Ⅰ 物理竞赛相对论
记住(t1-t2)^2*c^2-(x1-x2)^2是个不变量。
所以S系中,这个量为-(2*10^4)^2,S'中为(t1-t2)^2*c^2-(3*10^4)^2,S和S'中这两个量相等,因此
(t1-t2)^2*c^2=(3*10^4)^2-(2*10^4)^2=5*10^8m^2
所以|t1-t2|=sqrt(5*10^8/(3*10^8)^2)=2.24*10^4/3*10^8=7.4*10^-5 s
Ⅱ 物理竞赛难吗,怎么考试
全国中学生物理竞赛预赛想要通过大概要考45分。
预赛满分200分,复赛满分400分(理论满分320分,实验操作考试满分80分),决赛满分400分(理论满分280,实验操作满分120分)。
全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physics Olympiad,缩写为CPhO)是在中国科协的领导下,由中国物理学会主办。
全国中学生物理竞赛注意:
世界是复杂的,我们兴许可以接受同样年轻的人背后的大手推波助澜,但总归是需要一个限度。比方说鞍山二中不可能强到垄断辽宁省队然后决赛全部铜牌后段回家,比方说学军不能大跃进似此,而隔壁也不至于让废柴去挤占真正的人才的名额还明显得值得人妄加猜测。
Ⅲ 全国高中物理竞赛预赛,考不考相对论
考的,你可以观察下中学生物理竞赛的试卷。关于爱因斯坦的相对论主要是考察下质能方程和洛伦兹变换,基本就是质量增加问题和尺缩效应,但是广义相对论是肯定不考察的。
Ⅳ 高中物理竞赛考试范围
一、 力学
a) 运动学
参照系 质点运动的位移和路程、速度、加速度 相对速度
向量和标量 向量的合成和分解
匀速及匀变速直线运动及其图像 运动的合成 抛体运动 圆周运动
刚体的平动和绕定轴的转动
质心 质心运动定理
b) 牛顿运动定律 力学中常见的几种力
牛顿第一、二、三运动定律 惯性系的概念
摩擦力
弹性力 胡克定律
万有引力定律 均匀球壳对壳内和壳外质点的引力公式(不要求导出)
开普勒定律 行星和人造卫星运动
惯性力的概念
c) 物体的平衡
共点力作用下物体的平衡
力矩 刚体的平衡条件 重心
物体平衡的种类
d) 动量
冲量 动量 动量定理 动量守恒定律
反冲运动及火箭
e) 冲量矩 质点和质点组的角动量 角动量守恒定律
f) 机械能
功和功率
动能和动能定理
重力势能 引力势能 质点及均匀球壳壳内与壳外的引力势能公式(不要求导出) 弹簧的弹性势能
功能原理 机械能守恒定律
碰撞
g) 流体静力学
静止流体中的压强
浮力
h) 振动
简谐振动 振幅 频率和周期 相位 振动的图像
参考圆 振动的速度和加速度
由动力学方程确定简谐振动的频率
阻尼振动 受迫振动和共振(定性了解)
i) 波和声
横波和纵波 波长、频率和波速的关系 波的图像
波的干涉和衍射(定性) 驻波
声波 声音的响度、音调和音品 声音的共鸣 乐音和噪声 多普勒效应
二、 热学
a) 分子动理论
原子和分子的量级
分子的热运动 布朗运动 温度的微观意义
分子力
分子的动能和分子间的势能 物体的内能
b) 热力学第一定律
热力学第一定律
c) 热力学第二定律
热力学第二定律 可逆过程与不可逆过程
d) 气体的性质
热力学温标
理想气体状态方程 普适气体恒量
理想气体状态方程的微观解释(定性)
理想气体的内能
理想气体的等容、等压、等温和绝热过程(不要求用微积分运算)
e) 液体的性质
液体分子运动的特点
表面张力系数
浸润现象和毛细现象(定性)
f) 固体的性质
晶体和非晶体 空间点阵
固体分子运动的特点
g) 物态变化
熔解和凝固 熔点 熔解热
蒸发和凝结 饱和气压 沸腾和沸点 汽化热 临界温度
固体的升华
空气的湿度和湿度计 露点
h) 热传递的方式
传导、对流和辐射
i) 热膨胀
热膨胀和膨胀系数
三、 电学
a) 静电场
库仑定律 电荷守恒定律
电场强度 电场线 点电荷的场强 场强叠加原理 均匀带电球壳壳内的场强和壳外的场强公式(不要求导出) 匀强电场
电场中的导体 静电屏蔽
电势和电势差 等势面 点电荷电场的电势公式(不要求导出) 电势叠加原理
均匀带电球壳壳内和壳外的电势公式(不要求导出)
电容 电容器的连接 平行板电容器的电容公式(不要求导出)
电容器充电后的电能
电介质的极化 介电常数
b) 稳恒电流
欧姆定律 电阻率和温度的关系
电功和电功率
电阻的串、并联
电动势 闭合电路的欧姆定律
一段含源电路的欧姆定律 基尔霍夫定律
电流表 电压表 欧姆表
惠斯通电桥 补偿电路
c) 物质的导电性
金属中的电流 欧姆定律的微观解释
液体中的电流 法拉第电解定律
气体中的电流 被激放电和自激放电(定性)
真空中的电流 示波器
半导体的导电特性 P型半导体和N型半导体
晶体二极管的单向导电性 三极管的放大作用(不要求机理)
超导现象
d) 磁场
电流的磁场 磁感应强度 磁感线 匀强磁场
安培力 洛仑兹力 电子荷质比的测定 质谱仪 回旋加速器
e) 电磁感应
法拉第电磁感应定律
楞次定律 感应电场(涡旋电场)
自感系数
互感和变压器
