导航:首页 > 物理学科 > 地球物理调查手段有哪些

地球物理调查手段有哪些

发布时间:2022-10-10 06:10:45

❶ 地球科学的研究方法

由于地球科学以庞大的地球作为研究对象,并具有很强的实践性和应用性,所以它的研究方法与其他自然科学有较大的差异。它既要借助于数学、物理、化学、生物学及天文学的一些研究方法,同时又有自己的特殊性。

地球科学的研究方法与其研究对象的特点有关,地球作为其研究对象主要有以下特点:

(1)空间的广泛性与微观性

地球是一个庞大的物体,其周长超过4×104 km,表面积超过5×108 km2。因此,无论是研究大气圈、水圈、生物圈以及固体地球,其空间都是十分广大的。这样一个巨大的空间及物体本身由不同尺度或规模的空间和物质体所组成。因此,要研究庞大的地球,就必须研究不同尺度或规模的空间及其物质体,特别是要注重研究微观的空间和物质特征,如不同学科都要研究其相应对象的化学成分、化学元素的特性等。地质学要研究矿物晶体结构,水文学和海洋学要研究水质点的运动等,气象学要研究气体分子的活动等。而且,整个地球系统是一个开放的动力系统,其与宇宙环境(地-月系、太阳系及银河系等)之间总是不断地进行着物质、能量的交换;地球系统中各种自然现象、作用过程的发生、发展和演化与其所处的宇宙环境是分不开的。因此,现代地球科学已开始充分重视宇宙环境对地球系统的影响研究;也就是说研究的空间范围还要超越地球系统,涉及更加宏观的宇宙环境(图0-1)。只有把不同尺度的研究结合起来,把宏观和微观结合起来,才能获得正确的和规律性的认识。

(2)整体性(或系统性)与分异性(或差异性、多元性)

整个地球是一个有机的整体,是由不同层次的、具有紧密联系的子系统组成的统一系统;不仅在空间上地球的内部圈层、外部圈层都表现为连续的整体性,而且地球的各内部圈层之间、内部与外部圈层之间、各外部圈层之间也都是相互作用、相互影响、相互渗透的,某一个圈层或某一个部分的运动与变化,都会不同程度地影响其他部分甚至其他圈层的变化,这也充分表现了它们的有机整体性。然而,地球也是一个非均质体,它的不同的组成部分(或子系统)无论在物质状态还是运动和演变特点上都具有一定的差异,表现出分异性或多元性。例如,不同地区的地理环境、气候环境具有明显的差异,不同地区的水文条件也具有明显差异。固体地球特别是地壳的不同地区或不同组成部分的差异性更为显着,如大陆、海洋、山系、平原等。这种差异性不仅表现在空间和物质组成上,也表现在它们的运动、变化与形成、发展上。

(3)时间的漫长性与瞬间性

据科学测算,目前可追溯的地球年龄长达46亿年。在这漫长的时间里,地球上曾发生过许多重要的自然事件,诸如海陆变迁、山脉形成、生物进化等。这些事件的发生过程多数是极其缓慢的,往往要经过数百万年甚至数千万年才能完成。短暂的人生很难目睹这些事件发生的全过程,而只能观察到事件完成后留下来的结果以及正在发生的事件的某一阶段的情况。但是,有些事件的发生可以在很短的时间内完成。例如,天气现象往往表现为几天、几小时甚至更短的时间,地震、火山爆发等也都发生在极短的时间内。

(4)自然过程的复杂性与有序性

地球演化至今经历了复杂的过程。其中既有物理变化,也有化学变化;既有地表常温、常压状态下的作用过程,也有地下深处高温、高压状态下的作用过程。此外,各种自然过程还会受地区性条件的影响而具有地区的差异性。所以,自然过程是极其复杂的,而且这种过程由于其漫长性和不可逆性,依靠人类的力量很难完全重塑和再现其过程,因而更增添了地球科学研究工作的艰巨性。但是,这些复杂的自然过程并不是杂乱无章的,它们都具有其发生、发展的条件和过程,都具有一定的规律可循,这也正是地球科学工作者的重要研究任务。

