等)。
例2 制作一个简易弹簧秤,用胡克定律解释其工作原理。
(3)通过实验,理解力的合成与分解,知道共点力的平衡条件,区分矢量与标量,用力的合成与分解分析日常生活中的问题。
例3 研究两个大小相等的共点力在不同夹角时的合力大小。
(4)通过实验,探究加速度与物体质量、物体受力的关系。理解牛顿运动定律,用牛顿运动定律解释生活中的有关问题。通过实验认识超重和失重现象。
例4 通过实验测量加速度、力、质量,分别作出表示加速度与力、加速度与质量的关系的图像,根据图像写出加速度与力、质量的关系式。体会探究过程中所用的科学方法。
例5 根据牛顿第二定律说明物体所受的重力与质量的关系。
(5)认识单位制在物理学中的重要意义。知道国际单位制中的力学单位。
例6 在等式 中给定k = 1,从而定义力的单位。
共同必修模块物理二
(一)机械能和能源
1.内容标准
(1)举例说明功是能量变化的量度,理解功和功率。关心生活和生产中常见机械功率的大小及其意义。
例1 分析物体移动的方向与力的方向不在一条直线上时力所做的功。
例2 分析汽车发动机的功率一定时,牵引力与速度的关系。
(2)通过实验,探究恒力做功与物体动能变化的关系。理解动能和动能定理。用动能定理解释生活和生产中的现象。
例3 用打点计时器或光电计时器探究恒力做功与物体动能变化的关系。
例4 从牛顿第二定律导出动能定理。
(3)理解重力势能。知道重力势能的变化与重力做功的关系。
(4)通过实验,验证机械能守恒定律。理解机械能守恒定律。用机械能守恒定律分析生活和生产中的有关问题。
(5)了解自然界中存在多种形式的能量。知道能量守恒是最基本、最普遍的自然规律之一。
(6)通过能量守恒以及能量转化和转移的方向性,认识提高效率的重要性。了解能源与人类生存和社会发展的关系,知道可持续发展的重大意义。
(二)抛体运动与圆周运动
1.内容标准
(1)会用运动合成与分解的方法分析抛体运动。
例1 分别以物体在水平方向和竖直方向的位移为横坐标和纵坐标,描绘做抛体运动的物体的轨迹。
(2)会描述匀速圆周运动。知道向心加速度。
(3)能用牛顿第二定律分析匀速圆周运动的向心力。分析生活和生产中的离心现象。
例2 估测自行车拐弯时受到的向心力。
(4)关注抛体运动和圆周运动的规律与日常生活的联系。
(三)经典力学的成就与局限性
1.内容标准
(1)通过有关事实了解万有引力定律的发现过程。知道万有引力定律。认识发现万有引力定律的重要意义,体会科学定律对人类探索未知世界的作用。
例1 通过用万有引力定律发现未知天体的事实,说明科学定律对人类认识世界的作用。
(2)会计算人造卫星的环绕速度。知道第二宇宙速度和第三宇宙速度。
(3)初步了解经典时空观和相对论时空观,知道相对论对人类认识世界的影响。
(4)初步了解微观世界中的量子化现象,知道宏观物体和微观粒子的能量变化特点,体会量子论的建立深化了人类对于物质世界的认识。
(5)通过实例,了解经典力学的发展历程和伟大成就,体会经典力学创立的价值与意义,认识经典力学的实用范围和局限性。
例2 了解经典力学对航天技术发展的重大贡献。
例3 了解重物下落与天体运动的多样性与统一性,知道万有引力定律对科学发展所起的重要作用。
(6)体会科学研究方法对人们认识自然的重要作用。举例说明物理学的进展对于自然科学的促进作用。
选修模块
选修课程是在共同必修的基础上为满足学生的学习需求而设计的。在选修课程中既考虑了学生的基本学习需求,又为学生的进一步发展提供了空间;既为学生设计了适合其兴趣爱好和能力倾向的不同模块,又考虑了不同模块的相互联系和共同要求。
选修1-1
(一)电磁现象与规律
1.内容标准
(1)用物质的微观模型和电荷守恒定律分析静电现象。认识点电荷间的相互作用规律。
(2)通过实验,认识电场和磁场,会用电场线、电场强度描述电场,会用磁感线、磁感应强度描述磁场。知道磁通量。
例1 用电场线描绘两个等量异种点电荷周围的电场。
例2 用磁感线描绘通电直导线周围的磁场。
(3)了解奥斯特、安培等科学家的实验研究对人们认识电磁现象所起的重要作用。知道匀强磁场中影响通电导线所受安培力大小和方向的因素。
例3 简述奥斯特实验对揭示电磁规律的重要作用。
(4)通过实验,认识洛仑兹力。知道影响洛仑兹力方向的因素。了解电子束的磁偏转原理及其在技术中的应用。
例4 观察阴极射线在磁场中的偏转。
例5 初步了解显像管的工作原理。
(5)收集资料,了解电磁感应定律的发现过程,知道电磁感应定律。列举电磁感应现象在日常生活和生产中的应用,体会人类探索自然规律的科学态度和科学精神。
(6)初步了解麦克斯韦电磁场理论的基本思想,体会其在物理学发展中的意义。初步了解场是物质存在的形式之一。
(二)电磁技术与社会发展
1.内容标准
(1)收集有关电磁领域重大技术发明的资料。从历史角度认识这些技术发明对人类生活方式、社会发展所起的重要作用。
例1 阐述我国古代有关磁现象的研究与发明及其对社会发展的影响。
例2 收集爱迪生与电有关的技术发明资料。
例3 简述电话对人们生活方式、社会发展所起的重要作用。
(2)了解发电机、电动机对能源利用方式、工业发展所起的作用。
例4 对比热机和电动机的工作原理,讨论从热机到电动机的技术变革对工业发展所起的作用。