f) 交流电
交流发电机原理 交流电的最大值和有效值
纯电阻、纯电感、纯电容电路
整流、滤波和稳压
三相交流电及其连接法 感应电动机原理
g) 电磁震荡和电磁波
电磁震荡 震荡电路及震荡频率
电磁场和电磁波 电磁波的波速 赫兹实验
电磁波的发射和调制 电磁波的接收、调谐、检波
四、 光学
a) 几何光学
光的直进、反射、折射 全反射
光的色散 折射率和光速的关系
平面镜成像 球面镜成像公式及作图法
薄透镜成像公式及作图法
眼睛 放大镜 显微镜 望远镜
b) 波动光学
光的干涉和衍射(定性)
光谱和光谱分析 电磁波谱
c) 光的本性
光的学说的历史发展
光电效应 爱因斯坦方程
光的波粒二象性
五、 近代物理
a) 原子结构
卢瑟福实验 原子的核式结构
玻尔模型 用玻尔模型解释氢光谱 玻尔模型的局限性
原子的受激辐射 激光
b) 原子核
原子核的量级
天然放射现象 放射线的探测
质子的发现 中子的发现 原子核的组成
核反应方程
质能方程 裂变和聚变
“基本”粒子 夸克模型
c) 不确定关系 实物粒子的波粒二象性
d) 狭义相对论 爱因斯坦假设 时间和长度的相对论效应
e) 太阳系 银河系 宇宙和黑洞的初步知识
六、 其它方面
a) 物理知识在各方面的应用。对自然界、生产和日常生活中一些物理现象的解释
b) 近代物理的一些重大成果和现代的一些重大消息
c) 一些有重要贡献的物理学家的姓名和他们的主要贡献
七、 数学基础
a) 中学阶段全部初等数学(包括解析几何)
b) 向量的合成和分解 极限、无限大和无限小的初步概念
c) 不要求用复杂的积分进行推导和运算
Ⅳ 高中物理竞赛的知识与分类
“数学是物理的基础”,事实上数学是物理的载体,而物理模型的数学描述,是数学的应用,这两者在历史上是互相促进的关系。如何才能学好物理呢?我在这里整理了相关资料,快来学习学习吧!
物理竞赛需要哪些知识?
物理竞赛力学部分需要哪些数学?
首先,为了理解力学一开始的匀加速直线运动和变加速直线运动,对于一元函数的简单微积分是必不可少的,当然主要集中在多项式函数的求导和积分上,实际操作起来十分容易。
此后,当运动范围被拓展到二维,运动形式成为曲线时,矢量代数、解析几何、参数方程、斜率、曲率半径等数学概念被融入到物理模型中,用来理解抛体、圆周、一般曲线运动。这时微积分的应用也被拓展到更为复杂的函数范围,例如三角函数。
随着运动和力的关系——牛顿第二定律的引入,我们逐渐意识到光理解运动是不够的,运动背后的机理——力的作用,以及力的效果,才是我们要研究的。动量定理、动能定理的引入,实际上反映了力在时空的积累效果,而牛顿方程本身,也是物理学家特别喜欢的形式——微分方程。
对于矢量和微积分更综合的运用体现在一种伴随物理学发展史的特殊运动形式——简谐振动当中。而振动在介质当中的扩散效应——波动,又引出了波动方程、波函数这一时空函数的概念。
总结下来,力学部分所需要的数学是一元函数的微积分、矢量代数、解析几何、常微分方程、对二元函数的运用。
物理竞赛热学部分需要哪些数学?
虽然高中热学部分涉及气体定律和热力学第一定律的内容比较容易,一般不需要微积分,但如果深入学习,热力学过程、各种态函数(内能、熵)、热力学第二定律,那么由于热力学体系变量多,适当的偏微分基础知识是必要的。
热力学是宏观的理论,而其背后有着分子动理论作为基础,它们之间的联系是通过对大量粒子系统的统计来实现的,因此,概率统计的知识就显得十分必要了。
总结下来,热学部分所需要的数学是简单的偏微分和概率统计。
物理竞赛电磁学部分需要哪些数学?
依照往年的经验,电磁学是最容易让高考学生放弃物理、竞赛学生放弃物理竞赛的困难内容。原因是因为数学不到位,非但理解不了场的概念,而且容易产生记忆模型和公式,套例题做习题的固有思维模式,最终对于电磁学可谓是“一点没学会”!
从静电场开始,如果仅仅按高中的要求来学习,对于场的理解是空洞的,仅仅是唯像的概念,对于电场线、电势、静电平衡、介质极化等概念无法做到深入掌握,那就更别提解答赛题了。
实际上,由于静电场一开始就从点电荷的库仑定律出发,直接进入三维空间,所有的定律都是三维表述的,因此立体几何,空间位置的函数就要求马上能用。紧接着,从库仑定律引出高斯定理,考察对称性强的体系,因此球坐标、柱面坐标、直角坐标之间的互换;矢量在面上的积分、在线上的环路积分、格林定理等内容,必须跟上。
同时,在一块小的局域空间中考虑问题,静电场方程的微分形式,三维偏微分和纳布拉算符等内容必须有所了解。
光是静电场一块内容就需要这么多数学工具,足以见得电磁学是多么难学!实际上,对于电磁学的学习是很标准的循序渐进的过程,先有唯像了解,对于不理解的部分需要进一步深挖,数学工具可以先从矢量积分入手,最后再理解场的微分方程,这样就能事半功倍了。
电路的内容看似与初中很像很容易,但是一旦涉及到导体内部的电导率模型,欧姆定律的微分形式,电荷守恒等内容,那就又需要微积分的帮助。交流电路则需要理解复数方法描写振动。同时,有些电阻网络问题还需要数列递推等数学知识,在学习过程中应当似海绵吸水,缺什么补什么!
