㈠ 伯努利方程的物理意义是什么
伯努利方程的物理意义是经过过流断面上流体具有的机械能沿流程保持不变。几何意义是总水头沿流程不变。当速度增加,压强减少。当速度减小,压强增加。从另一种角度看,伯努利方程说,压力对流体所做的功等于流体动能的改变。给你一个不可压缩的、无粘性流体的流动场,你将可以找出那个流动场的压强场。
相关理论说明
这个理论是由瑞士数学家丹尼尔·伯努利在1738年提出的,当时被称为伯努利原理。后人又将重力场中欧拉方程在定常流动时沿流线的积分称为伯努利积分,将重力场中无粘性流体定常绝热流动的能量方程称为伯努利定理。这些统称为伯努利方程,是流体动力学基本方程之一。
伯努利方程实质上是能量守恒定律在理想流体定常流动中的表现,它是流体力学的基本规律。在一条流线上流体质点的机械能守恒是伯努利方程的物理意义。
㈡ 伯努利方程的物理含义具体是什么
一、一般条件下伯努利方程在各项的意义
P
+1/2ρv2
+ρgh
=
常量
该方程说明理想流体在流管中作稳定流动时,单位体积的动能1/2ρv2
、重力势能ρgh
、该点的压强P
之和为一个常量.
其中1/2ρv2相与流速有关,常称为动压,ρgh
和P
相与流速无关,常称为静压.
二、单位重量流体中伯努利方程各项的物理意义
ρg
=m/u
g
=mg/u
表示单位体积的重力,以ρg
除各项得:
p/ρg+v平方/2
g+
h
=
常量
该方程表示流场中一点上单位重量流体所具有的总机械能.
其中p/ρg表示流场中一点上单位重量流体所具有的压力潜能,也就是压力对单位体积重量流体所做的功,
v平方/2
g
表示单位重量流体所具有的动能,
h
就是流场中该点的高度.
由于v平方/2
g+
p/ρg+
z
=
常数,定理中每一项都具有长度的量纲.
所以p/ρg
表示所考察点的压力潜能的同时也可表示它能将流体压升到某一高度的能力.
三、单位质量流体中伯努利方程p/ρ项的物理意义
以ρ除各项得:p/ρ+1/2
v平方
+
gh
=
常量
该方程中:p/ρ项表示流场中某一点上单位质量流体所具有的压力或弹性势能,从能量的角度讨论p/ρ
项也可理解为单位质量流体相对于p
=
0
状态所蕴涵的能量.
综上所述:
通过以上的分析推导可以看出伯努利方程是能量方程式,尽管分析问题所用的动力学原理不同,
但导出方程的意义是完全相同的,说明在管内作稳定流动的理想液体具有压力能、势能和动能三种形式的能量,在适合限定条件的情况下,流场中的三种能量都可以相互转换,但其总和却保持不变,这三种能量统称为机械能.
由此可以得出:伯努利方程在本质上是机械能的转换与守恒.
㈢ 伯努利方程的几何意义和物理意义
伯努利方程的几何意义就是为了完成这种数量的计算关系。
而它的物理意义就是这种温度能量环境比较恒定的情况,我们判断各物理量之间的关系。
㈣ 伯努利方程的物理含义具体是什么
一、一般条件下伯努利方程在各项的意义P +1/2ρv2 +ρgh = 常量该方程说明理想流体在流管中作稳定流动时,单位体积的动能1/2ρv2 、重力势能ρgh 、该点的压强P 之和为一个常量.其中1/2ρv2相与流速有关,常称为动压,...
㈤ 伯努利方程的物理意义是什么
伯努利方程的物理意义是单位重量流体具有的总势能,是单位重量流体具有的动能。
管内作稳定流动的理想液体具有压力能、势能和动能三种形式的能量,在适合限定条件的情况下,流场中的三种能量都可以相互转换,但其总和却保持不变,这三种能量统称为机械能.。由此可以得出:伯努利方程在本质上是机械能的转换与守恒。
几何意义
给你一个不可压缩的、无粘性流体的流动场,你将可以找出那个流动场的压强场。也就是说,你可以知道每个点的压强是多少。
丹尼尔·伯努利在1726年提出了“伯努利原理”。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为着名的推论为:等高流动时,流速大,压力就小。
㈥ 伯努利方程的物理意义和几何意义
物理意义:当速度增加,压强减少.当速度减小,压强增加.