(3)了解常见传感器及其应用,体会传感器的应用给人们带来的方便。
例5 知道温度传感器具有将温度信号转变为电信号的作用。
(4)列举电磁波在日常生活和生产中的广泛应用。了解电磁波的技术应用对人类生活方式的影响,结合日常生活中的具体实例发表见解。
例6 讨论通信技术的发展对人类生活方式的影响。
(5)举例说明科学技术的应用对人类现代生活产生的正面和负面影响,对科学、技术及社会协调发展的重要性发表自己的观点。
例7 举例说明电磁波的应用对人类生活产生的正面和负面影响。
1.内容标准
(1)初步了解常见家用电器的基本工作原理,能根据说明书正确使用家用电器。
例1 通过观察、查阅资料,了解微波炉的结构和工作原理,能根据说明书正确使用微波炉。 例2 通过观察、查阅资料,了解录音机的结构和工作原理,能根据说明书正确使用录音机。
(2)知道常见家用电器技术参数的含义,能根据需要合理选用家用电器。讨论在家庭中节约用电的多种途径。
例3 阅读洗衣机说明书,知道其技术参数的含义。
(3)识别电阻器、电容器和电感器,初步了解它们在电路中的作用。具有初步判断家用电器故障原因的意识。
(4)了解家庭电路和安全用电知识,具有安全用电意识。
(一)热现象与规律
1.内容标准
(1)了解分子动理论的基本观点,列举有关实验证据。用分子动理论和统计观点认识温度、气体压强和内能。
例1 观察并解释布朗运动。
(2)了解热力学第一定律。知道能量守恒是自然界普遍遵从的基本规律。
(3)通过自然界中热传导的方向性等事例,初步了解热力学第二定律,初步了解熵是描述系统无序程度的物理量。
例2 尝试用生活中的事例说明热力学第二定律。
(4)能运用热力学第一、第二定律解释自然界中能量的转化、转移以及方向性问题。
例3 讨论第一类永动机和第二类永动机。
(二)电路
1.内容标准
(1)观察并尝试识别常见的电路元器件,初步了解它们在电路中的作用。
(2)初步了解多用电表的原理。通过实际操作学会使用多用电表。
例1 以多用电表代替学生用电表进行各种电学实验。
例2 以多用电表为测量工具,判断二极管的正、负极,判断大容量电容器是否断路或者漏电。
(3)通过实验,探究决定导线电阻的因素,知道电阻定律。
(4)知道电源的电动势和内阻,理解闭合电路的欧姆定律。
(5)测量电源的电动势和内阻。
(6)知道焦耳定律,了解焦耳定律在生活、生产中的应用。
例3 观察常见电热器的结构,知道其使用要点。
(7)通过实验,观察门电路的基本作用。初步了解逻辑电路的基本原理以及在自动控制中的应用。
(8)初步了解集成电路的作用。关注我国集成电路以及元器件研究的发展情况。
2.活动建议
(1)分别描绘电炉丝、小灯泡、半导体二极管的I-U特性曲线,对比它们导电性能的特点。
(2)用光敏二极管和微型话筒制作楼道灯的光控—声控开关。
(3)收集新型电热器的资料,了解其发热原理。
(4)制作简单的门电路。
(5)利用集成块制作简单的实用装置。
(三)磁场
1.内容标准
(1)列举磁现象在生活、生产中的应用。了解我国古代在磁现象方面的研究成果及其对人类文明的影响。关注与磁相关的现代技术发展。
例1 观察计算机磁盘驱动器的结构,大致了解其工作原理。
(2)了解磁场,知道磁感应强度和磁通量。会用磁感线描述磁场。
例2 了解地磁场的分布、变化,以及对人类生活的影响。
(3)会判断通电直导线和通电线圈周围磁场的方向。
(4)通过实验,认识安培力。会判断安培力的方向。会计算匀强磁场中安培力的大小。
例3 利用电流天平或其他简易装置,测量或比较磁场力。
例4 了解磁电式电表的结构和工作原理。
(5)通过实验,认识洛仑兹力。会判断洛仑兹力的方向,会计算洛仑兹力的大小。了解电子束的磁偏转原理以及在科学技术中的应用。
例5 观察阴极射线在磁场中的偏转。
例6 了解质谱仪和回旋加速器的工作原理。
(6)认识电磁现象的研究在社会发展中的作用。
2.活动建议
(1)用电磁继电器安装一个自动控制电路。
(2)观察电视显像管偏转线圈的结构,讨论控制电子束偏转的原理。
选修模块选修3-2
(一)电磁感应
1.内容标准
(1)收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。
(2)通过实验,理解感应电流的产生条件。举例说明电磁感应在生活和生产中的应用。
(3)通过探究,理解楞次定律。理解法拉第电磁感应定律。
例1 分析电动机运转时产生反电动势的现象,分别用力和能量的观点进行说明。
(4)通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。
例2 观察日光灯电路,分析日光灯镇流器的作用和原理。
例3 观察家用电磁灶,了解电磁灶的结构和原理。
2.活动建议
从因特网、科技书刊上查阅资料,了解电磁感应在生活和生产中的应用,例如磁卡阅读器、录音机、录像机的原理等。
(二)交变电流
1.内容标准
(1)知道交变电流,能用函数表达式和图像描述交变电流。
例1 用示波器观察交变电流的波形,并测算其峰值和有效值。
(2)通过实验,了解电容器和电感器对交变电流的导通和阻碍作用。
例2 用灯泡或交流电流表观察电容器和电感器对交变电流的阻碍作用。
(3)通过实验,探究变压器电压与匝数的关系。