进入磁场和电磁感应以后,磁场方程、电磁场联合描写的麦克斯韦方程组等等,无一不是矢量场微积分的联合运用。同时,还涉及到电磁波的波动方程,复数法描写波函数等内容。
总结下来,电磁学部分所需要的数学是矢量场的微积分、复数、微分方程的知识。
物理竞赛光学和近代物理部分需要哪些数学?
很明显,几何光学需要的平面几何知识在初中就学过了,这就是为什么几何光学可以被下放到大同杯成为关键考点。然而在以往的教学中,我们发现学生对于真实成像系统的理解是极不到位的,换句话说是题目会做,但搞不清楚实际的光学仪器原理。因此,几何光学的难点不在于数学,而在于实际应用。
波动光学(干涉、衍射、偏振、界面光学)无外乎是电磁波的波动性的应用,需要的数学与电磁场的数学一致。
近代物理的唯像内容实际上是经典物理的大融合,数学自然也突破不了上文介绍的所有数学工具。初步的量子力学需要有概率的世界观和对于波函数的理解,如果要精确计算,那么必须掌握数学物理方程的内容,我们认为是没有必要在这个年龄段去学习的。狭义相对论则需要洛伦兹变换、四位矢量的运算,并未增添新的数学。
总结下来,光学和近代物理部分所需要的数学是未超出之前提到的内容。但要学懂这部分内容,需要对力热电光四大板块非常了解才行。
专门针对物竞生的数学课讲哪些内容
春季到暑期:极限、导数、微分;积分;解析几何、极坐标;常微分方程;偏导数;
秋季:标量场、矢量场、散度、旋度、梯度、纳布拉算符、拉普拉斯算符;场的积分、格林定理;球坐标、三维坐标变换;矩阵、行列式;
寒假到春季:概率统计;级数;复数;立体几何;其他高联一试内容。
高中物理竞赛有哪些?
高中物理有哪些课程
高中物理基本分 Honor Physics , AP Physics I, AP Physics II, AP Physics C Mechanics和 E&M。每门课需要学大概一年时间,所以没时间也没有必要五节课全修,通常在七或者八年级开始学。学完Physics Science之后, 根据学生的数学基础可以直接学AP Physics I。Honor Physics没有全国统一的标准,各个学校教的难度不一样,内容也不同。如果没有学 Physics Science 或是Honor Physcis,也可以直接学 AP Physics I,但刚开始学的时候会有些吃力。大部分学校要求学生学完AP Physics I,才允许修 AP Physics C。 Honor Physics 强调的概念比较多一些,数学少一些,比 AP Physics来说相对容易。AP Physcis I AP Physcis II 是以代数为基础的,AP Physics C是以Calculus为基础的。从去年开始美国College Board 把 AP Physics B分成了 AP Physics I和 AP Physics II。AP Physics I包括力学,波动学和简单的电路等等。AP Physics II 包括热力学,光学,电子学和现代物理等等。AP Physics C Mechanics只包括力学部分, AP Physics C EMN只包括电磁学部分。
美国物理全国统一考试
美国AP物理考试一共有四门, AP Physcis I ,AP Physics II , AP Physics C Mechanist, AP Physics EMN。学完相应的物理课之后呢就可以参加这些AP考试,每年在五月份第一或者第二个星期进行考试,考完之后学生还可以考物理SAT II。SAT II 出题范围稍微广一些,考题相对容易些,比如说相对论在 AP Physics I 和AP Physics II 都不要求,但是SAT II会要求一些基本的概念。你学完AP Physics I 和II之后才能考SAT。此外美国还有一些比如 Physics Bowl, Physics Olympiad。Physics Bowl是代表学校参加的,没有必要去特别的准备。
奥林匹克物理竞赛
奥林匹克物理竞赛分两个阶段,第一个阶段叫 F=ma Contest竞赛,只考力学部分。一共是二十五道选择题,不需要微积分,所以只需要AP Physics I, 加上AP Physcis II的部分。奥林匹克考试在每年一月下旬进行,每年大概有350到 400学生能通F=ma contest的考试,进入第二轮比赛。第二轮比赛也叫USAPHO (USA Physics Olympiad) 比赛,内容包括全部普通物理而且以微积分为基础,有相当的难度,学生要学AP Physics C的力学和电磁学,而且其他AP Physics I和 II 也要提升到微积分为基础的水平。USAPHO的成绩分金银铜牌和Honor, Nomination,然后前二十名进入每个物理奥林匹克集训队。
为什么要考AP物理,参加物理竞赛
美国大学有些基础课如微积分和普通物理等等是很多专业的必修课。也就是说,你必须证明你能够修一些必修的基础课才能学习那些专业。很多AP考试如果你拿到五分的话,对应的必修课在大学里可以免修。 这样既省了钱也省了时间来学别的更重要的课程。从招生的角度来说,可以想象你考的越多越证明你有能力学习相应的专业 ,所以对大学申请自然有优势。此外参加物理竞赛并取得好成绩不仅会提高小孩的自信心,对小孩大学申请也会有很大的好处,它可以锦上添花,对进一流的大学很有帮助。当然学校的成绩好是最主要的前提条件。很多家长可能会认为只有一些很突出的天才会参加物理竞赛,并取得好成绩。其实不然,大部分小孩都是同样聪明的,主要是靠自身努力。我的很多拿金牌银牌甚至是Top 20的小孩刚开始学习物理的时候同样遇到很大的困难。他们很多都Struggle with homework,但自己坚持努力,最终取得了好成绩。
什么时候学AP物理比较好
对几乎所有的的高中生来说,如果按部就班地学AP Physics I ,然后学 AP Physics II,或者学AP Physics C,往往不能在11年级末申请大学之前多考几门AP物理。其实只要是学了Physics Science, Algebra I, 加上一点 Geometry, 就可以学AP Physics I。学完了AP Physics I,原则上就可以参加F=Ma Contest的竞赛。如果八年级开始学,就可以在九,十,十一年级参加三次。这样成功率会比较高,原因是第一次进半决赛的成功率会比较低,更重要的是可以为进一步学AP Physics C的力学和电磁学做准备。这样的话能够在第二轮拿到金,银牌的机会就会大很多。
如何学AP物理和准备物理竞赛
Ⅵ 物理竞赛主要考哪些内容
初中:力学,电学
高中:如一楼所说
Ⅶ 全国中学生物理竞赛预赛考什么急需!!!!!!
