A. 物理:理想化物理模型的研究方法有哪些详细!
SSSSSSSS
B. 大学物理中的理想模型有哪些
质点,系统,理想气体,点电荷,匀强电场,匀强磁场等。
理想化模型是根据研究的物理问题的需要,从客观存在的事物中抽象出来的一种简单,近似,直观的模型。具体是对事物的各个物理因素加以分析,忽略与问题无关或影响较小的因素,突出对问题起作用较大的主要因素,从而把问题简化。
例如力学上所研究的只有一定质量而没有一定形状和大小的质点,分子物理学中所研究的分子本身的体积和分子间作用力都可以忽略不计的理想气体,电学中所研究的没有空间大小的点电荷等,这些都是理想模型。
(2)物理里的理想方法是什么扩展阅读:
注意事项:
选择合适的方法是把物理问题转化为数学问题的关键之一。只有选择了合适解决问题的办法,我们才能顺利而简捷地解决问题。在这个环节是用分析,综合还是反证,递推,是否要用隔离分析等方法。
运用数学知识的过程是把物理问题转化为数学问题的关键环节,通过寻找数量关系,给物理模型加入定量的因素。
用符号来表示物理量,从而使符号成为物理内容的载体,把复杂的事物代码化,根据物理规律列出问题中物理量之间的关系,实现物理过程的数学化。
C. 高中物理有哪些是理想化模型或是用了理想化方法处理
LZ您好
高中物理自身就是理想的了,因为它是二维平面上研究运动变化规律.
除此而外,显而易见的理想东西还有...
理想光滑平面/导轨什么的:这个就不解释了,初中就在用.高中受力分析的入门,动量定理验证也会用.其实忽略的不仅是地面摩擦力,还有空气阻力什么的.
轻杆,轻绳:这些东西没质量
质点,或者质心:我们忽略物体的大小,形状,突出物体具有质量这个要素,将它浓缩成一个有质量的物质的点.譬如在地面上运动的物体,受到摩擦力,这个摩擦力是在接触面上的,但我们常把它移动到质点上,和重力,支撑力,拉力,加速度...联立解方程.有时对于一个正在运动的事物研究其运动状态(速度,加速度等),也会将其简化为质心,典型如围绕地球转的卫星计算轨道信息
质点有个好基友叫点电荷,会在电磁学出现
刚体:终于,我们遇到了没法化为质心质点的情况,譬如圆盘,计算力矩,那么我们搬出了第二个大杀器---刚体!特别针对固体,假设它在运动中形变很小或忽略不计,我们就当作它是刚体---直到将来我们遇到需要考虑应变或者振动的时候...
自由落体运动:运动中没有空气阻力,重力加速度一律9.8不考虑实验地点在地球上的纬度因素,高中阶段另外不考虑重力加速度随高度改变
弹性体:高中的弹簧基本上只有能自动变回去的弹性形变.没有变不回去的塑性形变,当然或者要么倒过来,会发生形变的物体一定100%都是塑性形变没有弹性的.
单摆:两层含义的理想:一是忽略了小球或者小块对绳子的弹性拉伸,二是摆动的过程中忽略空气阻力
简谐振动:基本不探讨阻尼振动
完全弹性碰撞/完全非弹性碰撞:前者碰撞过程中机械能不损失,完全没有产生碰撞热能;后者2个物体最后能以一样的速度黏在一起运动.
理想气体模型:特别针对热学中的压强不大,温度不低的情况,气体会遵循Pv=nRt(实际上是波意尔,查理,还有盖吕萨克定理的集合,分别是等温,等体积,等压强的模型),严格意义上理想气体还包含化学中提到的阿伏伽德罗定理,只针对理想的纯化学气体适用.
卡诺热机:也较理想热机,遵循热力学第二定律的理想热机
匀强电场或者匀强磁场:顺便忽略粒子的重力,或者不忽略重力粒子会恰好浮在空中.当然运动的情况下摩擦力什么的是不考虑的.