例3 观察生活中常见的变压器,了解其作用。
(4)了解从变电站到住宅的输电过程,知道远距离输电时应用高电压的道理。
例4 查阅资料,了解直流输电的原理,比较交流输电和直流输电的特点。
2.活动建议
(1)参观当地的小型电厂,了解发电过程。调查发电机的容量、居民用电和工业用电情况。撰写调查报告。
(2)观察变电站和高压输电线路。
(三)传感器
1.内容标准
(1)知道非电学量转换成电学量的技术意义。
(2)通过实验,知道常见传感器的工作原理。
例1 通过实验认识温度传感器将温度信号转变为电信号的作用。
(3)列举传感器在生活和生产中的应用。
例2 了解光敏传感器及其在日常生活中的应用。
2. 活动建议
(1)调查日常生活中传感器的应用,对其中一种的工作原理、技术意义、经济效益进行分析。
(2)利用传感器制作简单的自动控制装置。
选修模块选修3-3
(一)分子动理论与统计思想
1. 内容标准
(1)认识分子动理论的基本观点,知道其实验依据。知道阿伏加德罗常数的意义。
例1 估测油酸分子大小,体会建立模型和估测方法在研究物理问题中的应用。
例2 观察并解释布朗运动。
(2)了解分子运动速率的统计分布规律。认识温度是分子平均动能的标志。理解内能的概念。
(3)用分子动理论和统计观点解释气体压强。
(4)通过调查,了解日常生活中表现统计规律的事例。
2.活动建议
(1)投掷硬币,分别计算投掷10次、100次、500次时,硬币正反面出现次数的百分率。
(2)跟踪记录天气预报中的“降水概率”和实际的降水情况,对不同季节降水预报的准确度做出评价。
(二)固体、液体与气体
1. 内容标准
(1)了解固体的微观结构。会区别晶体和非晶体,列举生活中常见的晶体和非晶体。
例1 用熔化的石蜡显示云母片和玻璃片的各向异性与各向同性。
(2)了解材料科学技术的有关知识及应用,体会它们的发展对人类生活和社会发展的影响。
例2 知道半导体的一些特点,了解半导体技术在生活、生产中的应用。
例3 初步了解纳米材料的特性,关注纳米材料的研究和应用。
(3)了解液晶的微观结构。通过实例了解液晶的主要性质及其在显示技术中的应用。
(4)通过实验,观察液体的表面张力现象,解释表面张力产生的原因,交流讨论日常生活中表面张力现象的实例。
例4 在装满水的杯子内轻轻放入一些小硬币,观察杯边水面的形状。
(5)通过实验,了解气体实验定律,知道理想气体模型。用分子动理论和统计观点解释气体压强和气体实验定律。
(6)知道饱和汽、未饱和汽和饱和气压。了解相对湿度。举例说明空气的相对湿度对人的生活和植物生长的影响。
例5 体验并说出人在不同湿度下的感受。
例6 记录电视台和广播电台天气预报的主要指标,了解这些指标的含义及其对人类生活的影响。
2.活动建议
(1)设计实验,比较肥皂水和清水的表面张力。
(2)观察气压保温瓶的构造,讨论气压保温瓶的出水原理。
(三)热力学定律与能量守恒
1. 内容标准
(1)通过有关史实,了解热力学第一定律和能量守恒定律的发现过程。体会科学探索中的挫折和失败对科学发现的意义。
(2)认识热力学第一定律。理解能量守恒定律。用能量守恒观点解释自然现象。体会能量守恒定律是最基本、最普遍的自然规律之一。
(3)通过自然界中宏观过程的方向性,了解热力学第二定律。初步了解熵是反映系统无序程度的物理量。
例:解释第二类永动机不可能制成的原因。
2.活动建议
(1)假如一颗直径1 km的小行星撞击地球,估算其释放的能量。讨论这将给地球造成的危害。
(2)通过讨论,设想一种使热量从低温处流向高温处的技术设备,说明这种设备是否违反了热力学第二定律。
(四)能源与可持续发展
1. 内容标准
(1)认识能源和环境与人类生存的关系,知道可持续发展的重大意义。
(2)讨论能源开发和利用带来的问题及应该采取的对策。具有保护环境的意识。
例1 了解燃烧化石燃料产生的气体对环境造成的污染,了解减小这些污染的方法。
(3)尝试估计一些厂矿、交通工具及家用电器的能源消耗。具有可持续发展的责任感和节约能源的意识。注意自然资源的循环利用。
例2 根据汽车的“百公里耗油量”估算,一辆汽车每行驶100 km消耗的能量,相当于一个家庭多少天的用电量。
2. 活动建议
(1)调查所在地区运往外地的主要货物,在综合考虑降低能耗、方便运输、减少污染、保证安全、减低费用、减少交通拥挤等因素的基础上,讨论运输这些货物的可行性方案。
(2)讨论技术进步对利用自然资源和节约能源方面的影响。
选修模块选修3-4
(一)机械振动与机械波
1.内容标准
(1)通过观察和分析,理解简谐运动的特征。能用公式和图像描述简谐运动的特征。
例1 比较做简谐运动的物体在不同位置所受的力、速度、加速度、动能和势能。
例2 用两个摆长相同的单摆演示简谐运动的相位差。
(2)通过实验,探究单摆的周期与摆长的关系。
(3)知道单摆周期与摆长、重力加速度的关系。会用单摆测定重力加速度。
(4)通过实验,认识受迫振动的特点。了解产生共振的条件以及在技术上的应用。
例3 调查生活和生产中受迫振动的应用实例及利用和防止共振的实例。
(5)通过观察,认识波是振动传播的形式和能量传播的形式。能区别横波和纵波。能用图像描述横波。理解波速、波长和频率(周期)的关系。