声光电力热磁
一.理 论 基 础
力 学
1. 运动学:
参考系
坐标系 直角坐标系※平面极坐标
质点运动的位移和路程 速度 加速度
矢量和标量 矢量的合成和分解 ※矢量的标积和矢积
匀速及匀变速直线运动及其图像
运动的合成与分解 抛体运动 圆周运动※曲线运动中的切向加速度和法向加速度
相对速度伽里略速度变换
刚体的平动和绕定轴的转动 角速度和角加速度
2.牛顿运动定律 力学中常见的几种力
牛顿第一、二、三运动定律 惯性参考系
摩擦力
弹性力 胡克定律※应力和应变(旧称胁强和胁变) ※杨氏模量和切变模量
万有引力定律 均匀球壳对壳内和壳外质点的引力公式(不要求导出) 视重
※非惯性参考系※平动加速参考系(限于匀变速直线和匀速圆周运动)中的惯性力 ※匀速转动参考系中的惯性离心力
3.物体的平衡
共点力作用下物体的平衡
力矩※平行力的合成重心
刚体的平衡条件 物体平衡的种类
4.动量
冲量 动量 质点与质点组的动量定理 动量守恒定律
※质心 ※质心运动定理
反冲运动及火箭
5.※冲量矩 ※角动量 ※质点和质点组的角动量定理(不引入转动惯量)
※角动量守恒定律
6.机械能
功和功率
动能和动能定理
重力势能 引力势能 质点及均匀球壳壳内和壳外的引力势能公式(不要求导出)
弹簧的弹性势能
功能原理 机械能守恒定律
碰撞 恢复系数
7.在万有引力作用下物体的运动 开普勒定律 行星和人造天体的圆轨道运动和※※椭圆轨道运动
8.流体静力学
静止流体中的压强
浮力
9.振动
简谐振动 振幅 频率和周期 相位
振动的图像
参考圆 振动的速度
准弹性力由动力学方程确定简谐振动的频率
简谐振动的能量
同方向同频率简谐振动的合成
阻尼振动 受迫振动和共振(定性了解)
10 波和声
横波和纵波
波长 频率和波速的关系
波的图像
※平面简谐波的表示式
※ ※波的干涉和衍射(定性) ※驻波
声波 声音的响度、音调和音品 声音的共鸣 乐音和噪声
※多普勒效应
热 学
1.分子动理论
原子和分子的数量级
分子的热运动 布朗运动※气体分子速率分布律 (定性)温度的微观意义
分子力
分子的动能和分子间的势能 物体的内能
2.气体的性质
热力学温标 气体实验定律
理想气体状态方程 普适气体恒量
理想气体状态方程的微观解释(定性)
3.热力学第一定律
理想气体的内能热力学第一定律在理想气体等容、等压、等温过程中的应用定容热容量和定压热容量 等温过程中的功(不推导) 绝热方程(不推导)
※热机及其效率 致冷机和致冷系数
4.※热力学第二定律
※热力学第二定律的定性表述 ※可逆过程与不可逆过程 ※宏观过程的不可逆性 ※理想气体的自由膨胀 ※热力学第二定律的统计意义
5.液体的性质
液体分子运动的特点
表面张力系数※球形液面下的附加压强
浸润现象和毛细现象(定性)
6.固体的性质
晶体和非晶体 空间点阵
固体分子运动的特点
7.物态变化
熔化和凝固 熔点 熔化热
蒸发和凝结 饱和气压 沸腾和沸点 汽化热 临界温度
固体的升华
空气的湿度和湿度计 露点
8.热传递的方式
传导※和导热系数对流 辐射
※黑体辐射 ※斯忒番定律
9 热膨胀
热膨胀和膨胀系数
电 学
1.静电场
电荷守恒定律
库仑定律 静电力常量和真空介电常数
电场强度 电场线 点电荷的场强 场强叠加原理
匀强电场※无限大均匀带面的场强(不要求导出)
均匀带电球壳壳内的场强和壳外的场强公式(不要求导出)
电势和电势差
等势面 点电荷电场的电势公式(不要求导出)
电势叠加原理
均匀带电球壳壳内和壳外的电势公式(不要求导出)
静电场中的导体 静电屏蔽
电容 平行板电容器的电容公式※球形电容器
电容器的连接
电容器充电后的电能
电介质的极化 介电常量
2.稳恒电流
欧姆定律 电阻率和温度的关系
电功和电功率
电阻的串、并联
电动势 闭合电路的欧姆定律
一段含源电路的欧姆定律 ※基尔霍夫定律
电流表 电压表 欧姆表
惠斯通电桥 补偿电路
3.物质的导电性
金属中的电流 欧姆定律的微观解释
※※液体中的电流 ※※法拉第电解定律
※※气体中的电流 ※※被激放电和自激放电(定性)
真空中的电流 示波器
半导体的导电特性 p型半导体和n型半导体 ※P-N结
晶体二极管的单向导电性※及其微观解释(定性)三极管的放大作用(不要求机理)
超导现象
4.磁场
电流的磁场 磁感应强度 磁感线 匀强磁场
长直导线、圆线圈、螺线管中的电流的磁场分布(定性)※长直导线电流的磁场表示式、圆电流轴线上磁场表示式、无限长螺线管中电流的磁场表示式(不要求导出)真空磁导率
安培力 洛伦兹力 电子荷质比的测定 质谱仪 回旋加速器 霍尔效应
5.电磁感应
法拉第电磁感应定
楞次定律※ 反电动势
※感应电场(涡旋电场)※电子感应加速器
自感和互感 自感系数
6.交流电
交流发电机原理 交流电的最大值和有效值