研究对象的特点决定了地球科学具有一些独特的研究方法,并且随着科学技术的发展和进步,地球科学的研究方法也会得到不断的补充和推进。现择要简述研究方法如下:

(1)野外调查

空间的广泛性决定了地球科学工作者首先必须到野外去观察自然界,把自然界当做天然的实验室进行研究,而不可能把庞大而复杂的大自然搬到室内来进行研究。野外调查是地球科学工作最基本和最重要的环节,它能获取所研究对象的第一手资料。例如野外地质调查、水系与水文状态调查、自然地理调查、土壤调查、资源与环境调查等。只有有针对性地到现场去认真、细致地收集原始资料,才能为正确地解决地球科学问题提供可能。

(2)仪器观测

仪器观测是地球科学用来获取研究对象的定性和定量资料的重要手段,通过仪器观测可以了解到研究对象的各种物理、化学性质,参量的静态特征和动态变化,为科学的分析、推理提供依据。仪器观测为地球的研究步入科学的轨道提供了条件,例如,16~17世纪气温、气压、湿度等气象仪器的发明与创造,使气象学逐渐发展成为一门完善的学科。现代高精度的常规与高空气象仪器观测仍然是气象学的重要研究基础。同样,仪器观测在水文学、海洋学研究中也占有特殊重要的位置。仪器观测对于现代地球物理学、地质学的地球内部研究,对于土壤学的研究特别是对于环境地学中的各种监测与评价,都具有极其重要的作用。在现场进行的仪器观测也属于第一手资料,除了科学工作者根据不同的研究目的在现场进行各种观测外,人们还常常设立各种定点观测台站,如气象站、水文站、地震台站、环境监测站等,并通过大量的台站建立观测网,以便获得系统的观测资料。

(3)大地测量

这是地球科学中既古老而又发展迅速的一种重要研究方法,它对推动地球科学的发展起了重要作用。早在古埃及和古中国的时代,人们就借助于步测及其他一些简单的测量工具,进行土地规划、地形与地理制图、水利与工程建设等。到了近代,随着测量仪器的进步,逐渐发展成为传统的大地水准测量和大地三角测量。20世纪中叶发展起来的海洋测深技术(声呐)对于海洋学的发展和地质学的革命曾起了决定性的作用。近些年发展起来的激光测距、全球定位系统(GPS)又给地球科学带来了深刻影响。大地测量的方法对于地理学、地质学、海洋学、水文学及土壤学等的研究十分重要。

(4)航空、航天和遥感技术

现代航空、航天和遥感技术极大地推动了地球科学的发展,成为现代地球科学不可缺少或不可忽视的重要研究方法。由于地球的空间广大,要在短时间内获取大区域的资料,特别是大区域的动态变化情况,就必须充分利用航空、航天和遥感技术,如卫星云图、卫星遥感影像、航空照片等。航空、航天和遥感技术对现代气象学的发展和进步起了决定性作用,成为其重要支柱。它们也是现代海洋学、地理学的主要研究手段,而且对于现代地质学、土壤学、水文学、环境地学等也发挥着重要作用。

(5)实验室分析、测试与科学实验

这是地球科学中各门学科均普遍采用的研究方法,主要是从研究对象中取得所需的各种样品或标本,然后在实验室进行分析、测试,以便获取物质成分、结构、物理与化学性质以及形成历史等方面的定性和定量资料,并通过科学实验分析推断其形成、演变过程和发展趋势等。随着科学的发展,地球科学中的实验科学已有相当的进步。但由于自然过程的影响因素复杂,加之时间的漫长性与空间的广泛性以及现代实验技术水平的限制,在地球科学中有时很难进行与自然界一致的真实实验。因此,地球科学上常采取简化影响因素,创造一些特定的物理、化学环境,模拟自然现象的成因、过程和发展规律,这种方法称为模拟实验。模拟实验只能是近似的,实验结果往往与自然过程有一定差距,但它在再造自然现象的过程、验证和探索地球科学规律方面发挥着重要作用。