(6)了解惠更斯原理,能用其分析波的反射和折射。
(7)通过实验,认识波的干涉现象、衍射现象。
例4 用示波器显示波的叠加。
例5 观察音叉双臂振动激发的水波干涉现象。
(8)通过实验感受多普勒效应。解释多普勒效应产生的原因。列举多普勒效应的应用实例。
2.活动建议
(1)学生们站成一排,依次下蹲、起立,模拟机械波。
(2)设计一种利用多普勒效应的实用装置。
(二)电磁振荡与电磁波
1.内容标准
(1)初步了解麦克斯韦电磁场理论的基本思想以及在物理学发展史上的意义。
(2)了解电磁波的产生。通过电磁波体会电磁场的物质性。
(3)了解电磁波的发射、传播和接收。
例1 演示赫兹实验。
(4)通过实例认识电磁波谱,知道光是电磁波。
(5)了解电磁波的应用和在科技、经济、社会发展中的作用。
2.活动建议
(1)通过自学、查找资料和访问,了解移动通信的原理。调查当地移动通信的发展情况。
(2)进行市场调查,列举家用电器和生活用品中与红外线、紫外线有关的应用实例。
(三)光
1.内容标准
(1)通过实验,理解光的折射定律。
(2)测定材料的折射率。
(3)认识光的全反射现象。初步了解光导纤维的工作原理和光纤在生产、生活中的应用。认识光纤技术对经济社会生活的重大影响。
例1 演示光沿水柱(或弯曲的玻璃柱)的传播。
例2 观察光缆的结构。
(4)观察光的干涉、衍射和偏振现象。知道产生干涉、衍射现象的条件。用双缝干涉实验测定光的波长。
例3 观察光的薄膜干涉现象。
(5)了解激光的特性和应用。用激光观察全息照相。
2.活动建议
(1)拍摄激光照射针尖时的衍射照片。
(2)通过调查研究,收集光的偏振现象应用实例。
(四)相对论
(1)知道狭义相对论的实验基础、基本原理和主要结论。
例1 知道同时的相对性、长度的相对性、时间间隔的相对性。
例2 知道相对论速度叠加规律。
例3 知道相对论质能关系。
(2)了解经典时空观与相对论时空观的主要区别。体会相对论的建立对人类认识世界的影响。
例4 通过实例,了解时间和空间的相对性,体会相对论时空观与低速世界情境的差异。
(3)初步了解广义相对论的几个主要观点以及主要观测证据。
(4)关注宇宙学研究的新进展。
选修模块选修3-5
(一)碰撞与动量守恒
1.内容标准
(1)探究物体弹性碰撞的一些特点。知道弹性碰撞和非弹性碰撞。
(2)通过实验,理解动量和动量守恒定律。能用动量守恒定律定量分析一维碰撞问题。知道动量守恒定律的普遍意义。
例1 火箭的发射利用了反冲现象。
例2 收集资料,了解中子是怎样发现的。讨论动量守恒定律在其中的作用。
(3)通过物理学中的守恒定律,体会自然界的和谐与统一。
(二)原子结构
1.内容标准
(1)了解人类探索原子结构的历史以及有关经典实验。
例1 用录像片或计算机模拟,演示α粒子散射实验。
(2)通过对氢原子光谱的分析,了解原子的能级结构。
例2 了解光谱分析在科学技术中的应用。
(三)原子核
1.内容标准
(1)知道原子核的组成。知道放射性和原子核的衰变。会用半衰期描述衰变速度,知道半衰期的统计意义。
(2)了解放射性同位素的应用。知道射线的危害和防护。
例1 了解放射性在医学和农业中的应用。
例2 调查房屋装修材料和首饰材料中具有的放射性,了解相关的国家标准。
(3)知道核力的性质。能简单解释轻核与重核内中子数、质子数具有不同比例的原因。会根据质量数守恒和电荷守恒写出核反应方程。
(4)认识原子核的结合能。知道裂变反应和聚变反应。关注受控聚变反应研究的进展。
(5)知道链式反应的发生条件。了解裂变反应堆的工作原理。了解常用裂变反应堆的类型。知道核电站的工作模式。
(6)通过核能的利用,思考科学技术与社会的关系。
例3 思考核能开发带来的社会问题。
(7)初步了解恒星的演化。初步了解粒子物理学的基础知识。
例4 了解加速器在核物理、粒子物理研究中的作用。
2.活动建议:
(1)通过查阅资料,了解常用的射线检测方法。
(2)观看有关核能利用的录像片。
(3)举办有关核能利用的科普讲座。
(四)波粒二象性
1.内容标准
(1)了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。
(2)通过实验了解光电效应。知道爱因斯坦光电效应方程以及意义。
(3)了解康普顿效应。
(4)根据实验说明光的波粒二象性。知道光是一种概率波。
(5)知道实物粒子具有波动性。知道电子云。初步了解不确定性关系。
(6)通过典型事例了解人类直接经验的局限性。体会人类对世界的探究是不断深入的。
❹ 大学文科物理题目,在线跪求
由磁场环路定理得(2πr)H=I,B=μH=μ0*μr*H=μ0*H得:B=μ0(I/2πr)。
“AD边与长直导线间距离为d”时,r1=d,B1=μ0(I/2πd);此时BC边与长直导线间距离为d+a,r2=d+a,B2=μ0[I/2π(d+a)]。
AD边上的电动势E1=B1*b*v=μ0(I/2πd)bv,BC边上的电动势E2=B2*b*v=μ0[I/2π(d+a)]bv,另两边上的电动势为0。
整个线圈的感应电动势E=E1-E2=……
❺ 大学文科物理题目
好多呀
❻ 高中文科生,会考要的物理公式全来 。清楚点啊,我物理很差。如果有...