纯电阻、纯电感、纯电容电路感抗和容抗 ※电流和电压的相位差
整流 滤波和稳压
理想变压器
三相交流电及其连接法 感应电动机原理
7.电磁振荡和电磁波
电磁振荡 振荡电路及振荡频率
电磁场和电磁波 电磁波谱 电磁波的波速 赫兹实验
电磁波的发射和调制 电磁波的接收、调谐、检波
光 学
1. 几何光学
光的直进 反射 折射 全反射
光的色散 折射率与光速的关系
平面镜成像
球面镜 球面镜成像公式及作图法
※球面镜焦距与折射率、球面镜半径的关系
薄透镜成像公式及作图法
眼睛 放大镜 显微镜 望远镜
2.波动光学
光程
光的干涉 双缝干涉
光的衍射 单缝衍射(定性)※分辩本领(不要求推导)
光谱和光谱分析
近 代 物 理
1.光的本性
光电效应 爱因斯坦方程
光的波粒二象性 光子的能量与动量
2.原子结构
卢瑟福实验 原子的核式结构
玻尔模型 用玻尔模型解释氢光谱 玻尔模型的局限性
原子的受激辐射 激光的产生(定性)和它的特性
3. 原子核
原子核的量级
天然放射现象原子核的衰变半衰期放射线的探测
质子 中子 原子核的组成
核反应方程
质能方程 裂变和聚变
4.粒子
“基本”粒子
※夸克
四种作用
※实物粒子的波粒二象性※德布罗意波
※不确定关系
5.※狭义相对论
爱因斯坦假设 时间膨胀和长度收缩
相对论动量 相对论能量相对论动量能量关系
6. ※太阳系,银河系,宇宙和黑洞的初步知识.
数 学 基 础
1. 中学阶段全部初等数学(包括解析几何).
2. 矢量的合成和分解,极限、无限大和无限小的初步概念.
3.※初等函数的微分和积分
全国中学生物理竞赛内容提要--实验
(2013年开始实行)
说明:.
本次拟修改的部分用楷黑体字表示,新补充的内容将用“※”符号标出,作为复赛题和决赛题增补的内容;※※则表示原属预赛考查内容,在本次修改中建议改成复赛、决赛考查的内容。
一. 实验
全国中学生物理竞赛常委会组织编写的《全国中学生物理竞赛实验指导书》中的34个实验是全国中学生物理竞赛复赛实验考试内容的范围.这34个实验的名称是:
实验一实验误差;
实验二气轨上研究瞬时速度;
实验三杨氏模量;
实验四用单摆测重力加速度;
实验五气轨上研究碰撞过程中动量和能量变化;
实验六测量声速;
实验七弦线上的驻波实验;
实验八冰的熔化热;
实验九线膨胀率;
实验十液体比热容;
实验十一数字万用电表的使用;
实验十二制流和分压电路;
实验十三测定直流电源的参数并研究其输出特性;
实验十四磁电式直流电表的改装;
实验十五用量程为200mV的数字电压表组成多量程的电压表和电流表;
实验十六测量非线性元件的伏安特性;
实验十七平衡电桥测电阻;
实验十八示波器的使用;
实验十九观测电容特性;
实验二十检测黑盒子中的电学元件(电阻,电容,电池,二极管);
实验二十一测量温度传感器的温度特性;
实验二十二测量热敏电阻的温度特性;
实验二十三用霍尔效应测量磁场;
实验二十四测量光敏电阻的光电特性(有、无光照时的伏安特性;光电特性);
实验二十五研究光电池的光电特性;
实验二十六测量发光二极管的光电特性(用eU阈=hc/λ估算发光波长);
实验二十七研究亥姆霍兹线圈轴线磁场的分布;
实验二十八测定玻璃的折射率;
实验二十九测量薄透镜的焦距;
实验三十望远镜和显微镜;
实验三十一光的干涉现象;
实验三十二光的夫琅禾费衍射;
实验三十三分光计的使用与极限法测折射率;
实验三十四光谱的观测.
各省(自治区、直辖市)竞赛委员会根据本省的实际情况从《全国中学生物理竞赛实验指导书》的34个实验中确定并公布不少于20个实验作为本省(自治区、直辖市)物理竞赛复赛实验考试的内容范围,复赛实验的试题从公布的实验中选定,具体做法见《关于全国中学生物理竞赛实验考试、命题的若干规定》.
全国中学生物理竞赛决赛实验以本《内容提要》中的“理论基础”和《全国中学生物理竞赛实验指导书》作为命题的基础.
详细参考见网络:http://ke..com/link?url=GFDFXUTahM2j0M3VtLyXsDRvZ5l_3pFOOXUHsgopqcwO8-nQwxsTTyu1b_oQu7Z2jzSh0VTEPWcqck_-Yzsgy_#5
Ⅷ 想参加高中物理竞赛,应该怎么学习啊,
高中物理怎么样?有哪些好的学习方法?
现在还有很多的小伙伴,都说对于高中物理这是难度比较大的学科,这就让物理成了很多的高中生成了心里的一种痛处,其实吧学习高中物理也是很简单的,只要你掌握好思路,培养好自己的学习习惯,让自己喜欢上这个学科,其实这还是比较简单的.
高中物理试卷
读好每一本教材,看好每一个单元,学会每一个小题,对于高中物理每一个练习都有关键的洞察力以及他的解决办法,可能他们所用的知识都是一样的,只要你记住一个定理就可以做很多类似的题.
