① 伯努利原理风扇
伯努利定律是瑞士物理学家丹尼尔·伯努利于1726年提出的一个理论,其实质是流体的机械能守恒,即:动能+重力势能+压力势能=常数。
伯努利定律最为着名的推论是,在水流或气流里,如果速度小,压强就大;如果速度大,压强就小。
电风扇朝外吹的确可以降温,但需要符合2个前提:
1、室外的温度要比室内低
这种降温手段主要利用对流现象,室内热空气在扇叶的强力推动下,会从室内排向室外,根据伯努利原理,风扇周围的压强会出现暂时性减小,周围的空气就会加速向此处流动填充,从而加快了室内、室外冷热交换。其实,如果室外气温较低,即使没有风扇的作用,由于冷空气密度较大,也会通过窗户流向较热的室内。
2、要有冷热交换的空间
也就是说房间里不能只打开一扇窗户,别的地方都密不透风。要想达到较为理想的降温效果,需要至少同时打开两扇窗户,这样风扇把室内的热空气吹出去,凉空气才会从另外一扇窗户溜进来。
所以,在符合这两个前提的情况下,将电风扇朝外吹,确实会让室内的温度降低。但实际上,夏天大部分的时间里,室外的温度是要比室内高的,这种方法可能就会没有那么奏效了。
② 贝努利与伯努利是同一人么
努利家族简介
在科学史上,父子科学家、兄弟科学家并不鲜见,然而,在一个家族跨世纪的几代人中,众多父子兄弟都是科学家的较为罕见,其中,瑞士的伯努利家族最为突出。
伯努利家族3代人中产生了8位科学家,出类拔萃的至少有3位;而在他们一代又一代的众多子孙中,至少有一半相继成为杰出人物。伯努利家族的后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。最不可思议的是这个家族中有两代人,他们中的大多数数学家,并非有意选择数学为职业,然而却忘情地沉溺于数学之中,有人调侃他们就像酒鬼碰到了烈酒。
老尼古拉·伯努利(Nicolaus Bernoulli,公元1623~1708年)生于巴塞尔,受过良好教育,曾在当地政府和司法部门任高级职务。他有3个有成就的儿子。其中长子雅各布(Jocob,公元1654~1705年)和第三个儿子约翰(Johann,公元1667~1748年)成为着名的数学家,第二个儿子小尼古拉(Nicolaus I,公元1662~1716年)在成为彼得堡科学院数学界的一员之前,是伯尔尼的第一个法律学教授。
编辑本段
雅各布·伯努利生平
1654年12月27日,雅各布·伯努利生于巴塞尔,毕业于巴塞尔大学,1671年17岁时获艺术硕士学位。这里的艺术指“自由艺术”,包括算术、几何学、天文学、数理音乐和文法、修辞、雄辩术共7大门类。遵照父亲的愿望,他于1676年22岁时又取得了神学硕士学位。然而,他也违背父亲的意愿,自学了数学和天文学。1676年,他到日内瓦做家庭教师。从1677年起,他开始在那里写内容丰富的《沉思录》。
1678年和1681年,雅各布·伯努利两次外出旅行学习,到过法国、荷兰、英国和德国,接触和交往了许德、玻意耳、胡克、惠更斯等科学家,写有关于彗星理论(1682年)、重力理论(1683年)方面的科技文章。1687年,雅各布在《教师学报》上发表数学论文《用两相互垂直的直线将三角形的面积四等分的方法》,同年成为巴塞尔大学的数学教授,直至1705年8月16日逝世。
1699年,雅各布当选为巴黎科学院外籍院士;1701年被柏林科学协会(后为柏林科学院)接纳为会员。
许多数学成果与雅各布的名字相联系。例如悬链线问题(1690年),曲率半径公式(1694年),“伯努利双纽线”(1694年),“伯努利微分方程”(1695年),“等周问题”(1700年)等。
雅各布对数学最重大的贡献是在概率论研究方面。他从1685年起发表关于赌博游戏中输赢次数问题的论文,后来写成巨着《猜度术》,这本书在他死后8年,即1713年才得以出版。
