❶ 牛顿对物理学的主要贡献
在物理学方面,牛顿取得了力学、热学、光学等多方面的巨大成就。牛顿是经典力学理论的开创者。他在伽利略等人工作的基础上,进行了深入研究,经过大量的实验,总结出了运动三定律,创立了经典力学体系。牛顿所研究的机械运动规律,首先是建立在绝对时空观基础之上的。绝对化的时间和绝对化的空间是指不受物体运动状态影响的时间和空间。在两个匀速运动状态下的观察者,对机械运动具有相同的测量结果。在高速运动状态下,这种时空观已不能采用,这时(运动速度与光速可以比拟),牛顿力学将被相对论力学所代替。在微观情况下,由于粒子的波动性已明显表现出来,牛顿力学将被量子力学所代替。牛顿在力学方面另一巨大贡献是在开普勒等人工作的基础上,发现了万有引力定律。牛顿认为:太阳吸引行星,行星吸引卫星,以及吸引地面上一切物体的力都是具有相同性质的力。牛顿用微积分证明了,任何一曲线运动的质点,如果半径指向静止或匀速直线运动的点,且绕次点扫过与时间成正比的面积,则此质点必受指向该点的向心力的作用,如果环绕的周期之平方与半径的立方成正比,则向心力与半径的平方成反比。牛顿还在力学发展中,首先确定了一系列的基本概念,如质量、动量、惯性和力等。经过牛顿的工作,力学已形成了严密、完整、系统的科学体系。
❷ 牛顿在物理学方面的突出贡献是什么这一成就有什么特点
牛顿最大的贡献是建立了牛顿三大定理:第一定理是惯性定理,第二个是加速度定理,第三个事相互作用力定律.当然还有伟大的万有引力公式(苹果砸出来的那个)~故他所建立的力学体系是仅限于低速(相对于光速而言),宏观...
❸ 牛顿在物理领域的哪些方面做出什么贡献
艾萨克·牛顿爵士是人类历史上出现过的最伟大、最有影响的科学家,同时也是物理学家、数学家和哲学家,晚年醉心于炼金术和神学.他在1687年7月5日发表的不朽着作《自然哲学的数学原理》里用数学方法阐明了宇宙中最基本的法则——万有引力定律和三大运动定律.这四条定律构成了一个统一的体系,被认为是“人类智慧史上最伟大的一个成就”,由此奠定了之后三个世纪中物理界的科学观点,并成为现代工程学的基础.牛顿为人类建立起“理性主义”的旗帜,开启工业革命的大门.牛顿逝世后被安葬于威斯敏斯特大教堂,成为在此长眠的第一个科学家.
❹ 牛顿在物理学上的贡献
1、牛顿通过光的色散,验证了7色光(红,橙,黄,绿,青,蓝,紫),并发明了反射望远镜。
2、牛顿系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了着名的万有引力定律和牛顿运动三定律。
牛顿在《自然哲学的数学原理》这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具。
不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。
(4)牛顿在物理方面的突出贡献是什么扩展阅读
1、牛顿第一定律
(1)运动是物体的一种属性,物体的运动不需要力来维持。
(2)定律说明了任何物体都有惯性。
(3)不受力的物体是不存在的。
牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。
2、牛顿第二定律
(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。
(2)对牛顿第二定律的数学表达式 F 不能把 ma 看作是力。
(3)牛顿第二定律揭示的是力的瞬间效果。即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度。
3、牛顿第三定律