Ⅸ 初中物理竞赛 都考哪些知识点
初中物理竞赛考察的是基础知识,学生们一定要把基础知识点牢记,我整理了一些竞赛考察的知识点。
1、运动学参照系。质点运动的位移和路程,速度,加速度。相对速度。矢量和标量。矢量的合成和分解。匀速及匀速直线运动及其图象。运动的合成。抛体运动。圆周运动。刚体的平动和绕定轴的转动。
2、牛顿运动定律力学中常见的几种力牛顿第一、二、三运动定律。惯性参照系的概念。摩擦力。弹性力。胡克定律。万有引力定律。均匀球壳对壳内和壳外质点的引力公式。开普勒定律。行星和人造卫星的运动。
3、物体的平衡共点力作用下物体的平衡。力矩。刚体的平衡。重心。物体平衡的种类。
1、磁性:物体吸引铁、镍、钴等物质的性质。
2、磁体:具有磁性的物体叫磁体。它有指向性:指南北。
3、磁极:磁体上磁性最强的部分叫磁极。
(1)任何磁体都有两个磁极,一个是北极;另一个是南极。
(2)磁极间的作用:同名磁极互相排斥,异名磁极互相吸引。
4、磁化:使原来没有磁性的物体带上磁性的过程。
1、磁体周围存在着磁场,磁极间的相互作用就是通过磁场发生的。
2、磁场的基本性质:对入其中的磁体产生磁力的作用。
3、磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。
4、磁感线:
(1)描述磁场的强弱和方向而假想的曲线。
(2)磁体周围的磁感线是从它北极出来,回到南极。
(3)磁感线越密的地方磁场越强。
(4)磁感线不相交。
5、磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向相同。
物理竞赛的内容有一部分要扩及到课外获得的知识。主要包括以下三方面:
1、物理知识在各方面的应用。对自然界、生产和日常生活中一些物理现象的解释。
2、近代物理的一些重大成果和现代的一些重大信息。
3、一些有重要贡献的物理学家的姓名和他们的主要贡献。
以上是我整理的物理竞赛的知识点,希望能帮到你。
Ⅹ 全国中学生物理竞赛的竞赛大纲
说明:
1、2016版和2013版相比较,新增了一些内容,比如☆科里奥利力,※质心参考系☆虚功原理,☆连续性方程 ☆伯努利方程☆熵、熵增。另一方面,也略有删减,比如※矢量的标积和矢积,※平行力的合成 重心,物体平衡的种类。有的说法更严谨,比如反冲运动及火箭改为反冲运动 ※变质量体系的运动,※质点和质点组的角动量定理(不引入转动惯量)改为质点和质点组的角动量定理和转动定理 ,并且删去了对不引入转动惯量的限制,声音的响度、音调和音品 声音的共鸣 乐音和噪声增加限制(前3项均不要求定量计算)。
2、知识点顺序有调整。比如刚体的平动和绕定轴的转动2013版在一、运动学的最后,2016版独立为一个新单元,---很早以前的版本也如此。
3、2013年开始实行的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。2016年开始实行的进一步细化,其中标☆仅为决赛内容,※为复赛和决赛内容,如不说明,一般要求考查定量分析能力。
全国中学生物理竞赛内容提要
(2015年4月修订,2016年开始实行)
说明:按照中国物理学会全国中学生物理竞赛委员会第9次全体会议(1990年)的建议,由中国物理学会全国中学生物理竞赛委员会常务委员会根据《全国中学生物理竞赛章程》中关于命题原则的规定,结合我国中学生的实际情况,制定了《全国中学生物理竞赛内容提要》,作为今后物理竞赛预赛、复赛和决赛命题的依据。它包括理论基础、实验、其他方面等部分。1991年2月20日经全国中学生物理竞赛委员会常务委员会扩大会议讨论通过并开始试行。1991年9月11日在南宁经全国中学生物理竞赛委员会第10次全体会议通过,开始实施。
经2000年全国中学生物理竞赛委员会第19次全体会议原则同意,对《全国中学生物理竞赛内容提要》做适当的调整和补充。考虑到适当控制预赛试题难度的精神,《内容提要》中新补充的内容用“※”符号标出,作为复赛题和决赛题增补的内容,预赛试题仍沿用原规定的《内容提要》,不增加修改补充后的内容。
2005年,中国物理学会常务理事会对《全国中学生物理竞赛章程》进行了修订。依据修订后的章程,决定由全国中学生物理竞赛委员会常务委员会组织编写《全国中学生物理竞赛实验指导书》,作为复赛实验考试题目的命题范围。
2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2013年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。
2015年对《全国中学生物理竞赛内容提要》进行了修订,其中标☆仅为决赛内容,※为复赛和决赛内容,如不说明,一般要求考查定量分析能力。
力学
1. 运动学
参考系
坐标系 直角坐标系
※平面极坐标 ※自然坐标系
矢量和标量
质点运动的位移和路程 速度 加速度
匀速及匀变速直线运动及其图像
运动的合成与分解 抛体运动 圆周运动
圆周运动中的切向加速度和法向加速度
曲率半径 角速度和※角加速度
相对运动 伽里略速度变换
2.动力学
重力 弹性力 摩擦力
惯性参考系
牛顿第一、二、三运动定律 胡克定律 万有引力定律
均匀球壳对壳内和壳外质点的引力公式(不要求导出)
※非惯性参考系 ※平动加速参考系中的惯性力
※匀速转动参考系惯性离心力、视重
☆科里奥利力
3.物体的平衡
共点力作用下物体的平衡
力矩 刚体的平衡条件
☆虚功原理
4.动量
冲量 动量 质点与质点组的动量定理 动量守恒定律
※质心 ※质心运动定理
※质心参考系
反冲运动
※变质量体系的运动
5.机械能
功和功率
动能和动能定理 ※质心动能定理
重力势能 引力势能
质点及均匀球壳壳内和壳外的引力势能公式
(不要求导出)
弹簧的弹性势能
功能原理 机械能守恒定律
碰撞
弹性碰撞与非弹性碰撞 恢复系数
6.※角动量
冲量矩 角动量
质点和质点组的角动量定理和转动定理
角动量守恒定律
7.有心运动
