A. 泰勒公式怎么展开
如图:(注意“麦克劳林级数”是“泰勒级数”的特殊形式,是展开位置为0的泰勒级数)。
一阶导数,系数=1/(x+1)=1/(1+x0)。二阶导数,系数=-1/(1+x)^2=-1/(1+x0)^2
数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
(1)大学物理怎么用泰勒展开扩展阅读
实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。
泰勒展开式的重要性体现在以下五个方面:
1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
3、泰勒级数可以用来近似计算函数的值,并估计误差。
4、证明不等式。
5、求待定式的极限。
B. 常用函数泰勒展开公式
常用泰勒展开公式如下:
1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞<x<∞)
4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)
5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
6、arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)
7、arctan x = x - x^3/3 + x^5/5 -……(x≤1)
8、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)
9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)
10、arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)
11、arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)
(2)大学物理怎么用泰勒展开扩展阅读:
数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。
实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。
泰勒展开式的重要性体现在以下五个方面:
1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
3、泰勒级数可以用来近似计算函数的值,并估计误差。
4、证明不等式。
5、求待定式的极限。
C. x趋于无穷的极限如何用泰勒展开来求
泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。
根据ln(1+x)=x-x^2/2
得出ln(1+1/x)=1/x-1/x^2/2
得出极限=x-[x-1/2]=1/2
N的相应性
一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
D. 泰勒公式展开的技巧
泰勒公式在x=a处展开为
f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+……+(1/n!)f(n)(a)(x-a)^n+……
设幂级数为f(x)=a0+a1(x-a)+a2(x-a)^2+……①
令x=a则a0=f(a)
将①式两边求一阶导数,得
f'(x)=a1+2a2(x-a)+3a3(x-a)^2+……②
令x=a,得a1=f'(a)
对②两边求导,得
f"(x)=2!a2+a3(x-a)+……
令x=a,得a2=f''(a)/2!
继续下去可得an=f(n)(a)/n!
所以f(x)在x=a处的泰勒公式为:
f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……+[f(n)(a)/n!](a)(x-a)^n+……
应用:用泰勒公式可把f(x)展开成幂级数,从而可以进行近似计算,也可以计算极限值,等等。
另外,一阶泰勒公式就是拉格朗日微分中值定理
f(b)=f(a)+f(ε)(b-a),ε介于a与b之间。
.
不知道满不满意.
E. 泰勒展开式及其应用
展开是:f(x)在x=0。泰勒公式,应用于数学、物理领域,是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
多元函数的泰勒公式
在讨论一元函数的时候,我们给出了一元函数y=f(x)的点x处的
n阶泰勒公式
f(x)=f(x)+f'(x)(x-x)+
( (x-x) '+..
2!
+()(x-x. + (+(x-xo) (x-x )1
n!
n+1
(其中0<0<1)
F. 十个常用的泰勒展开公式是什么
十个常用的泰勒展开式分别包括:
1、x^a=x0^a+ax0^(a-1)(x-x0)+a(a-1)x0^(a-2)(x-x0)^2/2+…+a(a-1)…(a-n+1)(x-x0)^n/n!+o((x-x0)^n)。
2、(1+x)^a=(1+x0)^a+a(1+x0)^(a-1)(x-x0)+a(a-1)(1+x0)^(a-2)(x-x0)^2/2+…+a(a-1)…(a-n+1)(x-x0)^n/n!+o((x-x0)^n)。
3、1/x=1/x0-(x-x0)/x0^2+(x-x0)^2/x0^3-(x-x0)^3/x0^4+…+(-1)^n(x-x0)^n/x0^(n+1)+o((x-x0)^n)。
4、1/(1-x)=1/(1-x0)+(x-x0)/(1-x0)^2+(x-x0)^2/(1-x0)^3+(x-x0)^3/(1-x0)^4+…+(x-x0)^n/(1-x0)^(n+1)+o((x-x0)^n)。
5、e^x=e^x0+e^x0(x-x0)+e^x0(x-x0)^2/2+…+e^x0(x-x0)^n/n!+o((x-x0)^n)。
6、lnx=lnx0+(x-x0)/x0-(x-x0)^2/(2x0^2)+(x-x0)^3/(3x0^3)+…+(-1)^(n+1)(x-x0)^n/(nx0^n)+o((x-x0)^n)。
7、ln(1+x)=ln(1+x0)+(x-x0)/(1+x0)-(x-x0)^2/(2(1+x0)^2)+(x-x0)^3/(3(1+x0)^3)+…+(-1)^(n+1)(x-x0)^n/(n(1+x0)^n)+o((x-x0)^n)。
8、sinx=sinx0+(x-x0)sin(x0+π/2)+(x-x0)^2sin(x0+π)/2+…+(x-x0)^nsin(x0+nπ/2)/n!+o((x-x0)^n)。
9、cosx=cosx0+(x-x0)cos(x0+π/2)+(x-x0)^2cos(x0+π)/2+…+(x-x0)^ncos(x0+nπ/2)/n!+o((x-x0)^n)。
10、Tn(x)=f(x0)+f'(x0)(x-x0)/1!+f"(x0)(x-x0)^2/2!+…+f^(n)(x0)(x-x0)^n/n!
相关信息:
泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。
泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。
G. 泰勒公式是怎么展开的或者说展开的计算是怎么得到的
a是你取得一个数,底下那个就是取a=0推出的,就是sinx的麦克劳林公式。
泰勒公式是用来弥补微分运算的不足--无法估计误差。泰勒公式越往后面误差越小,就比如e^x,你随便取一个数代入公式,越往后算越接近e^x的真实值。
H. 常用泰勒公式展开是怎么样的
泰勒公式在x=a处展开为
f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+……+(1/n!)f(n)(a)(x-a)^n+……
设幂级数为f(x)=a0+a1(x-a)+a2(x-a)^2+……①
令x=a则a0=f(a)
将①式两边求一阶导数,得
f'(x)=a1+2a2(x-a)+3a3(x-a)^2+……②
令x=a,得a1=f'(a)
对②两边求导,得
f"(x)=2!a2+a3(x-a)+……
令x=a,得a2=f''(a)/2!
继续下去可得an=f(n)(a)/n!
所以f(x)在x=a处的泰勒公式为:
f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……+[f(n)(a)/n!](a)(x-a)^n+……
泰勒公式展开在物理学应用
物理学上的一切原理定理公式都是用泰勒展开做近似得到的简谐振动对应的势能具有x^2的形式,并且能在数学上精确求解。为了处理一般的情况,物理学首先关注平衡状态,可以认为是“不动”的情况。为了达到“动”的效果,会给平衡态加上一个微扰,使物体振动。
在这种情况下,势场往往是复杂的,因此振动的具体形式很难求解。这时,Taylor展开就开始发挥威力了!
I. 如何用泰勒展开求高阶导数
解:
^利用sinx的Taylor展式sinx=x-x^3/3!+x^5/5!-x^7/7!+...,故
f(x)=x^4-x^6/3!+x^8/5!-x^10/7!+...
由此知道f^(6)(0)/6!=-1/3!,故
f^(6)(0)=-6!/3!=-120。
Taylor展式有唯一性:其表达式必定是这样的:
f(x)=f(0)+f'(0)x+f''(0)x^2/2!+....+f^(n)(0)x^n/n!+...
即必有x^n的系数时f^(n)(0)/n!。
泰勒展开式的重要性体现在以下五个方面:
1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。
2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。
3、泰勒级数可以用来近似计算函数的值,并估计误差。
4、证明不等式。
5、求待定式的极限。