(6)历史比较法

这是地质学最基本的方法论。时间的漫长性决定了地质学必须用历史的、辩证的方法来进行研究。虽然人类不可能目睹地质事件发生的全过程,但是,可以通过各种地质事件遗留下来的地质现象与结果,利用现今地质作用的规律,反推古代地质事件发生的条件、过程及其特点,这就是所谓的“历史比较法”(或称“将今论古”“现实主义原则”)的原理。这一原理是由英国地质学家莱伊尔(C.Lyell,1791~1875年,现代地质学的创立者)在赫顿(J.Hutton,1726~1797年,苏格兰地质学家,被誉为现代地质学之父)的均变论学说的基础上提出来的(图0-2,图0-3)。莱伊尔明确指出:“现在是了解过去的钥匙。”例如,现代珊瑚只生活在温暖、平静、水质清洁的浅海环境中,如果在古代形成的岩石中发现有珊瑚化石,便可推断这些岩石也是在古代温暖、清洁的浅海环境中形成的(图0-4);又如,现在的火山喷发能形成一种特殊的岩石——火山岩,如果在一个地区发现有古代火山岩存在,我们就可以推断当时这一地区曾发生过火山喷发作用,等等。历史比较法是一种研究地球发展历史的分析推理方法,它的提出,对现代地质学的发展起到了重要的促进作用。

图0-2 英国地质学家莱伊尔

(C.Lyell,1791~1875年)

图0-3 苏格兰地质学家赫顿

(J.Hutton,1726~1797年)

图0-4 生活在温暖、清洁浅海中的珊瑚

a—现代珊瑚;b—2亿多年前的珊瑚化石

这一原理的理论基础是“均变论”。均变论认为,在漫长的地质历史过程中,地球的演变总是以渐进的方式持续地进行,无论是过去还是现在,其方式和结果都是一致的。但是,现代地质学的研究证明,均变论的观点是片面和机械的。地球演变的过程是不可逆的,现在并不是过去的简单重复,而是既具有相似性,又具有前进性。例如,地质学的多方面研究揭示,在地球演变过程中,地表大气圈、水圈、生物圈的组成、数量、温压以及地球或地壳内部的结构、构造等特征都在发生不断的变化,与现代的状况存在不同程度的差异,这些必然会导致当时发生地质作用的方式与过程具有一系列与今天不同的特点。地球演变的过程也并不总是以渐进、均变的形式进行,而是在均变的过程中存在着一些短暂的、剧烈的激变过程。例如,在岩层中常常发现其物质组成及结构构造发生突然性的变化;在古生物演化中也常常发现大量的生物种属在短期内突然绝灭的现象,如6500万年前后恐龙全部迅速绝灭等。所以整个地球的发展过程应是一个渐变—激变—渐变的前进式往复发展过程,这也符合量变—质变—量变的哲学规律。

因此,在运用历史比较法时,必须用历史的、辩证的、发展的思想作指导,而不是简单地、机械地“将今论古”,这样才能得出正确的结论。地质学的“将今论古”分析方法,实际上对于地球科学中的地球物理学、地球化学、地理学、气象学、水文学、海洋学、土壤学、环境地学等学科的研究均具有重要的借鉴意义。

(7)综合分析

自然过程的复杂性和不可逆性决定了地球科学必须采用综合分析的研究方法。在漫长的地球演化过程中,不同时期、不同方式(物理、化学、生物等)、不同环境(地表、地下、空中等)的自然作用给我们留下的是一幅错综复杂的结果图案。要根据这一图案恢复和解析自然界发展的过程,就必须利用多学科的原理和方法,结合复杂的影响因素,进行综合分析。这一点与数学、物理、化学等学科利用单纯的推导、实验等方法进行研究是大不一样的。例如,在地质学中,由于过程和影响因素很复杂,根据某些个别特征,利用单学科的原理和方法,往往会得出片面甚至错误的结论,这就是在地质学研究中经常碰到的“多解性”或“不确定性”问题。所以,只有在综合各方面研究的基础上,才能得出统一的、最合乎实际情况的结论。