超级全面的物理公式!!!很有用的说~~~(按照咱们的物理课程顺序总结的)
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(3)干涉与衍射是波特有的;
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真
选用电路条件Rx>>RA [或Rx>(RARV)1/2]
选用电路条件Rx<<RV [或Rx<(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp<Rx
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B); {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
十三、电磁感应
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:
(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
十五、电磁振荡和电磁波
1.LC振荡电路T=2π(LC)1/2;f=1/T {f:频率(Hz),T:周期(s),L:电感量(H),C:电容量(F)}
2.电磁波在真空中传播的速度c=3.00×108m/s,λ=c/f {λ:电磁波的波长(m),f:电磁波频率}
注:
(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;
(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;
十六、光的反射和折射(几何光学)
1.反射定律α=i {α;反射角,i:入射角}
2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}
3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n
2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角
注:
(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;
(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;
十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)
1.两种学说:微粒说(牛顿)、波动说(惠更斯)
2.双缝干涉:中间为亮条纹;亮条纹位置: =nλ;暗条纹位置: =(2n+1)λ/2(n=0,1,2,3,、、、);条纹间距 { :路程差(光程差);λ:光的波长;λ/2:光的半波长;d两条狭缝间的距离;l:挡板与屏间的距离}
3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)
4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4〔见第三册P25〕
5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播
6.光的偏振:光的偏振现象说明光是横波
7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用
8.光子说,一个光子的能量E=hν {h:普朗克常量=6.63×10-34J.s,ν:光的频率}
9.爱因斯坦光电效应方程:mVm2/2=hν-W {mVm2/2:光电子初动能,hν:光子能量,W:金属的逸出功}
注:
(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;
(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P50〕/光电效应的规律光子说〔见第三册P41〕/光电管及其应用/光的波粒二象性〔见第三册P45〕/激光〔见第三册P35〕/物质波〔见第三册P51〕。
十八、原子和原子核
1.α粒子散射试验结果a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)
2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)
3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}
4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}
5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕
6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}
7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:
(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;
(2)熟记常见粒子的质量数和电荷数;
(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;
(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。(完)
左手定则:
左手定则(安培定则):已知电流方向和磁感线方向,判断通电导体在磁场中受力方向,如电动机。
伸开左手,让磁感线穿入手心(手心对准N极,手背对准S极), 四指指向电流方向 ,那么大拇指的方向就是导体受力方向。
其原理是:
当你把磁铁的磁感线和电流的磁感线都画出来的时候,两种磁感线交织在一起,按照向量加法,磁铁和电流的磁感线方向相同的地方,磁感线变得密集;方向相反的地方,磁感线变得稀疏。磁感线有一个特性就是,每一条磁感线互相排斥!磁感线密集的地方“压力大”,磁感线稀疏的地方“压力小”。于是电流两侧的压力不同,把电流压向一边。拇指的方向就是这个压力的方向。
右手定则:
确定导体切割磁感线运动时在导体中产生的感应电流方向的定则。(发电机)
右手定则的内容是:伸开右手,使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向感应电流的方向。
我是理科的,这是我问我姐要的,她今年高3,他们老师小高考就是拿这个给她背的
❼ 文科物理题
初始重力势能+初始动能+起重机做功=末重力势能+末动能
起重机做功=重力势能改变量+动能改变量
A,还有一部分功用来使重物的重力势能增加。
B,重力作功=-重力势能改变量,注意负号。合力做功=起重机做功+重力做功=重力势能改变量+动能改变量+重力做功=动能改变量
C,B对C错,两者矛盾。
D,重物克服重力做功=-重力作功=重力势能改变量
❽ 什么是物理概念题啊,选择题or填空,或者是其他什么。。。。
概念题就是靠你基本的物理概念的,如什么叫力矩,什么叫质量,牛顿第一定律的物理意义是什么等等。而选择题,填空是考试的题型。两者不是一个概念
❾ 求高中文科物理会考要用的所有公式和定理!
学业水平测试知识浓缩本
必修1知识点
1.质点(A)
在某些情况下,可以不考虑物体的大小和形状。这时,我们突出“物体具有质量”这一要素,把它简化为一个有质量的点,称为质点。
2.参考系(A)
要描述一个物体的运动,首先要选定某个其他物体做参考,观察物体相对于这个“其他物体”的位置是否随时间变化,以及怎样变化。这种用来做参考的物体称为参考系。
3.路程和位移(A)
路程是物体运动轨迹的长度
位移表示物体(质点)的位置变化。我们从初位置到末位置作一条有向线段,用这条有向线段表示位移。
4.速度 平均速度和瞬时速度(A)
如果在时间内物体的位移是,它的速度就可以表示为
(1)
由(1)式求得的速度,表示的只是物体在时间间隔内的平均快慢程度,称为平均速度。
如果非常非常小,就可以认为 表示的是物体在时刻t的速度,这个速度叫做瞬时速度。
速度是表征运动物体位置变化快慢的物理量。
5.匀速直线运动(A)
6.加速度(A)
加速度是速度的变化量与发生这一变化所用时间的比值,
加速度是表征物体速度变化快慢的物理量。
7.用电火花计时器(或电磁打点计时器)研究匀变速直线运动(A)
用电火花计时器(或电磁打点计时器)测速度
对于匀变速直线运动中间时刻的瞬时速度等于平均速度:纸带上连续3个点间的距离除以其时间间隔等于打中间点的瞬时速度。
可以用公式求加速度(为了减小误差可采用逐差法求)
8.匀变速直线运动的规律(A)
vt=vo +at
x=vot+at2
vt2-vo2=2ax
=
9.匀速直线运动的x-t图象和v-t图象(A)
匀速直线运动的x-t图象一定是一条直线。随着时间的增大,如果物体的位移越来越大或斜率为正,则物体向正向运动,速度为正,否则物体做负向运动,速度为负。
匀速直线运动的v-t图象是一条平行于t轴的直线,匀速直线运动的速度大小和方向都不随时间变化。
10.匀变速直线运动的v-t图象(A)
匀变速直线运动的v-t图象为一直线,直线的斜率大小表示加速度的数值,即a=k,可从图象的倾斜程度可直接比较加速度的大小。
11.自由落体运动(A)
物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。自由落体运动是初速度为0加速度为g的匀加速直线运动。
公式:Vt=gt h=gt2
12.力(A)
物体与物体之间的相互作用称做力。
施力物体同时也是受力物体,受力物体同时也是施力物体。
按力的性质分,常见的力有重力、弹力、摩擦力。
物体与物体之间存在四种基本相互作用:万有引力、电磁相互作用、强相互作用、弱相互作用。
13.重力(A)
地面附近的一切物体都受到地球的引力,由于地球的吸引而使物体受到的力叫做重力。
G=mg (g=9.8N/Kg)
不考虑地球自转,地球表面物体的重力等于万有引力.mg=G
14.形变与弹力(A)
物体在力的作用下形状或体积发生改变,叫做形变。有些物体在形变后能够恢复原状,这种形变叫做弹性形变。
发生形变的物体由于要恢复原状,对与它接触的物体产生力的作用,这种力叫做弹力。
弹簧的弹力与弹簧的形变量成正比 F=KX
15.滑动摩擦力 静摩擦力(A)
两个相互接触而保持相对静止的物体,当他们之间存在滑动趋势时,在它们的接触面上会产生阻碍物体间相对滑动的力,这种力叫静摩擦力。
两个互相接触挤压且发生相对运动的物体,在它们的接触面上会产生阻碍相对运动的力,这个力叫做滑动摩擦力。
产生摩擦力的条件
(1)两物体相互接触(2)接触的物体必须相互挤压发生形变,有弹力(3)两物体有相对运动或相对运动的趋势(4)两接触面不光滑
一般说来,静摩擦力根据力的平衡条件来求解,滑动摩擦力根据F=求解.