1726年,伯努利通过无数次实验,发现了“边界层表面效应”:流体速度加快时。物体与流体接触的界面上的压力会减小,反之压力会增加。为纪念这位科学家的贡献,这一发现被称为“伯努利效应”。伯努利效应适用于包括气体在内的一切流体。伯努利把牛顿力学引入对流体力学的研究,以《流体动力学》(1738)一书着称于世,书中提出流体力学的一个定理,反映了理想流体(不可压缩、不计粘性的流体)中能量守恒定律。这个定理和相应的公式称为伯努利定理和伯努利公式。 1782年3月17日,丹尼尔伯努利在瑞土巴塞尔去世。
最为人们津津乐道的轶事之一,是雅各布醉心于研究对数螺线,这项研究从1691年就开始了。他发现,对数螺线经过各种变换后仍然是对数螺线,如它的渐屈线和渐伸线是对数螺线,自极点至切线的垂足的轨迹,以极点为发光点经对数螺线反射后得到的反射线,以及与所有这些反射线相切的曲线(回光线)都是对数螺线。他惊叹这种曲线的神奇,竟在遗嘱里要求后人将对数螺线刻在自己的墓碑上,并附以颂词“纵然变化,依然故我”,用以象征死后永生不朽。
编辑本段
伯努利数(Bernoulli Numbers)
伯努利数是18世纪瑞士数学家雅各布·伯努利引入的一个数。设伯努利数为B(n),它的定义为: t/(e^t-1)=∑[B(n)*(t^n)/(n!)](n:0->∞) 这里|t|<2。由计算知: B(0)=1,B(1)=-1/2, B(2)=1/6,B(3)=0, B(4)=-1/30,B(5)=0, B(6)=1/42,B(7)=0, B(8)=-1/30,B(9)=0), B(10)=5/66,B(11)=0, B(12)=-691/2730,B(13)=0, B(14)=7/6,B(15)=0, B(16)=-3617/510,B(17)=0, B(18)=43867/798,B(18)=0, B(20)=-174611/330 …… 一般地,n>=1时,有B(2n+1)=0;n>=2时,有公式B(n)=∑[C(k,n)*B(k)](k:0->n)可用来逐一计算伯努利数。伯努利数在数论中很有用。例如,对于佩尔方程-=-4(≡1(mod4)是素数),N.C.安克尼和E.阿廷曾猜想它的最小解x0+(y0)*√(p)满足 ,1960年,L.J.莫德尔证明了在≡5(mod8)时,S.乔拉证明了在≡1(mod8)时,上述猜想等价于伯努利数B((p-1)/2)的分子不被整除。伯努利数还可用于费马大定理的论证中。设>3,如果伯努利数B,B,…,B(p-3)的每一个的分子不被整除,这样的素数叫正规素数,否则就叫非正规素数。德国数学家E.E.库默尔证明了:当为正规素数时,费马大定理成立。不难计算当3<<100时,除开=37,59,67以外,其余的素数都是正规素数。因此,在费马大定理的研究中,库默尔的结果是一项突破性的工作(见不定方程)。尽管有许多判别正规素数的法则,但是,是否有无穷多个正规素数,尚未解决。而非正规素数有无穷多个,早在1915年就被人们所证明。
编辑本段
约翰·伯努利生平
雅各布·伯努利的弟弟约翰·伯努利比哥哥小13岁,1667年8月6日生于巴塞尔,1748年1月1日卒于巴塞尔,享年81岁,而哥哥只活了51岁。
约翰于1685年18岁时获巴塞尔大学艺术硕士学位,这点同他的哥哥雅各布一样。他们的父亲老尼古拉要大儿子雅各布学法律,要小儿子约翰从事家庭管理事务。但约翰在雅各布的带领下进行反抗,去学习医学和古典文学。约翰于1690年获医学硕士学位,1694年又获得博士学位。但他发现他骨子里的兴趣是数学。他一直向雅各布学习数学,并颇有造诣。1695年,28岁的约翰取得了他的第一个学术职位——荷兰格罗宁根大学数学教授。10年后的1705年,约翰接替去世的雅各布任巴塞尔大学数学教授。同他的哥哥一样,他也当选为巴黎科学院外籍院士和柏林科学协会会员。1712、1724和1725年,他还分别当选为英国皇家学会、意大利波伦亚科学院和彼得堡科学院的外籍院士。
