1. 物理学的几种主要思维方式
1.模型法
物理模型是一种理想化的物理形态,将复杂的问题抽象化为理想化的物理模型是研究物理问题的基本方法。科学家通常利用抽象化、理想化、简化、类比等把研究对象的物理学本质特征突出出来,形成概念或实物体系,即为物理模型。模型思维法就是对研究对象或过程加以合理的简化,突出主要因素忽略次要因素,从而解决物理问题的方法。从本质上说,分析物理问题的过程,就是构建物理模型的过程。通过构建物理模型,得出一幅清晰的物理图景,是解决物理问题的关键。实际中必须通过分析、判断、比较,画出过程图(过程图是思维的切入点和生长点)才能建立正确合理的物理模型。
2.等效法
当研究的问题比较复杂,运算又很繁琐时,可以在保证研究对象的有关数据不变的前提下,用一个简单明了的问题来代替原来复杂隐晦的问题,这就是所谓的等效法。在中学物理中,诸如合力与分力、合运动与分运动、总电阻与各支路电阻以及平均值、有效值等概念都是根据等效的思想引入的。教学中若能将这种方法渗透到对物理过程的分析中去,不仅可以使问题的解决变得简单,而且对知识的灵活运用和知识向能力转化都会有很大的促进作用。
3.极端法
所谓极端法,就是依据题目所给的具体条件,假设某种极端的物理现象或过程存在并做科学分析,从而得出正确判断或导出一般结论的方法。这种方法对分析综合能力和数学应用能力要求较高,一旦应用得恰当,就能出奇制胜。常见有三种:极端值假设、临界值分析、特殊值分析。
4.逆思法
在解决问题的过程中为了解题简捷,或者从正面入手有一定难度,有意识地去改变思考问题的顺序,沿着正向(由前到后、由因到果)思维的相反(由后到前、由果到因)途径思考、解决问题,这种解题方法叫逆思法。是一种具有创造性的思维方法,通常有:运用可逆性原理、运用反证归谬、运用执果索因进行逆思。
5.估算法
所谓估算法就是对某些物理量的数量级进行大致推算或精确度要求不太高的近似计算方法。估算题与一般的计算题相比较,它虽然是不精确不严密的计算,但确是合理的近似,它可以避免繁琐的计算而着重于简捷的思维能力的培养。解估算题的基本思路是:(1)抓住主要因素,忽略次要因素,从而建立理想化模型。(2)认真审题,注意挖掘埋藏较深的隐含条件。(3)分析已知条件和所求量的相互关系以及物理过程所遵守的物理规律,从而找到估算依据。(4)明确解题思路,步步为营层层剥皮求出答案,答案一般保留一到两位有效数字。
6.虚设法
在物理解题中,我们常常用到一种虚拟的思维方法,即从给定的物理条件出发,假设与想象某种虚拟的东西,达到迅速、准确地解决问题的目的,我们把这种方法较虚设法。虚设法常见的几种情形是:虚设条件、虚设过程、虚设状态、虚设结论等。
7.图像法
所谓图像法,就是利用图像本身的数学特征所反映的物理意义解决物理问题(根据物理图像判断物理过程、状态、物理量之间的函数关系和求某些物理量)和由物理量之间的函数关系或物理规律画出物理图像,并灵活应用图像来解决物理问题。
2. 物理研究中科学思维方法主要有哪些
有控制变量法,等效替代法,类比推理法,模型法,力学中常用的主要方法有整体法,隔离法,图像法,电学中则主要方法是电路的等效替代法。
3. 物理思维品质包括哪几个方面,如何理解
思维品质,实质是人的思维的个性特征。思维品质反映了每个个体智力或思维水平的差异,主要包括深刻性、灵活性、独创性、批判性、敏捷性和系统性六个方面。优秀的思维品质来源于优秀的逻辑思维能力。
深刻性
深刻性是指思维活动的抽象程度和逻辑水平,涉及思维活动的广度、深度和难度。人类的思维主要是言语思维,是抽象理性的认识。在感性材料的基础上,去粗取精、去伪存真,由此及彼、由表及里,进而抓住事物的本质与内在联系,认识事物的规律性。个体在这个过程中,表现出深刻性的差异。思维的深刻性集中表现为在智力活动中深入思考问题,善于概括归类,逻辑抽象性强,善于抓住事物的本质和规律,开展系统的理解活动,善于预见事物的发展进程。超常智力的人抽象概括能力高,低常智力的人往往只是停留在直观水平上。