运用:超重和失重
(1)超重:物体有向上的加速度称物体处于超重.处于超重的物体对支持面的压力 F N (或对悬挂物的拉力)大于物体的重力 mg,即 F N =mg+ma。
(2)失重:物体有向下的加速度称物体处于失重.处于失重的物体对支持面的压力 FN(或对悬挂物的拉力)小于物体的重力 mg,即 FN=mg-ma,当 a=g 时 F N =0,物体处于完全失重。
(3)对超重和失重的理解应当注意的问题
不管物体处于失重状态还是超重状态,物体本身的重力并没有改变,只是物体对支持物合合 =ma,F 合是力,ma 是力的作用效果,特别要注意的方向总是一致的。
超重或失重现象与物体的速度无关,只决定于加速度的方向.“加速上升”和“减速下降”都是超重;“加速下降”和“减速上升”都是失重。
在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生压强等。
❺ 你能说出牛顿在物理学中的贡献吗并谈谈对这句话的体会
牛顿童鞋被传说是人类历史上出现过的最伟大、最有影响的科学家,同时也是物理学家、数学家和哲学家的这么一个小帅哥。
牛顿在物理学方面的贡献主要有:①:在力学方面总结出了牛顿三大定律、万有引力的发现、由此建立了经典物理学,运动论,经典力学。
②:在光学方面作出了白光是由七色光组成的判决实验,发现并解释“牛顿环”的干涉现象,创制了反射望远镜并提出光的微粒说。
③:在热学方面牛顿确定了冷却定律,即当物体表面与周围有温差时,单位时间内从单位面积上散失的热量与这一温差成正比。
④:天文学方面发明了一个叫反射望远镜的东西,这种东西较适合于进行恒星物理方面的工作(恒星的测光与分光),目前设计和建造的大口径望远镜都是采用的牛顿所发明的反射系统的(比以前的有很大的改善)。
还有就是牛顿曾研究事物所传承下来的各种思想方法都在物理学方面发挥着光和热。
❻ 牛顿对经典物理学的贡献
牛顿是继承经典力 学的天才,在物理史上得第一个实验是由伽利略作出的,名叫斜面小车实验,他是为了探求自由落体运动而出现的,因为那时没有精确的记时仪器来测量物体在空中做落体的准确时间,所以只有把实验方在斜面上来做,学过经典力学的同学应知道物理是活的,只要是匀变速直线运动它本生都有通用规律,只是伽利略并未总结实验,最后被牛顿总结为现在的牛顿第一定律,当然这里面也有迪卡尔的功劳,谁叫牛顿将他们称作巨人呢?哈哈,后来牛顿又推导出牛顿第二定律,打开经典力学的大门,F=Ma是经典力学的产物,但和F=Ma同理的动量定理,即力对物所做的冲量是物体动量的变化,p=m(v-V)是牛顿第二定律的动量表达式,但动量定理并非经典力学内容,所谓经典力学是指宏观力学,但动量定理以即后来的动量守恒定律都可用于微观,故它就不再是经典范畴,好特别吧。。。但它也非量子力学的产物,而牛顿第三定律我们就不说啦,那是基础的基础。。。牛顿发现万有引力,并求出万有引力公式,其中引力常量由卡文迪许通过卡文迪许扭称得出,伟大的科学,伟大的未来。。。
❼ 牛顿对世界物理学有什么重大贡献
1.以牛顿三大运动定律为基础建立牛顿力学。
2.发现万有引力定律。
3.建立行星定律理论的基础。
4.致力于三菱镜色散之研究并发明反射式望远镜。
5.发现数学的二项式定理及微积分法等。
6.近代原子理论的起源。
❽ 牛顿对于物理学的所有贡献
力学方面的贡献
牛顿在伽利略等人工作的基础上进行深入研究,总结出了物体运动的三个基本定律(牛顿三定律):
第一定律(惯性定律)
任何一个物体在不受任何外力或受到的力平衡时(Fnet=0),总保持匀速直线运动或静止状态,直到有作用在它上面的外力迫使它改变这种状态为止.
