导航:首页 > 物理学科 > 物理一元二次方程怎么解

物理一元二次方程怎么解

发布时间:2022-09-27 09:56:21

1. 一元二次方程的解法有哪些

一元二次方程有四种解法:直接开平方法;配方法;公式法;因式分解法。解一元二次方程的基本思想方法为通过“降次”将它化为两个一元一次方程。

1、直接开平方法

形如x²=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方法解一元二次方程。如果方程化成x²=p的形式,那么可得x=±√p。如果方程能化成(nx+m)²=p(p≥0)的形式,那么nx+m=±√p,进而得出方程的根。

2、配方法:用配方法解方程ax²+bx+c=0 (a≠0),先将常数c移到方程右边,将二次项系数化为1,方程两边分别加上一次项系数的一半的平方,方程左边成为一个完全平方式。

3、公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a,b,c的值代入求根公式就可得到方程的根。

4、因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。


把二次方程分成不同形式作讨论,是依照丢番图的做法。


法国的韦达(1540~1603)除推出一元方程在复数范围内恒有解外,还给出了根与系数的关系

2. 一元二次方程怎么解

一元二次方程的解法

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基
础,应引起同学们的重视。

一元二次方程的一般形式为:ax2+bx+c=0,
(a≠0),它是只含一个未知数,并且未知数的最高次数是2
的整式方程。

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解
法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例题精讲:

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n
(n≥0)的
方程,其解为x=m±
.

例1.解方程(1)(3x+1)2=7
(2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2)解:
9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解为x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0
(a≠0)

先将常数c移到方程右边:ax2+bx=-c

将二次项系数化为1:x2+x=-

方程两边分别加上一次项系数的一半的平方:x2+x+(
)2=-
+(
)2

方程左边成为一个完全平方式:(x+
)2=

当b2-4ac≥0时,x+


∴x=(这就是求根公式)

例2.用配方法解方程
3x2-4x-2=0

解:将常数项移到方程右边
3x2-4x=2

将二次项系数化为1:x2-x=

方程两边都加上一次项系数一半的平方:x2-x+(
)2=
+(
)2

配方:(x-)2=

直接开平方得:x-=±

∴x=

∴原方程的解为x1=,x2=
.

3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项
系数a,
b,
c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

例3.用公式法解方程
2x2-8x=-5

解:将方程化为一般形式:2x2-8x+5=0

∴a=2,
b=-8,
c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x=
=
=

∴原方程的解为x1=,x2=
.

4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让
两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个
根。这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1)
(x+3)(x-6)=-8
(2)
2x2+3x=0

(3)
6x2+5x-50=0
(选学)
(4)x2-2(
+
)x+4=0
(选学)

(1)解:(x+3)(x-6)=-8
化简整理得

x2-3x-10=0
(方程左边为二次三项式,右边为零)

(x-5)(x+2)=0
(方程左边分解因式)

∴x-5=0或x+2=0
(转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0
(用提公因式法将方程左边分解因式)

∴x=0或2x+3=0
(转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0
(十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=,
x2=-
是原方程的解。

(4)解:x2-2(+
)x+4
=0
(∵4
可分解为2
·2
,∴此题可用因式分解法)

(x-2)(x-2
)=0

∴x1=2
,x2=2是原方程的解。

小结:

一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般
形式,同时应使二次项系数化为正数。

直接开平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式
法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程
是否有解。

配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方
法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

3. 一元二次方程怎么做

用配方法解一元二次方程的一般步骤:1、把原方程化为的形式;2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;3、方程两边同时加上一次项系数一半的平方

4. 怎么解一元二次方程组

首先当a不等于0时方程:ax^2+bx+c=0才是一元二次方程。

1、公式法:Δ=b²-4ac,Δ<0时方程无解,Δ≥0时。

x=【-b±根号下(b²-4ac)】÷2a(Δ=0时x只有一个)

2、配方法:可将方程化为[x-(-b/2a)]²=(b²-4ac)/4a²

可解出:x=【-b±根号下(b²-4ac)】÷2a(公式法就是由此得出的)

3、直接开平方法与配方法相似。

4、因式分解法:核心当然是因式分解了看一下这个方程。

(Ax+C)(Bx+D)=0,展开得ABx²+(AD+BC)+CD=0与一元二次方程ax^2+bx+c=0对比得a=AB,b=AD+BC,c=CD。所谓因式分解也只不过是找到A,B,C,D这四个数而已。

,进而得出方程的根。

(4)注意:

①等号左边是一个数的平方的形式而等号右边是一个常数。

②降次的实质是由一个一元二次方程转化为两个一元一次方程。

③方法是根据平方根的意义开平方。

5. 如何解一元二次方程

用因式分解法解一元二次方程的一般步骤:

一、将方程右边化为( 0)

二、方程左边分解为(两个 )因式的乘积

三、令每个一次式分别为( 0)得到两个一元一次方程

四、两个一元一次方程的解,就是所求一元二次方程的解。


(5)物理一元二次方程怎么解扩展阅读

复合应用题解题思路:是由两个或两个以上相互联系的简单应用题组合而成的。

1、理解题意,就是弄清应用题中的已知条件和要求问题。

2、分析数量关系,就是分析已知数量与未知数数量,已知数量与未知数数量间的关系,找到解题途径,确定先算什么,再算什么,最好算什么。

3、列式解答,就是根据分析,列出算式并计算出来。

4、验算并给出答案,就是检验解答过程中是否合理,结果是否正确,与原题的条件是否相符,最后写出答案。

6. 解一元二次方程的方法

解一元二次方程的方法如下

直接开平方法,直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=±根号下n+m。

7. 一元二次方程的解法3种求详细步骤

一般解法
1.配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
2.公式法
(可解全部一元二次方程)
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac<0时 x无实数根(初中)
2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0
解:利用完全平方公式因式分解得:(x+1﹚^2=0
解得:x1=x2=-1
4.直接开平方法
(可解部分一元二次方程)
5.代数法
(可解全部一元二次方程)
ax^2+bx+c=0
同时除以a,可变为x^2+bx/a+c/a=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]