(8)计算机技术应用

有人说20世纪后半叶以来,人类社会已步入计算机的时代,计算机技术的应用已给各门自然科学带来了深刻的影响和革命性的变化。对地球科学也是一样,例如,在现代气象学、地理学、地质学、地球物理学、海洋学、环境地学等领域中,计算机技术已发挥出巨大的作用,成为不可缺少的研究手段和方法。而且计算机技术正在向地球科学的各个领域渗透。计算机技术的应用,为解决地球科学的研究对象空间广阔、观测处理资料量大、模拟形成演变过程复杂等问题带来了无限的前景。因此,要想提高地球科学的研究水平,必须充分地重视、加强和进一步开拓计算机技术在地学中的应用。

20世纪末期开始在全球范围内广泛兴起的“数字地球”(Digital Earth)计划或“数字地球学”研究正是现代计算机技术、信息科学与地球科学相结合的产物。“数字地球”主要是探讨运用现代计算机技术、信息科学对整个地球系统进行全方位的定量化、数字化描述的方法,建立相关的“数字地球”资源平台,并服务于地球科学的研究、应用。因此,“数字地球”实质上是地球系统的一种数字化的表示形式,其基本的理论支撑主要包括相互联系的两个方面,即与地球科学有关的理论以及与数字化技术有关的理论。比“数字地球”稍早一些兴起的“地理信息系统(GIS)”的成功开发与广泛应用,可以说为推动“数字地球”的兴起与发展奠定了良好的基础;但“数字地球”将涵盖地球科学的所有研究分支学科或领域(而不仅仅局限于地理学),其涉及的科学内容与数据量是“地理信息系统”所无法比拟的。1998年1月,美国前副总统戈尔在“开放地理信息系统协议(Open GIS Consortium)”年会上首次提出“数字地球”的概念,认为“数字地球”是指一个以地球坐标为依据的、具有多分辨率的海量数据和多维显示的虚拟系统。数字地球的概念一经提出便立刻引起了世界范围的广泛关注,并取得了快速发展。数字地球的研究和实现具有十分广泛的应用前景,如资源与环境的监测与管理,气候和各种自然灾害的预测、预报与防治,土地利用与各种生产、生活的规划及一些危机事件的处理等;它还为地球科学的教育和多学科的研究工作提供了极好的资源平台,特别是为地球系统科学的层圈相互作用研究、全球变化研究及人类可持续发展研究创造了有利条件。

地球科学研究的工作方法通常具有下列程序:

(1)资料收集

根据所要研究的课题和所要解决的问题,尽可能详尽、客观和系统地收集各种有关的数据、样品和其他资料。资料的来源包括对研究区详细的野外调查、仪器观测和收集、分析已有的各种资料和成果等。

(2)归纳、综合和推论

对所收集的资料进行加工整理、归纳、综合,并利用地球科学的研究方法和原理,作出符合客观实际的推论。

(3)推论的验证

通过生产实践或科学实验来证实或检验推论是否正确,并在实践的过程中不断地修正错误,提高认识,总结规律。

地球科学是一门实践性很强的科学。人们通过不断地科学实践,逐渐形成了若干假说和学说。假说是根据某些客观现象归纳得出的结论,它有待进一步验证;而学说则是经过了一定的实践检验、在一定的学术领域中形成的理论或主张。假说和学说对推动地球科学的发展起着重要的作用,它们为探索地球科学的客观规律指出了方向,对实践起着一定的指导作用,同时在实践中不断得到检验、补充和修正,使其日趋完善。当然,有些假说和学说也可能在实践中被抛弃或否定。