在万有引力和库仑力作用下物体的运动
开普勒定律
行星和人造天体的圆轨道和椭圆轨道运动
8.※刚体
刚体的平动 刚体的定轴转动
刚体绕轴的转动惯量
平行轴定理 正交轴定理
刚体定轴转动的角动量定理 刚体的平面平行运动
9.流体力学
静止流体中的压强
浮力
☆连续性方程 ☆伯努利方程
10.振动
简谐振动 振幅 频率和周期 相位
振动的图像
参考圆 简谐振动的速度
(线性)恢复力 由动力学方程确定简谐振动的频率
简谐振动的能量
同方向同频率简谐振动的合成
阻尼振动 受迫振动和共振(定性了解)
11.波动
横波和纵波
波长 频率和波速的关系
波的图像
※平面简谐波的表示式
波的干涉 ※驻波 波的衍射(定性)
声波
声音的响度、音调和音品 声音的共鸣 乐音和噪声
(前3项均不要求定量计算)
※多普勒效应
热学
1. 分子动理论
原子和分子大小的数量级
分子的热运动和碰撞 布朗运动
※压强的统计解释
☆麦克斯韦速率分布的定量计算;
※分子热运动自由度 ※能均分定理;
温度的微观意义
分子热运动的动能
※气体分子的平均平动动能
分子力 分子间的势能
物体的内能
2.气体的性质
温标 热力学温标
气体实验定律 理想气体状态方程
道尔顿分压定律
混合理想气体状态方程
理想气体状态方程的微观解释(定性)
3.热力学第一定律
热力学第一定律
理想气体的内能
热力学第一定律在理想气体等容、等压、等温、
绝热过程中的应用
※多方过程及应用
※定容热容量和定压热容量
※绝热过程方程
※等温、绝热过程中的功
※热机及其效率 ※卡诺定理
4.热力学第二定律
※热力学第二定律的开尔文表述和克劳修斯表述
※可逆过程与不可逆过程
※宏观热力学过程的不可逆性
※理想气体的自由膨胀
※热力学第二定律的统计意义
☆热力学第二定律的数学表达式
☆熵、熵增
5.液体的性质
液体分子运动的特点
表面张力系数
※球形液面两边的压强差
浸润现象和毛细现象(定性)
6.固体的性质
晶体和非晶体 空间点阵
固体分子运动的特点
7.物态变化
熔化和凝固 熔点 熔化热
蒸发和凝结 饱和气压 沸腾和沸点
汽化热 临界温度
固体的升华
空气的湿度和湿度计 露点
8.热传递的方式
传导 ※导热系数
对流
辐射 ※黑体辐射的概念 ※斯忒番定律
※维恩位移定律
9.热膨胀
热膨胀和膨胀系数
电磁学
1.静电场
电荷守恒定律
库仑定律
电场强度 电场线
点电荷的场强 场强叠加原理
匀强电场
均匀带电球壳内、外的场强公式(不要求导出)
※高斯定理及其在对称带电体系中的应用
电势和电势差 等势面
点电荷电场的电势
电势叠加原理
均匀带电球壳内、外的电势公式
电场中的导体 静电屏蔽,
※静电镜像法
电容 平行板电容器的电容公式
※球形、圆柱形电容器的电容
电容器的连联接
※电荷体系的静电能,※电场的能量密度,
电容器充电后的电能
☆电偶极矩
☆电偶极子的电场和电势
电介质的概念
☆电介质的极化与极化电荷
☆电位移矢量
2.稳恒电流
欧姆定律 电阻率和温度的关系
电功和电功率
电阻的串、并联
电动势 闭合电路的欧姆定律
一段含源电路的欧姆定律 ※基尔霍夫定律
电流表 电压表 欧姆表
惠斯通电桥
补偿电路
3.物质的导电性
金属中的电流 欧姆定律的微观解释
※液体中的电流 ※法拉第电解定律
※气体中的电流 ※被激放电和自激放电(定性)
真空中的电流 示波器
半导体的导电特性 p型半导体和n型半导体 ※P-N结
晶体二极管的单向导电性※及其微观解释(定性)
三极管的放大作用(不要求掌握机理)
超导现象 ☆超导体的基本性质
4.磁场
电流的磁场 ※毕奥-萨伐尔定律
磁场叠加原理
磁感应强度 磁感线
匀强磁场
长直导线、圆线圈、螺线管中的电流的磁场分布(定性)
※安培环路定理及在对称电流体系中的应用
※圆线圈中的电流在轴线上和环面上的磁场
☆磁矩
安培力 洛伦兹力 带电粒子荷质比的测定
质谱仪 回旋加速器 霍尔效应
5. 电磁感应
法拉第电磁感应定律
楞次定律
※感应电场(涡旋电场)
自感和互感 自感系数
※通电线圈的自感磁能(不要求推导)
6.交流电
交流发电机原理 交流电的最大值和有效值
☆交流电的矢量和复数表述
纯电阻、纯电感、纯电容电路 感抗和容抗
※电流和电压的相位差
整流 滤波和稳压
☆谐振电路 ☆交流电的功率
☆三相交流电及其连接法
☆感应电动机原理
理想变压器
远距离输电
7.电磁振荡和电磁波
电磁振荡 振荡电路及振荡频率 赫兹实验
电磁场和电磁波
☆电磁场能量密度、能流密度
电磁波的波速 电磁波谱
电磁波的发射和调制 电磁波的接收、调谐、检波
光学
1. 几何光学
※费马原理
光的传播 反射 折射 全反射
光的色散 折射率与光速的关系
平面镜成像 球面镜成像公式及作图法
※球面折射成像公式 ※焦距与折射率、球面半径的关系
薄透镜成像公式及作图法
眼睛 放大镜 显微镜 望远镜
※其它常用光学仪器
2.波动光学
光程
※惠更斯原理(定性)
光的干涉现象 双缝干涉
光的衍射现象
※夫琅禾费衍射
※光栅 ※布拉格公式
※分辨本领(不要求导出)
光谱和光谱分析(定性)
※光的偏振 ※自然光与偏振光
※马吕斯定律 ※布儒斯特定律
近代物理
1.光的本性
光电效应 ※康普顿散射
光的波粒二象性 光子的能量与动量
2.原子结构
卢瑟福实验 原子的核式结构
玻尔模型
用玻尔模型解释氢光谱
※用玻尔模型解释类氢光谱
原子的受激辐射 激光的产生(定性)和特性
3.原子核
原子核的尺度数量级
天然放射性现象 原子核的衰变 半衰期
放射线的探测
质子的发现 中子的发现 原子核的组成
核反应方程
质能关系式 裂变和聚变 质量亏损
4.粒子
“基本粒子” 轻子与夸克(简单知识)
四种基本相互作用
实物粒子具有波粒二象性
※物质波
※德布罗意关系
※不确定关系
5.※狭义相对论
爱因斯坦假设
洛伦兹变换
时间和长度的相对论效应 多普勒效应
☆速度变换
相对论动量 相对论能量 相对论动能
相对论动量和能量关系
6.※太阳系,银河系,宇宙和黑洞的初步知识.