灵活性
灵活性是指思维活动的灵活程度。它的特点包括:一是思维起点灵活,即从不同角度、方向、方面,能用多种方法来解决问题;二是思维过程灵活,从分析到综合,从综合到分析,全面而灵活地作“综合的分析”;三是概括—迁移能力强,运用规律的自觉性高;四是善于组合分析,伸缩性大;五是思维的结果往往是多种合理而灵活的结论,不仅仅有量的区别,而且有质的区别。灵活性反映了智力的“迁移”,如我们平时说的,“举一反三”、“运用自如”等。灵活性强的人,智力方向灵活,善于从不同的角度与方面起步思考问题,能较全面地分析、思考问题,解决问题。
独创性
独创性即思维活动的创造性。在实践中,除善于发现问题、思考问题外,更重要的是要创造性地解决问题。人类的发展,科学的发展,要有所发明,有所发现,有所创新,都离不开思维的独创性品质。独创性源于主体对知识经验或思维材料高度概括后集中而系统的迁移,进行新颖的组合分析,找出新异的层次和交结点。概括性越高,知识系统性越强,伸缩性越大,迁移性越灵活,注意力越集中,则独创性就越突出。
批判性
批判性是思维活动中独立发现和批判的程度。是循规蹈矩、人云亦云,还是独立思考、善于发问,这是思维过程中一个很重要的品质。思维的批判性品质,来自于对思维活动各个环节、各个方面进行调整、校正的自我意识。它具有分析性、策略性、全面性、独立性和正确性等五个特点。正是有了批判性,人类才能够对思维本身加以自我认识,也就是人类不仅能够认识客体,而且也能够认识主体,并且在改造客观世界的过程中改造主观世界。
敏捷性
敏捷性是指思维活动的速度,它反映了智力的敏锐程度。有了思维敏捷性,在处理问题和解决问题的过程中,能够适应变化的情况来积极地思维,周密地考虑,正确地判断和迅速地作出结论。比如,智力超常的人,在思考问题时敏捷,反应速度快;智力低常的人,往往迟钝,反应缓慢;智力正常的人则处于一般的速度。
系统性
系统性是指思维活动的有序程度,以及整合各类不同信息的能力。
4. 物理研究中科学思维方法主要有哪些
探讨物理创造性思维的特性(新颖性、灵活性、综合性、跨越性)、过程(准备→孕育→顿悟→验证)和结构(一个指针;发散、聚合思维——用于解决思维的方向性;两条策略:辨证思维、纵横思维——提供宏观的哲学指导策略和微观的心理加工策略;三种思维:抽象思维、形象思维和直觉思维——用于构成创造性思维过程的主体);作出物理创造性思维的脑运作机制的猜想(物理创造性思维是物理抽象思维、形象思维和直觉思维在大脑内通过左右脑纵横调控、聚合发散、辨证运作、优化组合的高级认识过程);结合物理教学实践提出培养、训练物理创造性思维的方法和教学策略:1、激励创造性思维的兴趣与欲望;2、奠定创造性思维的三维基础;3、孕育物理创造性思维的新方法;4、培养创造性思维的实践能力和物化能力;最后总结成效和体会。
5. 能否详细回答什么是物理思维能力
物理思维主要包括模型建构、科学推理、科学论证、质疑创新等四个要素。
所谓物理思维,就是说,任何事情都要根据理论或者定论得出,必须要有依据,不能靠所谓的常识来解释问题。要有依据。
6. 在物理学计算中,常用的思想和方法有哪些
你真的没有找到学习物理的窍门,物理的学习不强调死记硬背,要注重理解概念规律的内涵与外延,注重把握基本的物理模型,更特别注重掌握常用的物理思想方法,主要有:
一、逆向思维法
逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果.