❷ 地球物理勘探的勘探方法

地球物理勘探所给出的是根据物理现象对地质体或地质构造做出解释推断的结果,因此,它是间接的勘探方法。此外,用地球物理方法研究或勘查地质体或地质构造 ,是根据测量数据或所观测的地球物理场求解场源体的问题,是地球物理场的反演的问题,而反演的结果一般是多解的,因此,地球物理勘探存在多解性的问题。为了获得更准确更有效的解释结果,一般尽可能通过多种物探方法配合,进行对比研究,同时,要注重与地质调查和地质理论的研究相结合,进行综合分析判断。 人类居住的地球,表层是由岩石圈组成的地壳,石油和天然气就埋藏于地壳的岩石中,埋藏可深达数千米,眼看不到,手摸不着,所以,要找到油气首先需要搞清地下岩石情况。怎样才能搞清地下岩石的情况呢?这要从岩石的物理性质谈起。岩石物理性质是指岩石的导电性、磁性、密度、地震波传播等特性,地下岩石情况不同,岩石的物理性质也随之而变化。各种物理性质都表现为一种或几种不同的物理现象,如导电性不同的岩石在相同的电压作用下,具有不同的电流分布;磁性不同的岩石,对同一磁铁的作用力不同;密度不同的岩石,可以引起重力的差异;振动波在不同岩石中传播速度不同等。运用现代技术,完全可以记录到上述物理现象的变化,进而可以了解地下岩石的性质及其分布规律,达到寻找地下油气的目的。我们把这种以岩石间物理性质差异为基础,以物理方法为手段的油气勘探技术,称为地球物理勘探技术,简称物探技术。 古代兵器有刀、枪、剑、戟……,当今的油气地球物理勘探技术又有哪些呢?

❸ 物探方法的分类

地球物理勘探(简称物探)是用物理方法找水、找矿的一种重要的地质勘探手段。它是以地下岩(矿)石间存在物理性质差异为基础,用物探仪器观测天然或人工物理场的分布,用以研究地质构造,寻找地下水源和矿产,以及解决其他地质问题的一门学科。不同的岩(矿)石具有不同的物理性质,例如磁铁矿具有很强的磁性,金属硫化物矿具有明显的良导电性和电化学活动性,各类岩(矿)石间都存在密度差异等。这些物理性质的差异能引起天然物理场(如磁场、电场等)或人工物理场的分布差别(称为物探“异常”)。用物探仪器测得异常,并研究物探异常与被探测对象间的内在联系,从而能解决一系列找水和地质问题。

由于岩(矿)石物理性质的多样性,用于地质研究的物探方法很多。根据岩(矿)石的物理性质,可对物探方法进行分类。主要水文物探方法的分类与应用见下表。

主要水文物探方法的分类与应用简表

续表

续表

对表中几种主要水文物探方法的实质解释如下。

(一)电法

电法勘探在水文工程地质调查中应用广泛,效果良好。电法勘探是利用岩(矿)石间电学性质的差异,观测和研究人工或天然电磁场的空间和时间分布规律,进行找水、找矿、解决其他地质问题的一类物探方法。岩(矿)石的电学性质主要有导电性(电阻率ρ)、电化学活动性(激发极化特性和自然电位跃变)、介电常数(ε)和导磁性(磁导率μ)。电法具有利用的物性参数多、场源和装置形式多、观测要素多以及应用范围宽等特点。针对不同的地质任务,为适应不同地质条件,电法勘探形成了许多分支和变种。

(二)地震法

地震勘探是以岩石间的弹性差异为基础,分析地震波在岩石中的传播规律,用以查明地质构造和解决水文工程地质问题的一种物探方法。地震波由震源点出发向下传播过程中,遇到有波阻抗差的分界面时产生反射和折射,并传播到地面。用地震仪按时间序列记录返回地面接收点的地震波,用计算机计算弹性波在地层中传播的速度,计算岩层的产状和埋深,并推断地质结构。地震勘探在水文工程地质勘查中,主要用来研究地质剖面和构造,确定含水层的分布和岩土物理力学性质等地质问题。地震勘探广泛用于寻找油、气和煤田构造。

