㈠ 物理层,什么是物理层,物理层介绍
物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
物理层不是指具体的物理设备,也不是指信号传输的物理媒体,而是指在物理媒体之上为上一层(数据链路层)提供一个传输原始比特流的物理连接。物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。简单的说,物理层确保原始的数据可在各种物理媒体上传输。
㈡ 网络物理层 链路层 网络层的关系
首先要明白各层的作用是什么。
物理层是产生并传输信号的,没有信号传输不同地点的设备不能相互感知;
链路层是用信号传输建立通信渠道的,一般规定特定的信号形式代表特定的具体意义,使不同的设备间可以相互沟通理解,物理层不同,信号产生的方式不同,对应的链路层也不同;
网络层的作用是不同的链路层之间也可以相互沟通理解,即屏蔽物理层和链路层的差别。
举个通俗的例子,物理层好比各种动物,猫啊狗啊什么的,猫会喵喵叫,狗会旺旺叫。链路层好比猫和猫之间,喵一下表示1,喵两下表示2;狗和狗之间,旺一下表示1,旺两下表示2,这样猫和猫、狗和狗就能相互交流了。网络层好比猫和狗之间,他们无法直接交流,于是猫喵了一下画一个1,喵两下画个2,狗旺一下画个1,画两下画个2,于是大家都明白了喵几下和旺几下都代表什么意思,猫和狗之间也可以交流了。
㈢ 物理层是什么
物理层(Physical Layer)是计算机网络OSI模型中最低的一层。
物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。简单的说,物理层确保原始的数据可在各种物理媒体上传输。
物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
物理层的功能是实现原始数据在通信通道上传输,它是数据通信的基础功能。物理层四个特性是机械特性、电气特性、功能特性和规程特性,内容包括EIARS-232C、EIARS-449接口标准和CCITT X.21建议;通信硬件中常用的通信适配器(网卡)和调制解调器(MODEM)的功能特性;异步通信适配器和MODEM的通信编程方法。 物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据的比特流,而不是指连接计算机的具体的物理设备或具体的传输媒体。现有的计算机网络中的物理设备和传输媒体的种类繁多,而通信手段也有许多不同方式。物理层的作用正是要尽可能地屏蔽掉这些差异,使物理层上面的数据链路层感觉不到这些差异,这样可使数据链路层只需要考虑如何完成本层的协议和服务,而不必考虑网络具体的传输媒体是什么。这里,用于物理层的协议也常称为物理层规程。
㈣ 网络中//物理层][链路层][网络层][传输层][会话层][表示层][应用层] 是什么啊
OSI(Open System Interconnect)开放式系统互联。
一般都叫OSI参考模型
是ISO(国际标准化组织)组织在1985年研究的网络互联模型。
最早的时候网络刚刚出现的时候,很多大型的公司都拥有了网络技术,公司内部计算机可以相互连接。可以却不能与其它公司连接。因为没有一个统一的规范。计算机之间相互传输的信息对方不能理解。所以不能互联。
ISO为了更好的使网络应用更为普及,就推出了OSI参考模型。其含义就是推荐所有公司使用这个规范来控制网络。这样所有公司都有相同的规范,就能互联了。
其内容如下:
第7层应用层—直接对应用程序提供服务,应用程序可以
变化,但要包括电子消息传输
第6层表示层—格式化数据,以便为应用程序提供通用接
口。这可以包括加密服务
第5层会话层—在两个节点之间建立端连接。此服务包括
建立连接是以全双工还是以半双工的方式进行设
置,尽管可以在层4中处理双工方式
第4层传输层—常规数据递送-面向连接或无连接。包括