第二定律
1)牛顿第二定律是力的瞬时作用规律.力和加速度同时产生、同时变化、同时消逝. (2)F=ma是一个矢量方程,应用时应规定正方向,凡与正方向相同的力或加速度均取正值,反之取负值,一般常取加速度的方向为正方向. (3)根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力正交分解,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:Fx=max,Fy=may列方程.牛顿第二定律的六个性质(1)因果性:力是产生加速度的原因. (2)同体性:F合、m、a对应于同一物体. (3)矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定.牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同. (4)瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小和方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系.牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应. (5)相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系.地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立. (6)独立性:作用在物体上的各个力,都能各自独立产生一个加速度,各个力产生的加速度的失量和等于合外力产生的加速度.适用范围(1)只适用于低速运动的物体(与光速比速度较低). (2)只适用于宏观物体,牛顿第二定律不适用于微观原子. (3)参照系应为惯性系.两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反.(详见牛顿第三运动定律)表达式F=-F'
第三定律
(F表示作用力,F'表示反作用力,负号表示反作用力F'与作用力F的方向相反)这三个非常简单的物体运动定律,为力学奠定了坚实的基础,并对其他学科的发展产生了巨大影响.第一定律的内容伽利略曾提出过,后来R.笛卡儿作过形式上的改进,伽利略也曾非正式地提到第二定律的内容.第三定律的内容则是牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的结果之后得出的. 牛顿是万有引力定律的发现者.他在1665~1666年开始考虑这个问题.万有引力定律(Law of universal gravitation)是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的.1679年,R·胡克在写给他的信中提出,引力应与距离平方成反比,地球高处抛体的轨道为椭圆,假设地球有缝,抛体将回到原处,而不是像牛顿所设想的轨道是趋向地心的螺旋线.牛顿没有回信,但采用了胡克的见解.在开普勒行星运动定律以及其他人的研究成果上,他用数学方法导出了万有引力定律. 牛顿把地球上物体的力学和天体力学统一到一个基本的力学体系中,创立了经典力学理论体系.正确地反映了宏观物体低速运动的宏观运动规律,实现了自然科学的第一次大统一.这是人类对自然界认识的一次飞跃. 牛顿指出流体粘性阻力与剪切率成正比.他说:流体部分之间由于缺乏润滑性而引起的阻力,如果其他都相同,与流体部分之间分离速度成比例.现在把符合这一规律的流体称为牛顿流体,其中包括最常见的水和空气,不符合这一规律的称为非牛顿流体. 在给出平板在气流中所受阻力时,牛顿对气体采用粒子模型,得到阻力与攻角正弦平方成正比的结论.这个结论一般地说并不正确,但由于牛顿的权威地位,后人曾长期奉为信条.20世纪,T·卡门在总结空气动力学的发展时曾风趣地说,牛顿使飞机晚一个世纪上天. 关于声的速度,牛顿正确地指出,声速与大气压力平方根成正比,与密度平方根成反比.但由于他把声传播当作等温过程,结果与实际不符,后来P.-S.拉普拉斯从绝热过程考虑,修正了牛顿的声速公式.
