‘壹’ 改性纤维的改性方法
改性方法有:(1)化学法,如共聚或接枝共聚等方法;(2)物理法,如共混或物理性添加某些改性剂等方法。这些方法已被广泛采用,成功地开发出了许多改性化学纤维的新品种,如高湿模量黏胶纤维、阳离子染料可染聚酯纤维(CDP纤维、ECDP纤维)、丙烯腈-氯乙烯共聚纤维(腈氯纶)、水溶性聚乙烯醇纤维等。
①接枝纤维:在纤维的大分子链上通过活性链节从侧向引上高分子支链所得到的纤维。将棉纤维或粘胶纤维接上甲基、乙基或苯甲基生成纤维素醚,可降低纤维的吸水性并提高纤维的化学稳定性、阻燃性、光作用稳定性、抗热性和电绝缘性等。纤维素与少量能聚合的单体在溶体状态共聚,在纤维素主链上引入合成高分子支链,从而获得接枝共聚的纤维素纤维,可改进纤维素纤维的耐褶皱性。
②共聚纤维:由二元或三元单体在一定条件下共聚制得的纤维。丝朊(蛋白质)与少量丙烯腈共聚可获得丙烯腈接枝丝纤维。纯聚丙烯腈纤维的实用价值较差,但经与乙酸乙烯酯和其他单体共聚后所得的纤维,物理机械性质和染色性质就远比纯聚丙烯腈纤维优良。
③化学后处理改性纤维:涤纶经1~1.5%萘磺酸碱金属盐和甲醛缩合物水溶液处理可获得抗起球性;而经碱溶液处理,则可具有类似天然丝的性质;在热处理过程中加入含磷或卤素化合物则可获得耐燃性。
‘贰’ 常见的淀粉改性方法有
物理改性
淀粉的物理改性是指通过热、机械力、物理场等物理手段对淀粉进行改性。淀粉的物理改性主要有热液处理、微波处理、电离放射线处理、超声波处理、球磨处理、挤压处理等
化学改性
淀粉的微观结构是以葡萄糖基组成的淀粉大分子环式结构,淀粉分子中具有数目较多的醇羟基,能与众多的化学试剂反应生成各种类型的改性淀粉。通常,淀粉的化学改性有酸水解、氧化、醚化、酯化和交联等。化学法是淀粉改性应用最广的方法。
‘叁’ PP对SEBS的改性是物理过程还是化学过程
PP对SEBS的改性是物理过程
目前所应用的SEBS基弹性体材料主要是SEBS与热塑性塑料的共混物。
热塑性塑料聚丙烯( PP) 经常被用于改性SEBS弹性体。一方面, 用热塑性塑料改性SEBS可以降低其熔融粘度, 使SEBS易于加工; 另一方面, 热塑性塑料可有效地改善SEBS弹性体体系的力学性能; 此外, 热塑性塑料价格低廉, 可降低SEBS弹性体材料的成本。
通常把改性方法分为化学改性和物理改性两大类。所谓化学改性原则上是指在高分子化合物主链上发生化学反应,从而使高分子化合物具有更好的性能或全新的功能。这种化学反应有的是在髙分子化合物形成时进行的,有的则是在已形成的髙分子化合物主链上再进行。而物理改性原则上应当是指在整个改性过程中不发生化学反应,仅仅依靠不同组分相互之间各组分本身的物理特性、力-形变特性、形态的变化等实现其 性能的改善或获得新的功能。
通常提到的化学改性方法是指嵌段共聚、接枝共聚、交联 或降解等。
物理改性的方法有填充改性、共混改性两大类。
PP对SEBS的改性属于物理改性中的共混改性。
‘肆’ 什么叫改性
改性是通过物理和化学手段改变材料物质形态或性质的方法。
物理改性是在基体中加入其它的填料,如有机材料、无机材料、橡胶品种、热塑性弹性体、其它塑料品种,或一些添加助剂,通过混合、混炼的方法而制成的性能突出的改性材料。化学改性通过化学反应改变聚合物的物理、化学性质。
改性化学变化
化学变化在生产和生活中普遍存在。如铁的生锈、节日的焰火、酸碱中和等等。宏观上可以看到各种化学变化都产生了新物质,这是化学变化的特征。从微观上可以理解化学变化的实质:化学反应前后原子的种类、个数没有变化,仅仅是原子与原子之间的结合方式发生了改变。
例如对于分子构成的物质来说,就是原子重新组合成新物质的分子。物质的化学性质需要通过物质发生化学变化才能表现出来,因此可以利用使物质发生化学反应的方法来研究物质的化学性质,制取新的物质。