理想电源:没有内阻...当然高中经常有内阻也不碍事,当作串联一个电阻完事
理想导线:没有电阻的导线,顺便没有感抗现象
理想电压表和电流表:一个电阻无穷大,一个电阻无穷小.当然不能忽略的时候把它们看作一个电阻其实也没事
理想电阻:这个和电源导线完全不一样,实际当中电阻率,长度,横截面我们假设都考虑,还有一个温度常常不考虑,事实上一般固体导体电阻随温度升高而升高,溶液导体则随温度升高而降低...管它呢!一律以常温数值为准
理想电感线圈:直流电阻为0,交流电阻无穷大
理想变压器:绕组无电阻,没有漏磁+理想电感线圈
理想透镜:光学物理中透镜没有厚度,没有色差,材质均匀.
点光源:所有的灯泡都是一个点,没有形状
理想光线:激光...统统是激光!
D. 在物理中,什么叫做理想化方法
理想化颗粒理解为就是不考虑任何的干扰因素。光源么应该是理想为都是平行光束,在照射途中,排除空气的什么折射衍射现象的,具体我也不太好说,简单的说,就是不考虑任何干扰因素。
E. 物理规律教学中有哪些科学方法07
一、控制变量法
控制变量法是初中物理实验中常用的探索问题和分析解决问题的科学方法之一。所谓控制变量法是指为了研究物理量同影响它的多个因素中的一个因素的关系,可将除了这个因素以外的其它因素人为地控制起来,使其保持不变,再比较、研究该物理量与该因素之间的关系,得出结论,然后再综合起来得出规律的方法。
这种方法在整个初中物理实验中的应用比较普遍。例如在人教版实验教科书《物理》(八年级上册)第一章第一节关于探究声是怎样传播的实验中,就开始渗透控制变量的思想。因为固体、液体和气体都是传声的介质,我们逐一研究它们分别可以传声时,就必须控制其它两个因素。在进行该实验时恰当地点拨,提出:“把两张课桌紧紧地挨在一起,一个同学轻敲桌面,另一个同学把耳朵贴在另一张桌子上,听到的敲击声为什么就能认为是桌子传来而不是空气传来的?”分析比较,使学生体验到控制变量的思想。在接着的探究影响音调、响度等因素的实验中,把控制变量的思想对学生给予简要的介绍,就会使学生逐步领悟到控制变量法的实质要领,为以后的探究实验作好方法上的准备。 在初中物理中,探究影响滑动摩擦力大小的因素;决定压力作用效果的因素;影响液体压强的大小的因素;影响动能大小的因素;影响重力势能大小的因素;影响蒸发快慢的因素;影响导体电阻大小的因素;电流跟电压电阻的关系;影响电功、电热大小的因素;影响电磁铁磁性强弱的因素;影响磁场对通电导体力的大小的因素等等实验,运用了控制变量法。
二、等效替代法
等效替代法是指在研究某一个物理现象和规律中,因实验本身的特殊限制或因实验器材等限制,不可以或很难直接揭示物理本质,而采取与之相似或有共同特征的等效现象来替代的方法。这种方法若运用恰当,不仅能顺利得出结论,而且容易被学生接受和理解。
例如,在探究平面镜成像规律的实验中,用玻璃板替代了平面镜,因两者在成像特征上有共同之处,容易使学生接受,而玻璃板又是透明的,能通过它观察到玻璃板后面的蜡烛,便于研究像的特点,揭示出规律。我们在学习中,在亲历实验过程的基础上,要进行方法的总结,在以后遇到有关的实验设计时,就会自觉地加以运用。比如在学习伏安法测电阻之后,要求设计一个实验,在上述实验中缺少电压表或电流表,其它器材不变,另有一个已知阻值的定值电阻供选用,要求测出未知电阻,应该怎么办?学生就可以用等效替代的思想进行设计了。
三、转换法