数学方面的贡献
创建微积分 17世纪以来,原有的几何和代数已难以解决当时生产和自然科学所提出的许多新问题,例如:如何求出物体的瞬时速度与加速度?如何求曲线的切线及曲线长度(行星路程)、矢径扫过的面积、极大极小值(如近日点、远日点、最大射程等)、体积、重心、引力等等;尽管牛顿以前已有对数、解析几何、无穷级数等成就,但还不能圆满或普遍地解决这些问题.当时笛卡儿的《几何学》和沃利斯的《无穷算术》对牛顿的影响最大.牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中.所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等.他说的“差率”“变率”就是微分.与此同时,他还在1676年首次公布了他发明的二项式展开定理.牛顿利用它还发现了其他无穷级数,并用来计算面积、积分、解方程等等.1684年莱布尼兹从对曲线的切线研究中引入了和拉长的S作为微积分符号,从此牛顿创立的微积分学在大陆各国迅速推广. 微积分的出现,成了数学发展中除几何与代数以外的另一重要分支——数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展.例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答.1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上.伯努利惊异地说:“从这锋利的爪中我认出了雄狮”. 微积分的创立是牛顿最卓越的数学成就.牛顿为解决运动问题,才创立这种和物理概念直接联系的数学理论的,牛顿称之为"流数术".它所处理的一些具体问题,如切线问题、求积问题、瞬时速度问题以及函数的极大和极小值问题等,在牛顿前已经得到人们的研究了.但牛顿超越了前人,他站在了更高的角度,对以往分散的结论加以综合,将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分发明中最关键的一步,为近代科学发展提供了最有效的工具,开辟了数学上的一个新纪元. 牛顿没有及时发表微积分的研究成果,他研究微积分可能比莱布尼茨早一些,但是莱布尼茨所采取的表达形式更加合理,而且关于微积分的着作出版时间也比牛顿早. 在牛顿和莱布尼茨之间,为争论谁是这门学科的创立者的时候,竟然引起了一场悍然大波,这种争吵在各自的学生、支持者和数学家中持续了相当长的一段时间,造成了欧洲大陆的数学家和英国数学家的长期对立.英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年. 1707年,牛顿的代数讲义经整理后出版,定名为《普遍算术》.他主要讨论了代数基础及其(通过解方程)在解决各类问题中的应用.书中陈述了代数基本概念与基本运算,用大量实例说明了如何将各类问题化为代数方程,同时对方程的根及其性质进行了深入探讨,引出了方程论方面的丰硕成果,如:他得出了方程的根与其判别式之间的关系,指出可以利用方程系数确定方程根之幂的和数,即“牛顿幂和公式”. 牛顿对解析几何与综合几何都有贡献.他在1736年出版的《解析几何》中引入了曲率中心,给出密切线圆(或称曲线圆)概念,提出曲率公式及计算曲线的曲率方法.并将自己的许多研究成果总结成专论《三次曲线枚举》,于1704年发表.此外,他的数学工作还涉及数值分析、概率论和初等数论等众多领域. 牛顿在前人工作的基础上,提出“流数(fluxion)法”,建立了二项式定理,并和G.W.莱布尼茨几乎同时创立了微积分学,得出了导数、积分的概念和运算法则,阐明了求导数和求积分是互逆的两种运算,为数学的发展开辟了一个新纪元. 二项式定理 在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步.二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用. 二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具.在今天我们会发觉这个方 推广形式
法只适用于n是正整数,当n是正整数1,2,3,. ,级数终止在正好是n+1项.如果n不是正整数,级数就不会终止,这个方法就不适用了.但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的.
光学方面的贡献
牛顿曾致力于颜色的现象和光的本性的研究.1666年,他用三棱镜研究日光,得出结论:白光是由不同颜色(即不同波长)的光混合而成的,不同波长的光有不同的折射率.在可见光中,红光波长最长,折射率最小;紫光波长最短,折射率最大.牛顿的这一重要发现成为光谱分析的基础,揭示了光色的秘密.牛顿还曾把一个磨得很精、曲率半径较大的凸透镜的凸面,压在一个十分光洁的平面玻璃上,在白光照射下可看到,中心的接触点是一个暗点,周围则是明暗相间的同心圆圈.后人把这一现象称为“牛顿环”.他创立了光的“微粒说”,从一个侧面反映了光的运动性质,但牛顿对光的“波动说”并不持反对态度.1704年,他出版了《光学》一书,系统阐述他在光学方面的研究成果.
热学方面的贡献
牛顿确定了冷却定律,即当物体表面与周围有温差时,单位时间内从单位面积上散失的热量与这一温差成正比.
天文学方面的贡献
牛顿1672年创制了反射望远镜.他用质点间的万有引力证明,密度呈球对称的球体对外的引力都可以用同质量的质点放在中心的位置来代替.他还用万有引力原理说明潮汐的各种现象,指出潮汐的大小不但同月球的位相有关,而且同太阳的方位有关.牛顿预言地球不是正球体.岁差就是由于太阳对赤道突出部分的摄动造成的.