化学变化常伴有光、热、气体、沉淀产生或颜色气味改变等表现现象发生,可以参照这些现象来判断有无化学反应发生。但要注意跟物理变化的区别。物理变化也常伴有发光(电灯)、放热(摩擦)、放出气体(启开汽水瓶盖)、颜色变化(氧气变成液氧)等现象发生,只是没有新物质生成,这是物理变化与化学变化的根本区别。
根据反应物、生成物种类不同可以把化学反应分为化合、分解、置换和复分解4种基本类型。也可以从其他角度给化学反应分类,如分成氧化还原反应与非氧化还原反应;吸热反应与放热反应等等。物体在化学变化中表现出来的性质是化学性质。
‘伍’ 物理/化学上改变物质性质的方式有哪些
物理方法改变物质性质,例:磁化现象----用一块永磁铁将一根针磁化,使其具有磁性.(磁化方法)......
化学方法改变物质性质,例:铁在潮湿空气中易被氧化为三氧化二铁(即:氧化铁),由单质变为了化合物.(氧化还原的方法)......
方法还有很多......
‘陆’ 改性塑料的改进技术
什么是改性塑料?
在通用塑料和工程塑料的基础上,通过物理、化学、机械等方式,经过填充、共混、增强等加工方法,改善塑料的性能或增加功能,对塑料的阻燃性、强度、抗冲击性、韧性等机械性能得到改善和提高,使得塑料能适用在特殊的电、磁、光、热等环境条件下。
塑料改性技术的应用范围
从原料树脂的生产到多种规格及品种的改性塑料母料的生产;应用于几乎所有的塑料制品的原材料与成型加工过程中。
塑料改性的应用范围很广泛,几乎所有塑料的性能都可通过改性方法得到改善。如塑料的外观、透明性、密度、精度、加工性、机械性能、化学性能、电磁性能、耐腐蚀性能、耐老化性、耐磨性、硬度、热性能、阻燃性、阻隔性等方面。为了降低塑料制品的成本、改善性能、提高功能,都离不开塑料改性技术。
塑料改性方法
物理改性:原则上不发生化学反应,主要是物理混合过程。在物理改性过程中往往也伴随有化学反应的发生。
化学改性:在聚合物分子链上通过化学方法进行嵌段共聚、接枝共聚、交联与降解等反应,或者引入新的官能团而形成特定功能的高分子材料。
塑料主要改性技术手段
1、填充
通过给普通塑料加入无机矿物(有机)粉末,改善塑料材料的刚性、硬度、耐热性等性能。填充剂种类繁多,其特性也极复杂。
塑料填充剂(filler for plastics)的作用:提高塑料加工性能、改进物化性质、增加容积、降低成本。
塑料增量填充剂应具备的特性:
(1)化学性质不活泼,呈惰性,不与树脂及其他助剂发生不良反应;
(2)不影响塑料的耐水性、耐化学药品性、耐候性、耐热性等;
(3)不降低塑料的物理性能;
(4)可以大量填充;
(5)相对密度小,对制品的密度影响不大;
(6)价格相对低廉。
2、增强
1)措施:通过在加入玻璃纤维、碳纤维等纤维状物质。
2)效果:可以明显改善材料的刚性、强度、硬度、耐热性,
3)不良影响:但很多材料会导致表面不良和韧性明显降低。
4)增强原理:
增强材料具有较高的强度和模量;
树脂具有许多固有的优良物理、化学(耐腐蚀、绝缘、耐辐照、耐瞬时高温烧蚀等)和加工性能;
树脂与增强材料复合后,增强材料可以起到增进树脂的力学或其他性能,而树脂对增强材料可以起到粘合和传递载荷的作用,使增强塑料具有优良性能。
3、增韧
有较多的材料韧性不够、太脆,可以通过加入韧性较好的材料或者超细无机材料,增加材料韧性和低温使用性能。
增韧剂:为了降低塑料硬化后的脆性,提高其冲击强度和延伸率而加入树脂中的一种添加剂。
常用增韧剂:
多为马来酸酐接枝相容剂)——乙烯-醋酸乙烯酯共聚物(EVA)、氯化聚乙烯(CPE)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、苯乙烯-丁二烯热塑性弹性(SBS)、三元乙丙橡胶(EPDM)......