(三)放射性法

放射性探测是基于岩(矿)石的天然和人工放射性强度,来寻找有用矿产、找水、研究其他地质问题。岩(矿)石或多或少地含有微量的天然放射性元素;岩石中的放射性元素在不同的物理化学条件下经地下水的长期作用,将发生迁移和富集;不同地质体在人工放射线照射下的反应也不同。这些都为放射性测量寻找有用矿产、探测地下水源以及研究其他地质问题提供了物理前提。

(四)地热法

地热能由地球内部源源不断地向地表传导,形成天然地热场。地热探测法以岩石热传导性质的差异为基础,通过测量并研究天然热场的分布规律,来推断地质构造和解决水文地质问题。岩石中温度异常的形成取决于岩石的温度特性和构造,并在很大程度上与地下水的运移特性有关。充满于空隙和裂隙中运动着的地下水,能加速地热能的对流和迁移,从而形成热异常,地温测量是一种有效的水文地质调查方法。

(五)磁法

自然界岩石和矿石常常具有不同的磁性,使得电磁场在局部地区产生变化,出现磁异常。利用磁法勘探,发现并研究磁异常,可以寻找有用矿产、推断地质构造。磁法勘探可以追索圈定赋水花岗岩风化裂隙带和断层破碎带。微磁测量可以寻找挡水岩脉,圈定火成岩体强风化壳的分布范围。磁法勘探主要用来预测与区域水文工程地质有关的地质构造和深部断裂。

(六)重力法

重力勘探是以岩(矿)石的密度差异为前提,用高精度重力仪测量地面的重力异常,来调查地质构造和矿产分布。局部地质体的密度与围岩有差异时,重力分布与区域正常重力分布产生偏差,它与地壳上层构造和有用矿产有关。重力勘探可用于寻找金属矿产、预测油气及煤田构造、寻找地热与地下水。在有利的条件下,高精度重力测量可以推测溶洞的位置。重力勘探主要用来预测与区域水文工程地质有关的地质构造和深部断裂。

(七)遥感法

遥感技术属于特高频电磁法,以摄像方式为主,目前主要应用航空照片(简称航片)和卫星图片(简称卫片)进行判释,信息量丰富、视域广阔、效率较高。它对水系分布反映清晰,对地貌反映清楚,对岩脉和破碎带都有清晰的反映。因此,遥感方法适用于圈定山前冲洪积扇并分析河网与古河床的范围,以及划定裂隙位置,便于寻找裂隙水。

按照不同测量空间,物探分为地面物探、地下物探、航空物探等。地下物探主要在钻孔和坑道中观测。在钻孔中进行的各种物探测量总称为地球物理测井,其主要任务是研究井壁周围岩层的状态和性质,划分钻孔地质剖面和了解地下水的活动规律。

❹ 基本步骤及主要调查方法各有哪些

最基本的工作方法是野外实地勘查和观测研究,将所获得的地质信息填绘在地理底图上按一定格式记录下来(见地质编录)。此外,还常采用以下方法:①地球物理勘探,包括重力勘探、磁法勘探、电法勘探、地震勘探、核法勘探
、地温法勘探以及钻孔地球物理勘探。②地球化学勘查。③在基岩出露好、地质标志较清楚的地区,还可采用遥感图象解释的方法(见遥感地质)。④重砂测量(重砂指由比重较大、物理和化
学性质比较
稳定的矿
物的颗粒所组成的
松散集合体),通过重砂分析和综合整理,发现并圈出矿产机械分散晕,即与矿产密切相关的指示矿物的重砂异常,据此进一步追索原生矿床和砂矿床,是区域地质调查中广泛使用的一种找矿方法,尤适用于水系发育的地区。