有的物理量不便于直接测量,有的物理现象不便于直接观察,通过转换为容易测量到与之相等或与之相关联的物理现象,从而获得结论的方法。譬如,在研究电热与电阻关系的实验中,电流通过阻值不等的两根电阻丝产生的热量无法直接观测和比较,而我们通过转换为让煤油吸热,观察煤油温度变化情况,从而推导出哪个电阻放热多。教学时不妨设计一问:为什么研究电热与电阻大小的关系时,还用到似乎与实验无关的煤油呢?引发学生的思考和讨论,在小结出该实验中煤油的作用的基础上,进而再问:该实验能否不用煤油而改用其它方式来观察电阻通电后的发热情况?这样促使学生思维得以发散,转换的思维方法得到训练,设计实验的能力也随着提高了。 在初中物理实验中,利用软细绳测量地图上铁路线上的长度、刻度尺和三角板配合测量硬币的直径、圆锥的高;在探究声音的响度与什么有关系的实验中,用乒乓球的振动放大和转换音叉的振动;利用电路中的灯泡是否发光等电流的效应来判断电路中是否有电流;利用磁场的吸铁性来研究磁场、电磁铁的磁性强弱等,都运用了转换法的思想。
四、类比法
类比法是一种推理方法。为了把要表达的物理问题说清楚明白,往往用具体的、有形的、人们所熟知的事物来类比要说明的那些抽象的、无形的、陌生的事物,通过借助于一个比较熟悉的对象的某些特征,去理解和掌握另一个有相似性的对象的某些特征。
如:用水波类比声波;用水路来类比电路;在研究电压的作用时,借助于看得见而学生比较熟悉的“水压形成水流”的实验作类比,来揭示电压是形成电流的原因。又比如在研究通电螺线管的磁场的实验中,为准确记忆通电螺线管的北极与电流方向的关系,以紧握的右拳头类比为螺线管,四指为线圈并指向电流的方向,则大拇指所指的一端为北极。这样形象直观很容易被学生理解记忆牢固。当然,这里还可以用其他方式来类比,充分发挥学生的主观能动性,还可以找到更符合学生实际的类比方法。
五、图象法
图象是一个数学概念,用来表示一个量随另一个量的变化关系,很直观。由于物理学中经常要研究一个物理量随另一个物理量的变化情况,因此图象在物理中有着广泛的应用。在实验中,运用图象来处理实验数据,探究内在的物理规律,具有独特之处。如:在探究固体熔化时温度的变化规律和水的沸腾情况的实验中,就是运用图象法来处理数据的。它形象直观地表示了物质温度的变化情况,学生在亲历实验自主得出数据的基础上,通过描点、连线绘出图象就能准确地把握住晶体和非晶体的熔化特点、液体的沸腾特点了。 在其他的实验中,教师也可以有意识地引导学生采用图象来处理数据。例如在探究串联电路中电流规律实验中,把各点作为横轴、电流为纵轴,作出的图象为水平直线,很直观表示出串联电路中各点电流相等的规律。这样学生非常容易理解和记忆。在探究电阻上的电流跟电压的关系、同种物质的质量与体积的关系、重力大小跟质量的关系等实验中都运用到图象法。这样把数形结合、图形与文字结合起来处理数据、描述物理规律,能很好地促进学生处理数据能力和分析问题能力的提高。
六、理想化方法
理想化方法是指在物理教学中通过想象建立模型和进行实验的一种科学方法。可分为理想化模型和理想化实验。
理想化模型就是指把复杂的问题简单化,把研究对象的一些次要因素舍去,抓住主要因素,对实际问题进行理想化处理去再现原形的本质的东西,构成理想化的物理模型。这是一种重要的物理研究方法。例如探究杠杆平衡条件的实验,杠杆就是一种理想化的模型。杠杆在使用时,由于受到力的作用,都会引起或多或少的形变,然而在研究中把此时的形变忽略不计,这里我们就把杠杆经过理想化的处理,认为它无形变,视为一个硬棒,从而使学生在研究时不被细枝末节的因素影响,顺利地得出杠杆平衡原理。
理想化实验是一种科学的抽象方法。它既要以实验事实作基础,但又不能直接由实验得到结论。比如,我们在探究空气能传声的实验中,逐渐将真空罩内的空气抽出,听到罩内的闹钟的声音逐渐变弱,于是我们推理得出将真空罩内的空气抽完(即真空),就听不到闹钟的声音了,从而得出空气能传声而真空不能传声的结论。这里采用的方法就是理想化,因为无论怎样抽气是不可能将真空罩内的空气抽完的。又如牛顿第一定律就是理想化实验得出的一条重要物理规律。如果教师在教学中注意很好地渗透这一方法,有利于培养学生的科学思想,提高学生的创新能力。