约翰的数学成果比雅各布还要多。例如解决悬链线问题(1691年),提出洛必达法则(1694年)、最速降线(1696年)和测地线问题(1697年),给出求积分的变量替换法(1699年),研究弦振动问题(1727年),出版《积分学教程》(1742年)等。
约翰与他同时代的110位学者有通信联系,进行学术讨论的信件约有2500封,其中许多已成为珍贵的科学史文献,例如同他的哥哥雅各布以及莱布尼茨、惠更斯等人关于悬链线、最速降线(即旋轮线)和等周问题的通信讨论,虽然相互争论不断,特别是约翰和雅各布互相指责过于尖刻,使兄弟之间时常造成不快,但争论无疑会促进科学的发展,最速降线问题就导致了变分法的诞生。
约翰的另一大功绩是培养了一大批出色的数学家,其中包括18世纪最着名的数学家欧拉、瑞士数学家克莱姆、法国数学家洛必达,以及他自己的儿子丹尼尔和侄子尼古拉二世等。
编辑本段
丹尼尔·伯努利生平
人物简介
丹尼尔·伯努利,(Daniel Bernoulli 1700~1782)瑞士物理学家、数学家、医学家。1700年2月8日生于荷兰格罗宁根。着名的伯努利家族中最杰出的一位。他是数学家J.伯努利的次子,和他的父辈一样,违背家长要他经商的愿望,坚持学医,他曾在海得尔贝格、斯脱思堡和巴塞尔等大学学习哲学、论理学、医学。1721年取得医学硕士学位。努利在25岁时(1725)就应聘为圣彼得堡科学院的数学院士。8年后回到瑞士的巴塞尔,先任解剖学教授,后任动力学教授,1750年成为物理学教授。
在1725~1749年间,伯努利曾十次荣获法国科学院的年度奖。
1782年3月17日,伯努利在瑞士巴塞尔逝世,终年82岁。
个人经历
约翰·伯努利想迫使他的第二个儿子丹尼尔去经商,但丹尼尔在不由自主地陷进数学之前,曾宁可选择医学成为医生。
丹尼尔(Daniel,公元1700~1782年)出生于荷兰的格罗宁根,1716年16岁时获艺术硕士学位;1721年又获医学博士学位。他曾申请解剖学和植物学教授职位,但未成功。
丹尼尔受父兄影响,一直很喜欢数学。1724年,他在威尼斯旅途中发表《数学练习》,引起学术界关注,并被邀请到圣彼得堡科学院工作。同年,他还用变量分离法解决了微分方程中的里卡提方程。1725年,25岁的丹尼尔受聘为圣彼得堡的数学教授。1727年,20岁的欧拉(后人将他与阿基米德、艾萨克·牛顿、高斯并列为数学史上的“四杰”),到圣彼得堡成为丹尼尔的助手。
然而,丹尼尔认为圣彼得堡那地方的生活比较粗鄙,以至于8年以后的1733年,他找到机会返回巴塞尔,终于在那儿成为解剖学和植物学教授,最后又成为物理学教授。
1734年,丹尼尔荣获巴黎科学院奖金,以后又10次获得该奖金。能与丹尼尔媲美的只有大数学家欧拉。丹尼尔和欧拉保持了近40年的学术通信,在科学史上留下一段佳话。
在伯努利家族中,丹尼尔是涉及科学领域较多的人。他出版了经典着作《流体动力学》(1738年);研究弹性弦的横向振动问题(1741~1743年),提出声音在空气中的传播规律(1762年)。他的论着还涉及天文学(1734年)、地球引力(1728年)、湖汐(1740年)、磁学(1743、1746年),振动理论(1747年)、船体航行的稳定(1753、1757年)和生理学(1721、1728年)等。凡尼尔的博学成为伯努利家族的代表。
丹尼尔于1747年当选为柏林科学院院士,1748年当选巴黎科学院院士,1750年当选英国皇家学会会员。他一生获得过多项荣誉称号。
科学成就
1.在物理学上的贡献有:
(1)1738年出版了《流体动力学》一书,共13章。这是他最重要的着作。书中用能量守恒定律解决流体的流动问题,写出了流体动力学的基本方程,后人称之为“伯努利方程”,提出了“流速增加、压强降低”的伯努利原理。