都是用于塑料特别是工程塑料上效果显着的增韧剂。
4、阻燃
在较多的场合,要求材料有阻燃性,比较常用的场合是电子电器,汽车行业也有阻燃要求,但一般较低。阻燃可以通过加入阻燃剂实现。
大多数塑料具可燃性。随着塑料在建筑、家具、交通、航空、航天、电器等方面的广泛应用,提高塑料的阻燃性已成为十分迫切的课题。
阻燃剂:又称难燃剂,耐火剂或防火剂,赋予易燃聚合物难燃性的功能性助剂;它们大多是元素周期表中第ⅤA(磷)、ⅦA(溴、氯)和ⅢA(锑、铝)族元素的化合物。
具有抑烟作用的钼化合物、锡化合物和铁化合物等亦属阻燃剂的范畴,主要适用于有阻燃需求的塑料,延迟或防止塑料尤其是高分子类塑料的燃烧。
使其点燃时间增长,点燃自熄,难以点燃。
阻燃原理
1)吸热作用任何燃烧在较短的时间所放出的热量是有限的,如果能在较短的时间吸收火源所放出的一部分热量,那么火焰温度就会降低,辐射到燃烧表面和作用于将已经气化的可燃分子裂解成自由基的热量就会减少,燃烧反应就会得到一定程度的抑制。
在高温条件下,阻燃剂发生了强烈的吸热反应,吸收燃烧放出的部分热量,降低可燃物表面的温度,有效地抑制可燃性气体的生成,阻止燃烧的蔓延。Al(OH)3阻燃剂的阻燃机理就是通过提高聚合物的热容,使其在达到热分解温度前吸收更多的热量,从而提高其阻燃性能。这类阻燃剂充分发挥其结合水蒸汽时大量吸热的特性,提高其自身的阻燃能力。
文章很长,希望对你有用浅谈改性塑料都有哪些改性手段
‘柒’ 淀粉改性的方法
常见的淀粉改性方法有化学改性、物理改性和酶改性。化学改性法是目前企业最常用的制备方法,效率高,操作简便,但使用较多化学试剂不环保,且食用存在较大安全隐患。
酶改性法近年来备受研究者的喜爱,但反应条件受限,目前只适合在实验室进行制备,无法达到大规模生产。
物理改性是指采用热、力、光、电等手段来改变淀粉颗粒原有的形态、结构、性质。淀粉的物理改性法包括热液处理、微波处理、电离放射线处理、超声波处理、球磨处理以及挤压处理等。
改性过程中淀粉分子之间的氢键被破坏,淀粉的结晶区受损、直链淀粉与支链淀粉的比值改变、分子链发生断裂或聚集,分子重新排列。淀粉改性后流变学性能及消化率变化最大。目前,较多学者对淀粉改性进行研究,但对物理改性研究较少,改性淀粉变化机理尚不明确。