二、对称法
对称性就是事物在变化时存在的某种不变性.自然界和自然科学中,普遍存在着优美和谐的对称现象.利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径.
三、图象法
图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点.运用物理图象处理物理问题是识图能力和作图能力的综合体现.它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效. 四、假设法
假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立.求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径.在分析弹力或摩擦力的有无及方向时,常利用该法.
五、整体、隔离法
物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件.这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法.
六、图解法
图解法是依据题意作出图形来确定正确答案的方法.它既简单明了、又形象直观,用于定性分析某些物理问题时,可得到事半功倍的效果.特别是在解决物体受三个力(其中一个力大小、方向不变,另一个力方向不变)的平衡问题时,常应用此法.
七、转换法
有些物理问题,由于运动过程复杂或难以进行受力分析,造成解答困难.此种情况应根据运动的相对性或牛顿第三定律转换参考系或研究对象,即所谓的转换法.应用此法,可使问题化难为易、化繁为简,使解答过程一目了然. 八、程序法
所谓程序法,是按时间的先后顺序对题目给出的物理过程进行分析,正确划分出不同的过程,对每一过程,具体分析出其速度、位移、时间的关系,然后利用各过程的具体特点列方程解题.利用程序法解题,关键是正确选择研究对象和物理过程,还要注意两点:一是注意速度关系,即第1个过程的末速度是第二个过程的初速度;二是位移关系,即各段位移之和等于总位移.
九、极端法
有些物理问题,由于物理现象涉及的因素较多,过程变化复杂,同学们往往难以洞察其变化规律并做出迅速判断.但如果把问题推到极端状态下或特殊状态下进行分析,问题会立刻变得明朗直观,这种解题方法我们称之为极限思维法,也称为极端法.
运用极限思维思想解决物理问题,关键是考虑将问题推向什么极端,即应选择好变量,所选择的变量要在变化过程中存在极值或临界值,然后从极端状态出发分析问题的变化规律,从而解决问题.
有些问题直接计算时可能非常繁琐,若取一个符合物理规律的特殊值代入,会快速准确而灵活地做出判断,这种方法尤其适用于选择题.如果选择题各选项具有可参考性或相互排斥性,运用极端法更容易选出正确答案,这更加突出了极端法的优势.加强这方面的训练,有利于同学们发散性思维和创造性思维的培养.
十、极值法
常见的极值问题有两类:一类是直接指明某物理量有极值而要求其极值;另一类则是通过求出某物理量的极值,进而以此作为依据解出与之相关的问题. 物理极值问题的两种典型解法.
(1) 解法一是根据问题所给的物理现象涉及的物理概念和规律进行分析,明确题中的物理量是在什么条件下取极值,或在出现极值时有何物理特征,然后根据这些条件或特征去寻找极值,这种方法更为突出了问题的物理本质,这种解法称之为解极值问题的物理方法. (2)解法二是由物理问题所遵循的物理规律建立方程,然后根据这些方程进行数学推演,在推演中利用数学中已有的有关极值求法的结论而得到所求的极值,这种方法较侧重于数学的推演,这种方法称之为解极值问题的物理—数学方法.
此类极值问题可用多种方法求解:
①算术—几何平均数法,即
a.如果两变数之和为一定值,则当这两个数相等时,它们的乘积取极大值. b.如果两变数的积为一定值,则当这两个数相等时,它们的和取极小值.