七、比值定义法
比值定义法,就是在定义一个物理量的时候采取比值的形式定义。用比值法定义的物理概念在物理学中占有相当大的比例,比如速度、密度、压强、功率、比热容、热值、电阻等等
比值法适用于物质属性或特征、物体运动特征的定义。由于它们在与外界接触作用时会显示出一些性质,这就给我们提供了利用外界因素来表示其特征的间接方式,往往借助实验寻求一个只与物质或物体的某种属性特征有关的两个或多个可以测量的物理量的比值,就能确定一个表征此种属性特征的新物理量。应用比值法定义物理量,往往需要一定的条件;一是客观上需要,二是间接反映特征属性的的两个物理量可测,三是两个物理量的比值必须是一个定值。 八、归纳推理,又称归纳法: 从一般性较小的前提出发,推出一般性较大的结论的推理方法叫归纳法。在科学研究中,归纳法发挥着重要的作用,许多物理概念、定律及规律的获得都是借助了归纳法的力量,由实验(演示实验或学生实验)归纳获得的。因而归纳法的教学是中学教学中的一个重要方面。
F. 初中物理常见的科学方法有哪些
物理是一种理科课程.初中物理呢,是应用物理的知识来解释日常生活当中的许多现象的学科.比较贴近于生活.也来自生活.要是想学好物理呢,就必须有合适的方法.如果没有合适的方式方法的话.你根本就学不会物理的,因为物理是有逻辑性的.那么怎么学好初中物理这门学科呢?有什么样的方法可以学好物理呢?
初中物理思维导图
第五、不懂就问
发现自己有不会的地方,一定要及时的问同学或者是老师.不懂就问才是最好的学习方法,这样就把所有的知识点都放在你的脑子里边了.成为你自己的东西了,而不是别人的东西.
关于怎么学好初中物理的方法技巧已经告诉给大家了,希望同学们能够按照上面的方式方法进行学习,对于你们提高成绩是很有帮助的.
G. 物理理想实验法和转换法是什么
理想实验法(又称想象创新法,思想实验法)是科学研究中的一种重要方法,它把可靠事实和理论思维结合起来,可以深刻地揭示自然规律。它是在实验基础上经过概括、抽象、推理得出规律的一种研究问题的方法。但得出的规律却又不能用实验直接验证,是科学家们为了解决科学理论中的某些难题,以原有的理论知识(如原理、定理、定律等)作为思想实验的“材料”,提出解决这些难题的设想作为理想实验的目标,并在想象中给出这些实验“材料”产生“相互作用”所需要的条件,然后,按照严格的逻辑思维操作方法去“处理”这些思想实验的“材料”,从而得出一系列反映客观物质规律的新原理,新定律,使科学难题得到解决,推动科学的发展。又称推理法。
转换法 物理学中对于一些看不见摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识或用易测量的物理量间接测量,这种研究问题的方法叫转换法。
H. 物理思想方法有哪些
物理思想方法
§1.图形/图象图解法
图形/图象图解法就是将物理现象或过程用图形/图象表征出后,再据图形表征的特点或图象斜率、截距、面积所表述的物理意义来求解的方法。尤其是图象法对于一些定性问题的求解独到好处。
§2 极限思维方法
极限思维方法是将问题推向极端状态的过程中,着眼一些物理量在连续变化过程中的变化趋势及一般规律在极限值下的表现或者说极限值下一般规律的表现,从而对问题进行分析和推理的一种思维办法。
§3 平均思想方法
物理学中,有些物理量是某个物理量对另一物理量的积累,若某个物理量是变化的,则在求解积累量时,可把变化的这个物理量在整个积累过程看作是恒定的一个值---------平均值,从而通过求积的方法来求积累量。这种方法叫平均思想方法。
物理学中典型的平均值有:平均速度、平均加速度、平均功率、平均力、平均电流等。对于线性变化情况,平均值=(初值+终值)/2。由于平均值只与初值和终值有关,不涉及中间过程,所以在求解问题时有很大的妙用.