16.力的合成与分解(A)
平行四边行定则:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向。
力的分解是力的合成的逆运算。
合力可以等于分力,也可以小于或大于分力.
17.共点力作用下物体的平衡(A)
如果一个物体受到N个共点力的作用而处于平衡状态,那么这N个力的合力为零
18.牛顿第一定律(A)
一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.这就是牛顿第一定律。牛顿第一运动定律表明,物体具有保持原来匀速直线运动状态或静止状态的性质,我们把这个性质叫做惯性。牛顿第一定律又叫做惯性定律。
量度物体惯性大小的物理量是它们的质量。质量越大,惯性越大,质量不变,惯性不变。
19.探究加速度与力、质量的关系(A)
研究方法:控制变量法,先保持质量m不变,研究a与F之间的关系,再保持F不变,研究a与m之间的关系。
数据分析上作a-F图象和a-图象
20.牛顿第二定律(B)
物体的加速度跟物体受到的作用力成正比,跟物体的质量成反比。
F合=ma
21.牛顿第三定律(A)
两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
作用力和反作用力性质一定相同,作用在两个不同的物体上.而一对平衡力一定作用在同一个物体上,力的性质可以相同,也可以不同.
22.力学单位制(A)
在力学范围内,国际单位制规定长度、质量、时间为三个基本物理量。它们的单位米、千克、秒为基本单位。
必修2知识点
1、功(A)
力对物体所做的功等于力的大小、位移的大小、力和位移夹角的余弦三者的乘积。
功的定义式:
注意:时,;但时,,力不做功;时,.
2、功率(A)
功与完成这些功所用时间的比值。
平均功率: ;
功率是表示物体做功快慢的物理量。
力与速度方向一致时:P=Fv
3、重力势能 重力势能的变化与重力做功的关系(A)
物体的重力势能等于它所受重力与所处高度的乘积,。重力势能的值与所选取的参考平面有关。
重力势能的变化与重力做功的关系:重力做多少功重力势能就减少多少,克服重力做多少功重力势能就增加多少. 重力对物体所做的功等于物体重力势能的减少量:。
重力做功的特点:重力对物体所做的功只与物体的起始位置有关,而跟物体的具体运动路径无关。
4、动能(A)
物体由于运动而具有的能量。
物体质量越大,速度越大则物体的动能越大。
5、动能定理(A)
合力在某个过程中对物体所做的功,等于物体在这个过程中动能的变化。
表达式:或。
6、机械能守恒定律(B)
机械能:机械能是动能、重力势能、弹性势能的统称,可表示为:
E(机械能)=Ek(动能)+Ep(势能)
机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
,式中是物体处于状态1时的势能和动能, 是物体处于状态2时的势能和动能。
7、用电火花计时器(或电磁打点计时器)验证机械能守恒定律(A)
实验目的:通过对自由落体运动的研究验证机械能守恒定律。
速度的测量:做匀变速运动的纸带上某点的瞬时速度,等于相邻两点间的平均速度。
下落高度的测量:等于纸带上两点间的距离
比较V2与2gh相等或近似相等,则说明机械能守恒
8、能量守恒定律(A)
能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。
9、能源 能量转化和转移的方向性(A)
能源是人类可以利用的能量,是人类社会活动的物质基础。人类利用能源大致经历了三个时期,即柴薪时期、煤炭时期、石油时期。
能量的耗散:燃料燃烧时一旦把自己的热量释放出去,它就不会再次自动聚集起来供人类重新利用;电池中的化学能转化为电能,它又通过灯泡转化成内能和光能,热和光被其他物质吸收之后变成周围环境的内能,我们也无法把这些内能收集起来重新利用。这种现象叫做能量的耗散。能量耗散表明,在能源的利用过程中,即在能量的转化过程中,能量在数量上并未减少,但在可利用的品质上降低了,从便于利用变成不利于利用的了。能量的耗散从能量转化的角度反映出自然界中宏观过程的方向性。
10、运动的合成与分解(A)
如果某物体同时参与几个运动,那么这物体的实际运动就叫做那几个运动的合运动,那几个运动叫做这个实际运动的分运动。已知分运动情况求合运动情况叫运动的合成,已知合运动情况求分运动情况叫运动的分解。
运动合成与分解的运算法则:运动的合成与分解是指描述物体运动的各物理量即位移、速度、加速度的合成与分解。由于它们都是矢量,所以它们都遵循矢量的合成与分解法则。
合运动和分运动的关系:
(1)等效性:各分运动的规律叠加起来与合运动规律有相同的效果。
(2)独立性:某方向上的运动不会因为其它方向上是否有运动而影响自己的运动性质。
(3)等时性:合运动通过合位移所需时间和对应的每个分运动通过分位移的时间相等,即各分运动总是同时开始,同时结束的。
11、平抛运动的规律(B)
将物体以一定的水平速度抛出,在不计空气阻力的情况下,物体所做的运动。
平抛运动的特点:(1)加速度a=g恒定,方向竖直向下;(2)运动轨迹是抛物线。
平抛运动的处理方法:平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。x=v0t y=gt2
12、匀速圆周运动(A)
质点沿圆周运动,如果在相等的时间里通过的圆弧长度都相等,这种运动就叫做匀速圆周运动。
注意匀速圆周运动不是匀速运动,是曲线运动,速度方向不断变化.