②利用二次函数判别式求极值 一元二次方程ax2+bx+c=0(a≠0)的根的判别式,具有以下性质:
Δ=b2- 4ac>0——方程有两实数解; Δ=b2-4ac=0——方程有一实数解; Δ=b2-4ac<0——方程无实数解.
利用上述性质,就可以求出能化为ax2+bx+c=0形式的函数的极值. 十一、估算法
物理估算,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对物理量的数量级或物理量的取值范围,进行大致的推算.物理估算是一种重要的方法.有的物理问题,在符合精确度的前提下可以用近似的方法简捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确的计算.在这些情况下,估算就成为一种科学而又有实用价值的特殊方法.
十二、守恒思想
能量守恒、机械能守恒、质量守恒、电荷守恒等守恒定律都集中地反映了自然界所存在的一种本质性的规律——“恒”.学习物理知识是为了探索自然界的物理规律,那么什么是自然界的物理规律?在千变万化的物理现象中,那个保持不变的“东西”才是决定事物变化发展的本质因素.
从另一个角度看,正是由于物质世界存在着大量的守恒现象和守恒规律,才为我们处理物理问题提供了守恒的思想和方法.能量守恒、机械能守恒等守恒定律就是我们处理高中物理问题的主要工具,分析物理现象中能量、机械能的转移和转换是解决物理问题的主要思路.在变化复杂的物理过程中,把握住不变的因素,才是解决问题的关键所在.
7. 物理学中常用的几种科学思维方法
1.模型法
物理模型是一种理想化的物理形态,将复杂的问题抽象化为理想化的物理模型是研究物理问题的基本方法。科学家通常利用抽象化、理想化、简化、类比等把研究对象的物理学本质特征突出出来,形成概念或实物体系,即为物理模型。模型思维法就是对研究对象或过程加以合理的简化,突出主要因素忽略次要因素,从而解决物理问题的方法。从本质上说,分析物理问题的过程,就是构建物理模型的过程。通过构建物理模型,得出一幅清晰的物理图景,是解决物理问题的关键。实际中必须通过分析、判断、比较,画出过程图(过程图是思维的切入点和生长点)才能建立正确合理的物理模型。
2.等效法
当研究的问题比较复杂,运算又很繁琐时,可以在保证研究对象的有关数据不变的前提下,用一个简单明了的问题来代替原来复杂隐晦的问题,这就是所谓的等效法。在中学物理中,诸如合力与分力、合运动与分运动、总电阻与各支路电阻以及平均值、有效值等概念都是根据等效的思想引入的。教学中若能将这种方法渗透到对物理过程的分析中去,不仅可以使问题的解决变得简单,而且对知识的灵活运用和知识向能力转化都会有很大的促进作用。
3.极端法
所谓极端法,就是依据题目所给的具体条件,假设某种极端的物理现象或过程存在并做科学分析,从而得出正确判断或导出一般结论的方法。这种方法对分析综合能力和数学应用能力要求较高,一旦应用得恰当,就能出奇制胜。常见有三种:极端值假设、临界值分析、特殊值分析。
4.逆思法
在解决问题的过程中为了解题简捷,或者从正面入手有一定难度,有意识地去改变思考问题的顺序,沿着正向(由前到后、由因到果)思维的相反(由后到前、由果到因)途径思考、解决问题,这种解题方法叫逆思法。是一种具有创造性的思维方法,通常有:运用可逆性原理、运用反证归谬、运用执果索因进行逆思。
5.估算法
所谓估算法就是对某些物理量的数量级进行大致推算或精确度要求不太高的近似计算方法。估算题与一般的计算题相比较,它虽然是不精确不严密的计算,但确是合理的近似,它可以避免繁琐的计算而着重于简捷的思维能力的培养。解估算题的基本思路是:(1)抓住主要因素,忽略次要因素,从而建立理想化模型。(2)认真审题,注意挖掘埋藏较深的隐含条件。(3)分析已知条件和所求量的相互关系以及物理过程所遵守的物理规律,从而找到估算依据。(4)明确解题思路,步步为营层层剥皮求出答案,答案一般保留一到两位有效数字。
6.虚设法
在物理解题中,我们常常用到一种虚拟的思维方法,即从给定的物理条件出发,假设与想象某种虚拟的东西,达到迅速、准确地解决问题的目的,我们把这种方法较虚设法。虚设法常见的几种情形是:虚设条件、虚设过程、虚设状态、虚设结论等。
7.图像法
所谓图像法,就是利用图像本身的数学特征所反映的物理意义解决物理问题(根据物理图像判断物理过程、状态、物理量之间的函数关系和求某些物理量)和由物理量之间的函数关系或物理规律画出物理图像,并灵活应用图像来解决物理问题。
8. 物理思想是什么
意思是学物理常用的思维方法,思维其活动的结果,属于认识。
一、逆向思维法
逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果.