全双工或半双工、流控制和错误恢复服务
第3层网络层—本层通过寻址来建立两个节点之间的连接,
它包括通过互连网络来路由和中继数据
第2层数据链路层—在此层将数据分帧,并处理流控制。本层
指定拓扑结构并提供硬件寻址
第1层物理层—原始比特流的传输,电子信号传输和硬件接口
数据发送时,从第七层传到第一层,接受方则相反。
上三层总称应用层,用来控制软件方面。
下四层总称数据流层,用来管理硬件。
数据在发至数据流层的时候将被拆分。
在传输层的数据叫段 网络层叫包 数据链路层叫帧 物理层叫比特流 这样的叫法叫PDU (协议数据单元)
OSI中每一层都有每一层的作用。比如网络层就要管理本机的IP的目的地的IP。数据链路层就要管理MAC地址(介质访问控制)等等,所以在每层拆分数据后要进行封装,以完成接受方与本机相互联系通信的作用。
如以此规定。
OSI模型用途相当广泛。
比如交换机、集线器、路由器等很多网络设备的设计都是参照OSI模型设计的。
知道道这么多就可以了。至少CCNA就考这么多。
㈤ 数据链路层的功能与物理层的功能有何不同
数据链路层的主要作用是:通过一些数据链路层协议和链路控制规程,在不太可靠的物理链路上实现可靠的数据传输。
物理层位于OSI参考模型的最底层,它直接面向实际承担数据传输的物理媒体(即信道)。物理层的传输单位为比特。物理层是指在物理媒体之上为数据链路层提供一个原始比特流的物理连接。物理层协议规定了与建立、维持及断开物理信道所需的机械的、电气的、功能性的和规程性的特性。其作用是确保比特流能在物理信道上传输。
㈥ 物理层,数据链路层和网络层的基本功能是什么有什么联系
首先我们从计算机里面的数据出发吧,比如qq写入的信息是最原始的,也就是应用层的工作,然后表示层,是传输的编码,是用什么编码传输数据,有可能还包括加密的过程.而会话层主要进行端对端的连接的建立维持和断开.这三部分是端对端的连接.
下一层是传输层,主要包括端口和进程,表示用什么进程连接通信,比如说对方用qq进行信息传递,这边有qq,msn,yahoo,那么为什么就只有qq能够接受到信息呢?这个功能识别就是靠传输层的作用了.
下面三层是点到点的连接.
网络层
写上ip
指明数据传输的路,
是快速的寻址,是能快速找到去往的路.
数据链路层是在网络层封装的基础上封装mac地址是精确的寻址.当找到网关,在这个基础上定位哪台主机.然后最后物理层是原始的比特流传输,传输二进制0和1.
呵呵
我还是比较笼统的
不过能系统地了解整个过程
㈦ 物理层,数据链路层和网络层的基本功能是什么有什么联系
物理层的基本功能是:利用传输介质为数据链路层提供物理连接,实现比特流的透明传输。
数据链路层的基本功能是:通过各种控制协议,将有差错的物理信道变为无差错的、能可靠传输数据帧的数据链路。
网络层基本功能是:通过路由选择算法,为报文或分组通过通信子网选择最适当的路径。
在计算机网络中由于各种干扰的存在,物理链路是不可靠的。因此,这一层的主要功能是在物理层提供的比特流的基础上,通过差错控制、流量控制方法,使有差错的物理线路变为无差错的数据链路,即提供可靠的通过物理介质传输数据的方法。
数据链路层中使用的物理地址(如MAC地址)仅解决网络内部的寻址问题。在不同子网之间通信时,为了识别和找到网络中的设备,每一子网中的设备都会被分配一个唯一的地址。由于各子网使用的物理技术可能不同,因此这个地址应当是逻辑地址(如IP地址)。
㈧ 计算机网络-02-物理层和数据链路层
物理层主要功能是为数据端设备提供传送数据的通路以及传输数据。
信道是往一个方向传送信息的媒体,一条通信电路包含一个接收信道和一个发送信道。
分用-复用技术 允许多个用户使用一个共享信道进行通信,可以降低成本,提高利用率。
数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的功能是向该层用户提供透明的和可靠的数据传送基本服务。