单位制
国际单位制与量纲分析
数学基础
1. 中学阶段全部初等数学(包括解析几何).
2. 矢量的合成和分解,矢量的运算,极限、无限大和无限小的初步概念.
3.※微积分初步及其应用:
含一元微积分的简单规则;
微分:包括多项式、三角函数、指数函数、对数函数的导数,函数乘积和商的导数,复合函数的导数。
积分:包括多项式、三角函数、指数函数、对数函数的简单积分。
全国中学生物理竞赛内容提要--实验
(2013年开始实行)
说明:.
本次拟修改的部分用楷黑体字表示,新补充的内容将用“※”符号标出,作为复赛题和决赛题增补的内容;※※则表示原属预赛考查内容,在本次修改中建议改成复赛、决赛考查的内容。
一. 实验
全国中学生物理竞赛常委会组织编写的《全国中学生物理竞赛实验指导书》中的34个实验是全国中学生物理竞赛复赛实验考试内容的范围.这34个实验的名称是:
实验一实验误差;
实验二气轨上研究瞬时速度;
实验三杨氏模量;
实验四用单摆测重力加速度;
实验五气轨上研究碰撞过程中动量和能量变化;
实验六测量声速;
实验七弦线上的驻波实验;
实验八冰的熔化热;
实验九线膨胀率;
实验十液体比热容;
实验十一数字万用电表的使用;
实验十二制流和分压电路;
实验十三测定直流电源的参数并研究其输出特性;
实验十四磁电式直流电表的改装;
实验十五用量程为200mV的数字电压表组成多量程的电压表和电流表;
实验十六测量非线性元件的伏安特性;
实验十七平衡电桥测电阻;
实验十八示波器的使用;
实验十九观测电容特性;
实验二十检测黑盒子中的电学元件(电阻,电容,电池,二极管);
实验二十一测量温度传感器的温度特性;
实验二十二测量热敏电阻的温度特性;
实验二十三用霍尔效应测量磁场;
实验二十四测量光敏电阻的光电特性(有、无光照时的伏安特性;光电特性);
实验二十五研究光电池的光电特性;
实验二十六测量发光二极管的光电特性(用eU阈=hc/λ估算发光波长);
实验二十七研究亥姆霍兹线圈轴线磁场的分布;
实验二十八测定玻璃的折射率;
实验二十九测量薄透镜的焦距;
实验三十望远镜和显微镜;
实验三十一光的干涉现象;
实验三十二光的夫琅禾费衍射;
实验三十三分光计的使用与极限法测折射率;
实验三十四光谱的观测.
各省(自治区、直辖市)竞赛委员会根据本省的实际情况从《全国中学生物理竞赛实验指导书》的34个实验中确定并公布不少于20个实验作为本省(自治区、直辖市)物理竞赛复赛实验考试的内容范围,复赛实验的试题从公布的实验中选定,具体做法见《关于全国中学生物理竞赛实验考试、命题的若干规定》.
全国中学生物理竞赛决赛实验以本《内容提要》中的“理论基础”和《全国中学生物理竞赛实验指导书》作为命题的基础.
三. 其 他 方 面
物理竞赛的内容有一部分有较大的开阔性,主要包括以下三方面:
1. 物理知识在各方面的应用;对自然界、、科技、生产和日常生活中一些物理现象的解释.
2. 近代物理的一些重大成果和现代的一些重大信息.
3. 一些有重要贡献的物理学家的姓名和他们的主要贡献.
指定参考书
1. 全国中学生物理竞赛办公室.全国中学生物理竞赛参考资料.北京: 北京教育出版社,1985~2002;全国中学生物理竞赛专辑.北京: 北京教育出版社,2003~2007.
2. 沈克琦.高中物理学1. 北京: 北京出版社,1997;高中物理学2. 北京: 北京出版社,1998;高中物理学3. 北京: 北京出版社,1998;高中物理学4. 北京: 北京出版社,1999.
3. 全国中学生物理竞赛常务委员会.全国中学生物理竞赛实验指导书.北京: 北京大学出版社,2005.
参 考 资 料
全国中学生物理竞赛常务委员会.全国中学生物理竞赛第1~20届试题解析: 力学分册.北京: 清华大学出版社,2005;全国中学生物理竞赛第1~20届试题解析: 电学分册.北京: 清华大学出版社,2005;全国中学生物理竞赛第1~20届试题解析: 热学、光学与近代物理分册.北京: 清华大学出版社,2006.