二、对称法
对称性就是事物在变化时存在的某种不变性.自然界和自然科学中,普遍存在着优美和谐的对称现象.利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤。
从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径。
意识运动的引起是为思,思是意识的顺向运动。
生命体在生命活动中,在意识的形态作用下,在原本意识里的事物形态与新出现的事物的形态出现了形态里的差异时,生命体的意识在差异中达成意识运动形式的引起,这引起的意识的运动就是思的本身,意识的运动的引起的内容就是问题的实质,实质的问题就是问题的主体。
意识的顺向是以意识的主体的意识为参照来说明的,意识的参照是事物惯性的参照,也就是惯性行为在意识里的表现的形式表达。事物的发展变化已经超出了意识的印象时,意识在印象里的留恋是意识的惯性,以意识来讲是意识的顺向,在意识惯性的顺向运动行为里,思进行着变化的考量。
9. 我们高三学生想知道高考评价体系下物理中的科学思维是什么意思
科学思维是指采用严谨求真的、实证性的逻辑思维方式应对各种问题。能够根据对问题情境的分析,运用实证数据分析事物的内部结构和问题的内在联系,以抽象的概念来反映客观事物的本质特征和内在联系。主要包括模型建构、科学推理、科学论证、质疑创新等要素。详情见高考蓝皮书《中国高考报告2020》。
10. 物理学科素养四大要素
物理核心素养是学生在接受物理教育过程中逐步形成的适应个人终身学习的社会发展需要的基础知识、关键能力、科学态度等方面的表现,是学生通过物理学习集中体现的带有物理特征的品质,是学生科学素养的关键成分,主要由“物理观念与应用”、“科学思维与创新”、“科学探究与创新”、“科学态度与责任”等四个方面的要素构成。
1、物理观念与应用:从物理学视角形成的关于物质、运动与相互作用、能量等的基本认识,是物理概念和规律等在头脑中的提炼和升华。“物理观念”包括物质观念、运动观念、相互作用观念、能量观念及其应用等要素。
2、科学思维与创新:从物理学视角对客观事物的本质属性、内在规律及相互关系的认识方式,是基于经验事实建构理想模型的抽象概括过程;是分析综合、推理论证等科学思维方法的内化;是基于事实证据和科学推理对不同观点和结论提出质疑、批判,进而提出创造性见解的能力与品质。“科学思维”主要包括模型建构、科学推理、科学论证、质疑创新等要素。
3、科学探究与创新:提出物理问题,形成猜想和假设,获取和处理信息,基于证据得出结论并做出解释,以及对实验探究过程和结果进行交流、评估、反思的能力。“实验探究”主要包括问题、证据、解释、交流等要素。
4、科学态度与责任:在认识科学本质,理解科学·技术·社会·环境(STSE)的关系基础上逐渐形成的对科学和技术应有的正确态度以及责任感。“科学态度与责任”主要包括科学本质、科学态度、科学伦理、STSE等要素。