数据链路层有两个功能: 帧编码 和 差错控制 。
物理层只负责传输比特流,为了使传输过程发生差错后只将有限数据进行重发,数据链路层将比特流组合成以太帧作为单位传送。
每个帧除了要传送的数据外,还包括校验码,以使接收方能发现传输中的差错。
假设现在从网络层过来了一个IP数据报,数据链路层会将这个数据报作为帧进行传送。
当然物理层是不管你帧不帧的,它只会将数据链路层传过来的帧以比特流的形式发送给另一台物理设备。
由前面的文章可知: 总时延 = 发送时延 + 排队时延 + 传播时延 + 处理时延
数据链路层的数据帧不是无限大的,数据帧过大或过小都会影响传输的效率,数据链路层使用MTU来限制数据帧长度。
以太网MTU一般为1500字节, 路径MTU由链路中MTU的最小值决定 。
一个实用的通信系统必须具备发现(即检测)这种差错的能力,并采取某种措施纠正之,使差错被控制在所能允许的尽可能小的范围内,这就是差错控制过程。物理层只管传输比特流,无法控制是否出错,所以差错检测成了数据链路层的主要功能之一。
一般的检测方法有 奇偶校验码 和 CRC循环冗余校验码 。
网络中需要唯一标识物理设备的地址,用于确定数据传输时的发送地址和目的地址。
MAC地址(物理地址、硬件地址)共48位,使用十六进制表示,每一个设备都拥有唯一的MAC地址。
虽然MAC地址是物理硬件地址,但其属于数据链路层的MAC子层。
以太网(Ethernet)是一种使用广泛的局域网技术,它是应用于数据链路层的协议,使用以太网可以完成相邻设备的数据帧传输。
以太网数据报文主要由五个部分组成:
类型主要表示帧数据的类型,例如网络层的IP数据。
定义完数据结构后,就需要进行数据传输。由上文可知,MAC地址唯一标识了设备,那么怎么获得目的设备的MAC地址呢?
MAC地址表记录了与本设备相连的设备的MAC地址。
假设主机A发送了一个以太网数据报文,数据帧到达路由器,路由器取出前6字节(通过报文数据结构可知前6位位目的地址)。
路由器匹配MAC地址表,找到对应的网络接口,路由器往该网络接口发送数据帧。
当路由器的MAC地址表中没有目的地址,此时路由器会将此MAC地址进行广播(发送方A除外),接收局域网中与该路由其相连的其他设备的MAC地址并记录。
由于MAC地址表只能知道当前设备的下一个设备的MAC地址,简而言之就是只能进行相邻物理节点的数据传输。
有关跨设备传输数据的功能是交由网络层处理的,具体见下一章。
㈨ OSI网络体系中,物理层和数据链路层的区别是什么能否举出实际例子,谢谢
物理层:透明的传送比特流,例子就是传输它的媒体包括架空明线、平衡电缆、光纤、无线信道等。
数据链路层:物理层要为终端设备间的数据通信提供传输媒体及其连接.媒体是长期的,连接是有生存期的.在连接生存期内,收发两端可以进行不等的一次或多次数据通信.每次通信都要经过建立通信联络和拆除通信联络两过程.这种建立起来的数据收发关系就叫作数据链路.而在物理媒体上传输的数据难免受到各种不可靠因素的影响而产生差错,为了弥补物理层上的不足,为上层提供无差错的数据传输,就要能对数据进行检错和纠错.数据链路的建立,拆除,对数据的检错,但是并不纠正错误。
㈩ 物理层,数据链路层,网络层,传输层的功能和作用。
物理层:对应于网络的基本硬件,这也是Internet物理构成,即我们可以看得见的硬件设备,如PC机、互连网服务器、网络设备等,必须对这些硬件设备的电气特性作一个规范,使这些设备都能够互相连接并兼容使用。
·网络接口层:它定义了将数据组成正确帧的规程和在网络中传输帧的规程,帧是指一串数据,它是数据在网络中传输的单位。
·互联网层:本层定义了互联网中传输的"信息包"格式,以及从一个用户通过一个或多个路由器到最终目标的"信息包"转发机制。
·传输层:为两个用户进程之间建立、管理和拆除可靠而又有效的端到端连接。
·应用层:它定义了应用程序使用互联网的规程。