§4 等效转换(化)法
等效法,就是在保证效果相同的前提下,将一个复杂的物理问题转换成较简单问题的思维方法。其基本特征为等效替代。
物理学中等效法的应用较多。合力与分力;合运动与分运动;总电阻与分电阻;交流电的有效值等。除这些等效等效概念之外,还有等效电路、等效电源、等效模型、等效过程等。
§5 猜想与假设法
猜想与假设法,是在研究对象的物理过程不明了或物理状态不清楚的情况下,根据猜想,假设出一种过程或一种状态,再据题设所给条件通过分析计算结果与实际情况比较作出判断的一种方法,或是人为地改变原题所给条件,产生出与原题相悖的结论,从而使原题得以更清晰方便地求解的一种方法。
§6 整体法和隔离法
整体法是在确定研究对象或研究过程时,把多个物体看作为一个整体或多个过程看作整个过程的方法;隔离法是把单个物体作为研究对象或只研究一个孤立过程的方法.
整体法与隔离法,二者认识问题的触角截然不同.整体法,是大的方面或者是从整的方面来认识问题,宏观上来揭示事物的本质和规律.而隔离法则是从小的方面来认识问题,然后再通过各个问题的关系来联系,从而揭示出事物的本质和规律。因而在解题方面,整体法不需事无巨细地去分析研究,显的简捷巧妙,但在初涉者来说在理解上有一定难度;隔离法逐个过程、逐个物体来研究,虽在求解上繁点,但对初涉者来说,在理解上较容易。熟知隔离法者应提升到整体法上。最佳状态是能对二者应用自如。
§7 临界问题分析法
临界问题,是指一种物理过程转变为另一种物理过程,或一种物理状态转变为另一种物理状态时,处于两种过程或两种状态的分界处的问题,叫临界问题。处于临界状的物理量的值叫临界值。
物理量处于临界值时:
①物理现象的变化面临突变性。
②对于连续变化问题,物理量的变化出现拐点,呈现出两性,即能同时反映出两种过程和两种现象的特点。
解决临界问题,关键是找出临界条件。一般有两种基本方法:①以定理、定律为依据,首先求出所研究问题的一般规律和一般解,然后分析、讨论其特殊规律和特殊解②直接分析、讨论临界状态和相应的临界值,求解出研究问题的规律和解。
§8 对称法
物理问题中有一些物理过程或是物理图形是具有对称性的。利用物理问题的这一特点求解,可使问题简单化。要认识到一个物理过程,一旦对称,则相当一部分物理量(如时间、速度、位移、加速度等)是对称的。
§9 寻找守恒量法
守恒,说穿意思是研究数量时总量不变的一种现象。物理学中的守恒,是指在物理变化过程或物质的转化迁移过程中一些物理量的总量不变的现象或事实。
守恒,已是物理学中最基本的规律(有动量守恒、能量守恒、电荷守恒、质量守恒),也是一种解决物理问题的基本思想方法。并且应用起来简练、快捷。
从运算角度来说,守恒是加减法运算,总和不变。
从物理角度来讲,那就与所述量表征的意义有关,重在理解了。理解所述量及所述量守恒事实的内在实质和外在表现。
如动量,描述的是物体的运动量,大小为mV,方向为速度的方向。动量守恒,就是物体作用前总的运动量是动的时,且方向是向某一方向的,那作用后,总的运动量还是动的,方向还是向着这一方向。
§10 构建物理模型法
物理学很大程度上,可以说是一门模型课.无论是所研究的实际物体,还是物理过程或是物理情境,大都是理想化模型.
如 实体模型有:质点、点电荷、点光源、轻绳轻杆、弹簧振子、平行玻璃砖、……
物理过程有:匀速运动、匀变速、简谐运动、共振、弹性碰撞、圆周运动……
物理情境有:人船模型、子弹打木块、平抛、临界问题……
求解物理问题,很重要的一点就是迅速把所研究的问题归宿到学过的物理模型上来,即所谓的建模。尤其是对新情境问题,这一点就显得更突出。