(2)他还提出把气压看成气体分子对容器壁表面撞击而生的效应,建立了分子运动理论和热学的基本概念,并指出了压强和分子运动随温度增高而加强的事实。
(3)从1728年起,他和欧拉还共同研究柔韧而有弹性的链和梁的力学问题,包括这些物体的平衡曲线,还研究了弦和空气柱的振动。
(4)他曾因天文测量、地球引力、潮汐、磁学、洋流、船体航行的稳定、土星和木星的不规则运动和振动理论等成果而获奖。
2.在数学方面,有关微积分、微分方程和概率论等,他也做了大量而重要的工作。
伯努利定律
在一个流体系统,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“流体力学之父”的丹尼尔·伯努利1738年发现的“伯努利定律”。 这个压力产生的力量是巨大的,空气能够托起沉重的飞机,就是利用了伯努利定律。飞机机翼的上表面是流畅的曲面,下表面则是平面。这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了。当然了,这个压力到底有多大,一个高深的流体力学公式“伯努利方程”会去计算它。
方程式
v=流动速度 伯努利定律g=地心加速度(地球)
h=流体处于的高度(从某参考点计)
p=流体所受的压强
ρ=流体的密度
伯努利方程
伯努利理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因着名的瑞士科学家D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体 ,方程为p+ρgz+(1/2)*ρv^2=C式中p、ρ、v分别为流体的压强、密度和速度;z 为铅垂高度;g为重力加速度。
上式各项分别表示单位体积流体的压力能 p、重力势能ρg z和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压 、动压和总压。显然 ,流动中速度增大,压强就减小;速度减小, 压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小 ,因而合力向上。 据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项
伯努利效应
1726年,伯努利通过无数次实验,发现了“边界层表面效应”:流体速度加快时,物体与流体接触的界面上的压力会减小,反之压力会增加。为纪念这位科学家的贡献,这一发现被称为“伯努利效应”。伯努利效应适用于包括气体在内的一切流体,是流体作稳定流动时的基本现象之一,反映出流体的压强与流速的关系,流速与压强的关系:流体的流速越大,压强越小;流体的流速越小,压强越大。
比如,管道内有一稳定流动的流体,在管道不同截面处的竖直开口细管内的液柱的高度不同,表明在稳定流动中,流速大的地方压强小,流速小的地方压强大。这一现象称为“伯努利效应”。伯努利方程:p+1/2pv^2=常量。
在列车站台上都划有安全线。这是由于列车高速驶来时,靠近列车车厢的空气将被带动而运动起来,压强就减小,站台上的旅客若离列车过近,旅客身体前后出现明显压强差,将使旅客被吸向列车而受伤害。
伯努利效应的应用举例:飞机机翼、 喷雾器、汽油发动机的汽化器、球类比赛中的旋转球。
编辑本段
家族的相关轶事
着名的伯努利家族曾产生许多传奇和轶事。对于这样一个既有科学天赋然而又语言粗暴的家族来说,这似乎是很自然的事情。一个关于丹尼尔的传说这是样的:有一次在旅途中,年轻的丹尼尔同一个风趣的陌生人闲谈,他谦虚地自我介绍说:“我是丹尼尔·伯努利。”陌生人立即带着讥讽的神情回答道:“那我就是艾萨克·牛顿!