13、线速度、角速度和周期(A)
线速度:物体在某时间内通过的弧长与所用时间的比值,其方向在圆周的切线方向上。
表达式:
角速度:物体在某段时间内通过的角度与所用时间的比值。
表达式:,其单位为弧度每秒,。
周期:匀速运动的物体运动一周所用的时间。
频率:,单位:赫兹(HZ)
线速度、角速度、周期间的关系:
。
14、向心加速度(A)
做匀速圆周运动的物体,加速度方向指向圆心,这个加速度叫向心加速度。
大小:
方向:指向圆心。
向心加速度是描述匀速圆周运动中物体线速度变化快慢的物理量
15、向心力(B)
产生向心加速度的力。
向心力的方向:指向圆心,与线速度的方向垂直。
向心力的大小:做匀速圆周运动所需的向心力的大小为
向心力的作用:只改变速度的方向,不改变速度的大小。
向心力是效果力。在对物体进行受力分析时,不能认为物体多受了个向心力。向心力是物体受到的某一个力或某一个力的分力或某几个力的合力.
16、万有引力定律(A)
自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量的乘积成正比,跟它们距离的二次方成反比。
表达式:
17、人造地球卫星(A)
卫星环绕速度v、角速度、周期T与半径的关系:
由,可得:
,r越大,v越小;
,r越大,越小;
,r越大,T越大。
18、宇宙速度(A)
第一宇宙速度(环绕速度):;
第二宇宙速度(脱离速度):;
第三宇宙速度(逃逸速度):。
会求第一宇宙速度:
卫星贴近地球表面飞行
地球表面近似有
则有
19、经典力学的局限性(A)
牛顿运动定律只适用于解决宏观问题,不适用于高速运动问题,不适用于微观世界。
补充:曲线运动速度方向:质点在某一点的速度,沿曲线在这一点的切线方向
曲线运动的条件: 当物体所受合力的方向跟它的速度方向不在同一直线上时,物体做曲线运动.
选修1-1知识点
一、电磁现象与规律
1、电荷 电荷守恒(A)
自然界中只存在正、负电荷
自然界中两种电荷的总量是守恒的,使物质带电的过程,就是使电荷从一个物体转移到另一物体(如摩擦起电和接触带电);或者是从物体的一部分转移到另一部分(静电感应),不管何种方式,电荷既不能创造,也不能消失,这就是电荷守恒定律
自然界任何物体的带电荷量都是元电荷(e=1.6×10-19c)的整数倍,电子、质子的电荷量都等于元电荷,但电性不同,前者为负,后者为正。
2、库仑定律(A)
内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们间的距离的平方成反比,作用力方向在它们的连线上。
公式:F=kQ1Q2/r2 k=9.0×109N·m2/c2
3、电场 电场强度 电场线(A)
电场:电荷之间的相互作用是通过特殊形式的物质----电场发生的,电荷的周围都存在电场;看不见,摸不着,客观存在。性质:对放入其中的电荷有力的作用。
电场强度:反映电场的力的性质的物理量。大小: 定义式E=F/q(与F、q无关)q为检验电荷,E与q、F无关;方向:与正电荷受力方向相同。
电场线:各点的切线方向反映场强的方向,疏密程度反映场强的大小。特点:假想的(不存在)、不相交、不闭合,从正电荷出发,终止于负电荷。知道P10的正电荷、负电荷、等量同种电荷、等量异种电荷电场线分布。
4、磁场 磁感线(A)
磁体、电流周围存在看不见、摸不着、客观存在的磁场,对放入其中的磁体有力的作用,方向:小磁针静止N极的受力方向。
磁感线:各点的切线方向反映磁场的方向,疏密程度反映磁场的强弱。特点:假想的(不存在)、不相交、但闭合,磁体外部从N极出发,从S极进去。知道P32的条形磁铁、蹄形磁铁的磁感线分布。
5、地磁场(A)
相当于条形磁铁,地球的地理两级与地磁两极相反,并不重合,存在磁偏角。地球表面磁感线从南向北。
6、电流的磁场 安培定则(A)
奥斯特实验证明电流的磁效应。
判断通电直导线周围磁场的方向(安培定则一):右手握住导线,让伸直的拇指的方向与电流的方向一致,那么四指所指的方向就是磁感线的环绕方向。知道P35-36通电直导线、环形电流和通电螺线管周围存在的磁感线。
判断通电螺线管的磁场(安培定则二):右手握住螺线管,让弯曲的四指所指的方向跟电流的方向一致,拇指所指的方向就是螺线管内部磁感线的方向。
7、磁感应强度 磁通量(A)
磁感应强度:描述磁场的强弱和方向,大小:定义式B=F/IL(与F、I、L无关,由磁场本身性质决定),方向:即磁场方向(小磁针N极受力方向),单位:特(T)
磁通量:表示穿过一个闭合电路的磁感线的多少
8、安培力的大小 左手定则(A)
磁场对通电导线的作用力即安培力:F=BIL(B⊥L)
方向(左手定则):伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线穿过手心,使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。
注:通电导线与磁场方向平行时不受安培力。
9、洛仑兹力的方向(A)
磁场对运动电荷的作用力即洛仑兹力。
方向(左手定则):伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线穿过手心,使四指指向正电荷运动方向(负电荷运动反方向),这时拇指所指的方向就是运动电荷所受洛仑兹力方向。
注:运动电荷运动方向与磁场方向平行时不受洛仑兹力。
10、电磁感应现象及其应用(A)
穿过闭合电路磁通量发生变化,产生电流的现象叫电磁感现象
复习课本P59练习题。
11、电磁感应定律(A)
内容:电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。
公式:E=n△ф/△t
12、电磁波(A)
麦克斯韦提出电磁波理论,赫兹通过实验证实了麦克斯韦关于光的电磁理论。
变化的电场产生磁场;变化的磁场产生电场;变化的电场和磁场交替产生,并由近及远传播,形成电磁波。