哲学方面的贡献
牛顿的哲学思想基本属于自发的唯物主义,他承认时间、空间的客观存在.如同历史上一切伟大人物一样,牛顿虽然对人类作出了巨大的贡献,但他也不能不受时代的限制.例如,他把时间、空间看作是同运动着的物质相脱离的东西,提出了所谓绝对时间和绝对空间的概念;他对那些暂时无法解释的自然现象归结为上帝的安排,提出一切行星都是在某种外来的“第一推动力”作用下才开始运动的说法. 《自然哲学的数学原理》牛顿最重要的着作,1687年出版.该书总结了他一生中许多重要发现和研究成果,其中包括上述关于物体运动的定律.他说,该书“所研究的主要是关于重、轻流体抵抗力及其他吸引运动的力的状况,所以我们研究的是自然哲学的数学原理.”该书传入中国后,中国数学家李善兰曾译出一部分,但未出版,译稿也遗失了.现有的中译本是数学家郑太朴翻译的,书名为《自然哲学之数学原理》,1931年商务印书馆初版,1957、1958年两次重印.
❾ 牛顿在物理领域有那些杰出的贡献300字
牛顿在科学上的主要贡献是:
在力学上提出三大运动定律和万有引力定律;在光学上作出了白光是由七色光组成的判决实验,发现并解释“牛顿环”的干涉现象,创制了反射望远镜并提出光的微粒说、
他的最重要的科学着作是:1687年初版的《自然哲学的数学原理》(简称《原理》),1704年初版的《光学》。
万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。
在牛顿所处的时代,哥白尼提出了日心说,开普勒从第谷的观测资料中总结了经验的行星运动三定律,伽利略又给出了力、加速度等概念并发现了惯性定律和自由落体定律。但是,这些物理概念和物理规律还是孤立的、逻辑上各自独立的东西。正是在这个时候,牛顿对行星及地面上的物体运动作了整体的考察,他用数学方法,使物理学成为能够表述因果性的一个完整体系。这就是我们今天所说的经典力学体系。按照牛顿所说的这个体系的原理,人们利用描写物体运动的坐标及速度的初始值,就可以确定地知道该物体的未来和过去。牛顿建立了经典物理学的具有因果关系的完整体系并得到广泛的实际应用。他所建立的力学体系不仅能说明已有的理论已经说明的现象,如充分地解释伽利略发现的惯性定律和自由落体定律,而且能说明并解释已有的理论不能说明的现象,如完满地说明开普勒的行星运动三定律。更重要的是,牛顿的力学理论能预见到新的物理现象和物理事实,并能以天文观测或实验证实它们的正确性。在万有引力理论的基础上,人们后来发现并证实海王星和冥王星的存在,这是牛顿力学理论的有力佐证。牛顿力学既可以用予说明地面上的物质运动,又可以用予解释太阳系中的行星运动,充分证明了新理论具有的自然规律的普遍性法则。
正是在《原理》一书中,牛顿提出了力学的三大定律和万有引力定律,对宏观物体的运动给出了精确的描述,总结了他自己的物理学发现和哲学观点。《原理》是自然科学的奠基性巨着。该着作把地面上物体的运动和太阳系内行星的运动统一在相同的物理定律之中,从而完成了人类文明史上第一次自然科学的大综合。它不仅标志了十六、十七世纪科学革命的顶点,也是人类文明、进步的划时代标志。它不仅总结和发展了牛顿之前物理学的几乎全部重要成果,而且也是后来所有科学着作和科学方法的楷模。
❿ 牛顿在物理学方面的贡献是什么100字左右
牛顿是经典力学理论的集大成者。他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了着名的万有引力定律和牛顿运动三定律。1686年底,牛顿写成划时代的伟大着作《自然哲学的数学原理》一书(在1687年出版)。牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。