③ 解释什么是伯努利
在科学史上, 父子科学家、兄弟科学家并不鲜见,然而,在一个家族跨世纪的几代人中,众多父子兄弟都是科学家的较为罕见,其中,瑞士的伯努利(也译作贝努力、伯努利)家族最为突出。
伯努利家族3代人中产 生了8位科学家,出类拔萃的至少有3位;而在他们一代又一代的众多子孙中,至少有一半相继成为杰出人物。伯努利家族的后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。最不可思议的是这个家族中有两代人,他们中的大多数 数学家,并非有意选择数学为职业,然而却忘情地沉溺于数学之中,有人调侃他们就像酒鬼碰到了烈酒。
其中一人为丹尼尔。伯努利。被称之为“流体力学之父”,他发现了着名的“伯努利定律”
伯努利定律
在一个 流体系统,比如气流、水流中,流速越快,流体产生的压力就越小,这就是被称为“ 流体力学之父”的 丹尼尔·伯努利1738年发现的“ 伯努利定律”。 这个压力产生的力量是巨大的,空气能够托起沉重的飞机,就是利用了伯努利定律。飞机机翼的上表面是流畅的曲面,下表面则是平面。这样,机翼上表面的气流速度就大于下表面的气流速度,所以机翼下方气流产生的压力就大于上方气流的压力,飞机就被这巨大的压力差“托住”了。当然了,这个压力到底有多大,一个高深的流体力学公式“ 伯努利方程”会去计算它。
④ 伯努利原理的介绍
丹尼尔·伯努利在1726年提出了“伯努利原理”。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为着名的推论为:等高流动时,流速大,压力就小。
作者简介:主要成就:
丹尼尔·伯努利的学术着作非常丰富,他的全部数学和力学着作、论文超过80种。
1734年,丹尼尔·伯努利与父亲约翰以“行星轨道与太阳赤道不同交角的原因”的佳作,获得了巴黎科学院的双倍奖金.丹尼尔获奖的次数可以和着名的数学家欧拉相比,因而受到了欧洲学者们的爱戴。
1725—1757年的30多年间他曾因天文学(1734)、地球引力(1728)、潮汐(1740)、磁学(1743,1746)洋流(1748)、船体航行的稳定(1753,1757)和振动理论(1747)等成果,获得了巴黎科学院的10次以上的奖赏。
丹尼尔·伯努利还是波伦亚(意大利)、伯尔尼(瑞士)、都灵(意大利)、苏黎世(瑞士)和慕尼黑(德国)等科学院或科学协会的会员,在他有生之年,还一直保留着彼得堡科学院院士的称号。
(4)伯努利是什么的物理学家扩展阅读:
相关:伯努利定理实际应用
如果流管的横截面积沿流动方向缓变,则在工程应用中常常对流管的平均速度和平均压力应用伯努利定理。采用这样的近似处理再加上流管的连续性方程常常能够非常简单地得到一些有用的结果。
在真实流体中机械能沿流线不守恒,粘性摩擦力所作的功耗散为热能。因此在粘性流体中推广伯努利定理时,必须考虑阻力造成的能量损失。
⑤ 伯努利定理指的是
伯努利原理
伯努利提出的流体力学定律
伯努利原理(又称伯努利定律)是流体力学中的一个定律,由瑞士流体物理学家丹尼尔·伯努利于1726年提出。 它是水力学所采用的基本原理,即:动能+重力势能+压力势能=常数。其最着名的推论为:等高流动时,流速大,压力就小。它仅适用于粘度可以忽略、不可被压缩的理想流体。
中文名
伯努利原理
外文名
Bernoulli's principle
表达式
p+1/2ρv^2+ρgh=C
提出者
丹尼尔·伯努利
提出时间
1726年
应用学科