电磁波可以在真空中传播,还能够发生反射、折射、干涉、偏振和衍射等现象。电磁波在真空的传播速度为3×108m/s。
波的公式:V=f
二、电磁技术与社会发展
三、家用电器与日常生活
13、静电的利用与防止(A)
静电的利用:静电除尘、静电复印、静电喷漆。
静电的防止:避雷针、运输汽油的车辆有一条铁链。
14、电热器、白炽灯等常见家用电器的技术参数的含义(A)
额定电压:用电器正常工作时的电压。
额定功率:用电器在额定电压下正常工作时的功率。
交流电器中所标定的电压、电流均指有效值。
对于正弦式交流电:U有=Um/ I有=Im/
15、安全用电与节约用电(A)
安全电压36V;人体能长时间承受的安全电流30mA以下;一般手电筒中通过的电流0.1~0.3A;电子手表工作时的电流1.5~2uA;彩色电视机工作的电流0.6~0.65A。
节约用电:家电不要待机,换用节能灯。
16、电阻器、电容器和电感器(A)
电阻器:一般情况下,电阻不随交流电的频率变化而变化。
电容器:电容器是存储电荷的装置。两个彼此绝缘而又互相靠近的导体,都可以组成一个电容器。一般来说,电容器极板的正对面积越大、极板间距离越近,电容器的电容就越大。
直流电不能通过电容器,交流电能“通过”电容器,实质是不断充放电,频率越大,越容易通过电容器。
电感器:电感器对交变电流有阻碍作用,频率越高,阻碍越大。
17、发电机、电动机对能源利用方式、工业发展所起的作用(A)
发电机把其它形式的能转化为电能,电动机把电能转化为机械能。
18、常见传感器及其应用(A)
传感器是把非电学物理量(如位移、速度、压力、温度、温度、流量、声强、光照度等)转换为电学量(如电压、电流等)的一种元件,通常由敏感元件和转换元件组成,转换后的数据测量比较方便,而且能输入计算机进行处理。
了解双金属温度传感器、光敏电阻传感器、压力传感器、红外线传感器等。
补充:电流I=Q/t
焦耳定律:Q=I2Rt
热功率: P=I2R
正弦式电流:i=Imsint
u=Umsint
家用照明电路的电压为220V,频率为50HZ
❿ 高中文科会考物理需要掌握哪些公式
一, 速度
1, 周期与频率:T=1/f
2, 角速度与线速度的关系:V=ωr
注:主要物理量及单位:
弧长(x):米(m);
角度(θ):弧度(rad);
频率(f):赫兹(Hz);
周期(T):秒(s);
转速(n):r/s;
半径(r):米(m);
线速度(V):m/s;
角速度(ω):rad/s;
向心加速度:m/s。
3, 固定在同一轴上转动的物体,各点角速度相等。用皮带(无滑)传动的皮带轮,轮缘上各点的线速度大小相等。
二, 万有引力与航天:
1, 开普勒第三定律:r/T=K(=GM/4π)
{r:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2, 万有引力定律:F=Gm1m2/r
-11222 322(G=6.67×10N•m/kg,方向在它们的连线上)
3, 地球上的重力和重力加速度:GMm/R地=mg;g=GM/R地
{R地:地球半径(m),M:地球质量(kg)}
4, 卫星绕行速度、角速度、周期:v
{M:中心天体质量} 22 GMr,GMr3,T42r3GM
Mm4242r3
rM
5, 天体质量M的估算:G2mrT2GT2
6, 第一(二、三)宇宙速度:v gR7.9km/s;V2=11.2km/s;V3=16.7km/s
7, 地球同步卫星:只能运行于赤道上空,运行周期和地球自转周期相同T=24h。
GMm/(R地+h)=m4π(R地+h)/T{h≈36000km,h:距地球表面的高度,R地:地球的半径}
8, 卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小
三, 电场·电流:
1, 电荷守恒定律、元电荷:(e=1.60×10C);带电体所带电荷量等于元电荷的整数倍
2, 库仑定律:F=kQ1Q2/r(在真空中)
{F:点电荷间的作用力(N),
k:静电力常量k=9.0×10N•m/C,Q1、Q2:两点电荷的电量(C),
r:两点电荷间的距离(m),方向在它们的连线上,是作用力与反作用力,
同种电荷互相排斥,异种电荷互相吸引}
3, 电场强度:E=F/q(定义式)
{E:电场强度(N/C),是矢量,由本身决定;q:试探电荷的电量(C)}
4, 电场力:F=qE
{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
5, 电容:C=Q/U(定义式)
{C:电容(F),由本身决定;Q:电量(C),U:电压(两极板电势差)(V)}
6, 电容单位换算:1F
(法拉)=10μF(微法)=10PF(皮法)
7, 电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大。
8, 电子伏(eV)是能量的单位,1eV=1.60×10J。
拓展资料:
1, 会考的文化科目为:语文、数学、外语、思想政治、物理、化学、历史、地理、生物、信息技术,共计10科;实践科目为:物理、化学、通用技术、生物的实验操作。文化科目的会考方式分为考试、考查两种,采用"3+3+4"的形式,即语文、数学、外语3门作为必考科目,在其余科目中考生可任选3门作为考试科目,余下4门作为考查科目(笔试),要求考生在第一次报名时就选定考试和考查科目。实践操作科目均为考查科目。考试科目的成绩报告分为4个等级(优秀、良好、及格、不及格),考查科目的成绩报告只分2个等级(及格、不及格)。
2, 会考时间及科目安排:
高中会考文化科目一年开考两次,每次都开考10门。第一次安排在春节前三周左右,其中语文、数学、外语3科主要面向高三考生,其他科目主要面向中考学生;第二次安排在6月中旬,思想政治、物理、化学、生物、历史、地理、信息技术等7科主要面向高二考生,其余3科主要面向中考学生,不再单独安排补考。物理、化学、生物实验操作考查时间安排在每年6月下旬,主要面向高二年级考生。