从另一种角度看,博努力方程说-压力对流体所做的功等于流体动能的改变.
几何意义:给你一个不可压缩的、无粘性流体的流动场,你将可以找出那个流动场的压强场.也就是说,你可以知道每个点的压强是多少.
㈦ 伯努利方程的物理意义和几何意义是什么
物理意义:管内作稳定流动的理想液体具有压力能、势能和动能三种形式的能量,在适合限定条件的情况下,流场中的三种能量都可以相互转换,但其总和却保持不变,这三种能量统称为机械能.。由此可以得出:伯努利方程在本质上是机械能的转换与守恒。
几何意义:给你一个不可压缩的、无粘性流体的流动场,你将可以找出那个流动场的压强场。也就是说,你可以知道每个点的压强是多少。
丹尼尔·伯努利在1726年提出了“伯努利原理”。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。即:动能+重力势能+压力势能=常数。其最为着名的推论为:等高流动时,流速大,压力就小。
(7)伯努利方程物理含义是什么扩展阅读:
应用举例⒈
飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。
应用举例⒉
喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。
应用举例⒊
汽油发动机的化油器,与喷雾器的原理相同。化油器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。
应用举例⒋
球类比赛中的“旋转球”具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。再考虑球的旋转,转动轴通过球心且平行于地面,球逆时针旋转。
球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。
参考资料来源:网络-伯努利原理
㈧ 佰努利方程及物理含义是什么
伯努利原理往往被表述为p+1/2ρv2+ρgh=C,这个式子被称为伯努利方程。式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。
物理含义:将流体的高度与速度和压强联系在一起。
丹尼尔·伯努利(Daniel Bernoulli)是着名的伯努利家族中最杰出的一位,他是约翰·伯努利(Johann Bernoulli)的第二个儿子。丹尼尔出生时,他的父亲约翰正在格罗宁根担任数学教授.1713年丹尼尔开始学习哲学和逻辑学,并在1715年获得学士学位,1716年获得艺术硕士学位.在这期间,他的父亲,特别是他的哥哥尼古拉·伯努利第二(Nikolaus Bernoulli II,1695—1726)教他学习数学,使他受到了数学家庭的熏陶.他的父亲试图要他去当商业学徒,谋一个经商的职业,但是这个想法失败了.于是又让他学医,起初在巴塞尔,1718年到了海德堡,1719年到施特拉斯堡,在1720年他又回到了巴塞尔.1721年通过论文答辩,获得医学博士学位.他的论文题目是“呼吸的作用”(De respiratione).同年他申请巴塞尔大学的解剖学和植物学教授,但未成功.1723年、丹尼尔到威尼斯旅行,1724年他在威尼斯发表了他的《数学练习》(Exercitationes mathematicae),引起许多人的注意,并被邀请到彼得堡科学院工作.1725年他回到巴塞尔.之后他又与哥哥尼古拉第二一起接受了彼得堡科学院的邀请,到彼得堡科学院工作.在彼得堡的8年间(1725—1733),他被任命为生理学院士和数学院士.1727年他与L.欧拉(Euler)一起工作,起初欧拉作为丹尼尔的助手,后来接替了丹尼尔的数学院士职位.这期间丹尼尔讲授医学、力学、物理学,做出了许多显露他富有创造性才能的工作.但是,由于哥哥尼古拉第二的暴死以及严酷的天气等原因,1733年他回到了巴塞尔.在巴塞尔他先任解剖学和植物学教授,1743年成为生理学教授,1750年成为物理学教授,而且在1750—1777年间他还任哲学教授.
1733年丹尼尔离开彼得堡之后,就开始了与欧拉之间的最受人称颂的科学通信,在通信中,丹尼尔向欧拉提供最重要的科学信息,欧拉运用杰出的分析才能和丰富的工作经验,给以最迅速的帮助,他们先后通信40年,最重要的通信是在1734—1750年间,他们是最亲密的朋友,也是竞争的对手.丹尼尔还同C.哥德巴赫(Goldbach)等数学家进行学术通信。
㈨ “伯努利方程”的物理意义是什么
理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因着名的瑞士科学家D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体