流体力学
适用领域范围
不同类型的流体流动
方程式
原表达形式
适于理想流体(不存在摩擦阻力)。式中各项分别表示单位流体的动能、位能、静压能之差。
假设条件
使用伯努利定律必须符合以下假设,方可使用;如没完全符合以下假设,所求的解也是近似值。
定常流:在流动系统中,流体在任何一点之性质不随时间改变。
不可压缩流:密度为常数,在流体为气体适用于马赫数(Ma)<0.3。
无摩擦流:摩擦效应可忽略,忽略黏滞性效应。
流体沿着流线流动:流体元素沿着流线而流动,流线间彼此是不相交的。
推导过程
考虑一符合上述假设的流体,如图所示:
流体因受力所得的能量:
流体因引力做功所损失的能量:
流体所得的动能可以改写为:
根据能量守恒定律,流体因受力所得的能量+流体因引力做功所损失的能量=流体所得的动能。
对后可得
详细介绍
丹尼尔·伯努利在1726年首先提出时的内容就是:在水流或气流里,如果速度小,压强就大,如果速度大,压强就小。这个原理当然有一定的限制,但是在这里我们不谈它。下面是一些通俗些的解释:
向AB管吹进空气。如果管的切面小(像a处),空气的速度就大;而在切面大的地方(像b处),空气的速度就小。在速度大的地方压力小,速度小的地方压力大。因为a处的空气压力小,所以C管里的液体就上升;同时b处的比较大的空气压力使D管里的液体下降。在图215中,T管是固定在铁制的圆盘DD上的;空气从T管里出来以后,还要擦过另外一个跟T管不相连的圆盘dd。两个圆盘之间的空气的流速很大,但是这个速度越接近盘边降低得越快,因为气流从两盘之间流出来,切面在迅速加大,再加上惯性在逐渐被克服,但是圆盘四周的空气压力是很大的,因为这里的气流速度小;而圆盘之间的空气压力却很小,因为这里的气流速度大。因此圆盘四周的空气使圆盘互相接近的作用比两圆盘之间的气流要想推开圆盘的作用大;结果是,从T管里吹出的气流越强,圆盘dd被吸向圆盘DD的力也越大。
图216和图215相似,所不同的只是用了水。如果圆盘DD的边缘是向上弯曲的,那么在圆盘DD上迅速流动着的水会从原来比较低的水面自己上升到跟水槽里的静水面一般高。因此圆盘下面的静水就比圆盘上面的动水有更高的压力,结果就使圆盘上升。轴P的用途是不让圆盘向旁边移动。
图217画的是一个飘浮在气流里的很轻的小球。气流冲击着小球,不让它落下来。当小球一跳出气流,周围的空气就会把它推回到气流里,因为周围的空气速度小,压力大,而气流里的空气速度大,压力小。
图218中的两艘船在静水里并排航行着,或者是并排地停在流动着的水里。两艘船之间的水面比较窄,所以这里的水的流速就比两船外侧的水的流速高,压力比两船外侧的小。结果这两艘船就会被围着船的压力比较高的水挤在一起。海员们都很知道两艘并排驶着的船会互相强烈地吸引。
⑥ 伯努利试验是哪个伯努利
雅各布·伯努利(Jakob Bernoulli,1654-1705),伯努利家族代表人物之一,瑞士数学家。被公认的概率论的先驱之一。他是最早使用“积分”这个术语的人,也是较早使用极坐标系的数学家之一。还较早阐明随着试验次数的增加,频率稳定在概率附近。他还研究了悬链线,还确定了等时曲线的方程。概率论中的伯努利试验与大数定理也是他提出来的。
⑦ 物理学家丹尼尔.柏努利 的生平简介及做了什么贡献
丹尼尔·伯努利 伯努利,D.(Bernoulli,Daniel)1700年2月8日生于荷兰格罗宁根;1782年3月17日卒于瑞士巴塞尔.数学、物理学、医学家.是着名的伯努利家族中最杰出的一位.