8. 一元二次方程怎么解

1.分解因式法(可解部分一元二次方程)

因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。



1.解方程:x^2+2x+1=0

解:利用完全平方公式因式解得:(x+1﹚^2=0

解得:x1= x2=-1

2.解方程x(x+1)-3(x+1)=0

解:利用提公因式法解得:(x-3)(x+1)=0

即 x-3=0 或 x+1=0

∴ x1=3,x2=-1

3.解方程x^2-4=0

解:(x+2)(x-2)=0

x+2=0或x-2=0

∴ x1=-2,x2= 2

十字相乘法公式:

x^2+(p+q)x+pq=(x+p)(x+q)

例:

1. ab+b^2+a-b- 2

=ab+a+b^2-b-2

=a(b+1)+(b-2)(b+1)

=(b+1)(a+b-2)
2.公式法(可解全部一元二次方程)
求根公式

首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根

1.当Δ=b^2-4ac<0时 x无实数根(初中)

2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2

3.当Δ=b^2-4ac>0时 x有两个不相同的实数根

当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a

来求得方程的根
3.配方法(可解全部一元二次方程)

如:解方程:x^2+2x-3=0

解:把常数项移项得:x^2+2x=3

等式两边同时加1(构成完全平方式)得:x^2+2x+1=4

因式分解得:(x+1)^2=4

解得:x1=-3,x2=1

用配方法解一元二次方程小口诀
二次系数化为一

常数要往右边移

一次系数一半方

两边加上最相当
4.开方法(可解部分一元二次方程)

如:x^2-24=1

解:x^2=25

x=±5

∴x1=5 x2=-5
5.均值代换法(可解部分一元二次方程)

ax^2+bx+c=0

同时除以a,得到x^2+bx/a+c/a=0

设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)

根据x1*x2=c/a

求得m。

再求得x1, x2。

如:x^2-70x+825=0

均值为35,设x1=35+m,x2=35-m (m≥0)

x1*x2=825

所以m=20

所以x1=55, x2=15。

一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)
一般式:ax^2+bx+c=0的两个根x1和x2关系:

x1+x2= -b/a

x1*x2=c/a
如何选择最简单的解法1.看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法)

2.看是否可以直接开方解

3.使用公式法求解

4.最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。 如果要参加竞赛,可按如下顺序:

1.因式分解 2.韦达定理 3.判别式 4.公式法 5.配方法 6.开平方 7.求根公式 8.表示法

9. 一元二次方程配方法怎么配方

用配方法解一元二次方程的一般步骤:

1、把原方程化为的形式;

2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;

3、方程两边同时加上一次项系数一半的平方;

4、再把方程左边配成一个完全平方式,右边化为一个常数;

5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。

(9)物理一元二次方程怎么解扩展阅读:

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)²=x²+ 2xy+y²的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y²= (b/2a)²。

例分解因式:x²-4x-12

解:x²-4x-12=x²-4x+4-4-12

=(x-2)²-16

=(x -6)(x+2)

求抛物线的顶点坐标

【例】求抛物线y=3x²+6x-3的顶点坐标。

解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6

所以这条抛物线的顶点坐标为(-1,-6)

10. 一元二次方程怎么解公式是啥

一般来说,一元二次方程的解法有:(注:以下 ^ 是平方的意思。)
一、直接开平方法。如:x^2-4=0
解:x^2=4
x=±2(因为x是4的平方根)
∴x1=2,x2=-2
二、配方法。如:x^2-4x+3=0
解:x^2-4x=-3
配方,得(配一次项系数一半的平方)
x^2-2*2*x+2^2=-3+2^2(方程两边同时加上2^2,原式的值不变)
(x-2)^2=1【方程左边完全平方公式得到(x-2)^2】
x-2=±1
x=±1+2
∴x1=1,x2=3
三、公式法。(公式法的公式是由配方法推导来的)

-b±∫b^2-4ac(-b加减后面是 根号下b^2-4ac)
公式为:x=-------------------------------------------(用中
2a
文吧,希望你能理解:2a分之-b±根号下b^2-4ac)

利用公式法首先要明确什么是a、b、c。
其实它们就是最标准的二元一次方程的形式:ax^2+bx+c=0
△=b2-4ac称为该方程的根的判别式。
当b2-4ac>0时,方程有两个不相等的实数根;
当b2-4ac=时,方程有两个相等的实数根;
当b2-4ac<0时,方程没有实数根。
有些时候,做到b2-4ac<0时,需要讨论△,因为根号下的数字是非负数,<0也就没有实数根,也就没有做的意义了。
a代表二次项的系数,b代表着一次项系数,c是常数项
注意:用公式法解一元二次方程时首先要化成一般形式,也就是ax^2+bx+c=0的形式,然后才能做。
解题时按照上面的公式,把数字带入计算就OK了。这对任何一元二次方程都可以操作。

阅读全文

与物理一元二次方程怎么解相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:979
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1060