丹尼尔·伯努利的研究领域极为广泛,他的工作几乎对当时的数学和物理学的研究前沿的问题都有所涉及.在纯数学方面,他的工作涉及到代数、微积分、级数理论、微分方程、概率论等方面,但是他最出色的工作是将微积分、微分方程应用到物理学,研究流体问题、物体振动和摆动问题,他被推崇为数学物理方法的奠基人。
1713年丹尼尔开始学习哲学和逻辑学,并在1715年获得学士学位,1716年获得艺术硕士学位.在这期间,他的父亲,特别是他的哥哥尼古拉·伯努利第二(Nikolaus Bernoulli II,1695—1726)教他学习数学,使他受到了数学家庭的熏陶.他的父亲试图要他去当商业学徒,谋一个经商的职业,但是这个想法失败了.于是又让他学医,起初在巴塞尔,1718年到了海德堡,1719年到施特拉斯堡,在1720年他又回到了巴塞尔.1721年通过论文答辩,获得医学博士学位.他的论文题目是“呼吸的作用”(De respiratione).同年他申请巴塞尔大学的解剖学和植物学教授,但未成功.1723年、丹尼尔到威尼斯旅行,1724年他在威尼斯发表了他的《数学练习》(Exercitationes mathematicae),引起许多人的注意,并被邀请到彼得堡科学院工作.1725年他回到巴塞尔.之后他又与哥哥尼古拉第二一起接受了彼得堡科学院的邀请,到彼得堡科学院工作.在彼得堡的8年间(1725—1733),他被任命为生理学院士和数学院士.1727年他与L.欧拉(Euler)一起工作,起初欧拉作为丹尼尔的助手,后来接替了丹尼尔的数学院士职位.这期间丹尼尔讲授医学、力学、物理学,做出了许多显露他富有创造性才能的工作.但是,由于哥哥尼古拉第二的暴死以及严酷的天气等原因,1733年他回到了巴塞尔.在巴塞尔他先任解剖学和植物学教授,1743年成为生理学教授,1750年成为物理学教授,而且在1750—1777年间他还任哲学教授.
1733年丹尼尔离开彼得堡之后,就开始了与欧拉之间的最受人称颂的科学通信,在通信中,丹尼尔向欧拉提供最重要的科学信息,欧拉运用杰出的分析才能和丰富的工作经验,给以最迅速的帮助,他们先后通信40年,最重要的通信是在1734—1750年间,他们是最亲密的朋友,也是竞争的对手.丹尼尔还同C.哥德巴赫(Goldbach)等数学家进行学术通信.
丹尼尔的学术着作非常丰富,他的全部数学和力学着作、论文超过80种.1738年他出版了一生中最重要的着作《流体动力学》(Hydrodynamica).1725—1757年的30多年间他曾因天文学(1734)、地球引力(1728)、潮汐(1740)、磁学(1743,1746)洋流(1748)、船体航行的稳定(1753,1757)和振动理论(1747)等成果,获得了巴黎科学院的10次以上的奖赏.特别是1734年,他与父亲约翰以“行星轨道与太阳赤道不同交角的原因”(Quelle est alcause physique de l’inclinaison des plans des orbites des pla-nètes par rapport au plan de léquateur de la révolution soleilautour de son axe,1734)的佳作,获得了巴黎科学院的双倍奖金.丹尼尔获奖的次数可以和着名的数学家欧拉相比,因而受到了欧洲学者们的爱戴,1747年他成为柏林科学院成员,1748年成为巴黎科学院成员,1750年被选为英国皇家学会会员,他还是波伦亚(意大利)、伯尔尼(瑞士)、都灵(意大利)、苏黎世(瑞士)和慕尼黑(德国)等科学院或科学协会的会员,在他有生之年,还一直保留着彼得堡科学院院士的称号.
丹尼尔·伯努利的研究领域极为广泛,他的工作几乎对当时的数学和物理学的研究前沿的问题都有所涉及.在纯数学方面,他的工作涉及到代数、微积分、级数理论、微分方程、概率论等方面,但是他最出色的工作是将微积分、微分方程应用到物理学,研究流体问题、物体振动和摆动问题,他被推崇为数学物理方法的奠基人.
⑧ 谁是流体动力学之父
伯努利(Daniel Bernoulli,1700-1782) – 瑞士物理学家、数学家、医学家; – 着名的伯努利家族中最杰出的一位; – 被称为“流体力学之父”。