❺ 深部金属矿的主要地球物理勘探方法有哪些,其优缺点是哪些

方法:重力勘探、电法勘探、地震勘探。
重力勘探
地球物理勘探方法之一。是利用组成地壳的各种岩体、矿体间的密度差异所引起的地表的重力加速度值的变化而进行地质勘探的一种方法。它是以牛顿万有引力定律为基础的。只要勘探地质体与其周围岩体有一定的密度差异,就可以用精密的重力测量仪器(主要为重力仪和扭秤)找出重力异常。然后,结合工作地区的地质和其他物探资料,对重力异常进行定性解释和定量解释,便可以推断覆盖层以下密度不同的矿体与岩层埋藏情况,进而找出隐伏矿体存在的位置和地质构造情况。
磁法勘探是地球物理勘探方法之一。自然界的岩石和矿石具有不同磁性,可以产生各不相同的磁场,它使地球磁场在局部地区发生变化,出现地磁异常。利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁法勘探。磁法勘探是常用的地球物理勘探方法之一。它包括地面、航空、海洋磁法勘探及井中磁测等。磁法勘探主要用来寻找和勘探有关矿产(如铁矿、铅锌矿、铜锦矿等);进行地质填图;研究与油气有关的地质构造及大地构造等问题。我国建国以来大多数铁矿区、多金属矿区及油气田等都进行了大量的磁法勘探工作,取得了良好的地质效果。磁法勘探也是基本地球物理手段,国家已纳入在全国范围内进行系统测量的计划,并已基本覆盖了全国重要地区。
电法勘探
是根据岩石和矿石电学性质(如导电性、电化学活动性、电磁感应特性和介电性,即所谓“电性差异”)来找矿和研究地质构造的一种地球物理勘探方法。它是通过仪器观测人工的、天然的电场或交变电磁场,分析、解释这些场的特点和规律达到找矿勘探的目的。电法勘探分为两大类。研究直流电场的,统称为直流电法,包括有电阻率法、充电法、自然电场法和直流激发极化法等;研究交变电磁场的,统称为交流电法,包括有交流激发极化法、电磁法、大地电磁场法、无线电波透视法和微波法等。按工作场所的差别,电法勘探又分为地面电法、坑道和井中电法、航空电法、海洋电法等。
地震勘探
是近代发展变化最快的地球物理方法之一。它的原理是利用人工激发的地震波在弹性不同的地层内传播规律来勘探地下的地质情况。在地面某处激发的地震波向地下传播时,遇到不同弹性的地层分界面就会产生反射波或折射波返回地面,用专门的仪器可记录这些波,分析所得记录的特点,如波的传播时间、振动形状等,通过专门的计算或仪器处理,能较准确地测定这些界面的深度和形态,判断地层的岩性,是勘探含油气构造甚至直接找油的主要物探方法,也可以用于勘探煤田、盐岩矿床、个别的层状金属矿床以及解决水文地质工程地质等问题。近年来,应用天然震源的各种地震勘探方法也不断得到发展。

❻ 地球物理探矿法

(一)地球物理探矿法的基本原理

物探的理论基础是物理学或地球物理学,是把物理学上的理论(地电学、地磁学等)应用于地质找矿的方法。基本特点是利用地球物理场或某些物理现象,如地磁场、地电场、放射性场等异常特征进行勘查找矿。它与地质学方法有着本质上的不同。通过物理场的研究可以了解覆盖区的地质构造和产状。因此地球物理探矿法的应用具有一定的特点和前提。

1.特点

(1)必须实行两个转化才能完成找矿任务。即先将地质问题转化成地球物理探矿的问题,才能使用物探方法去观测。在观测取得数据之后(所得异常),只能推断具有某种或某些物理性质的地质体,然后通过综合研究,并根据地质体与物理现象间存在的特定关系,把物探的结果转化为地质的语言和图示,从而去推断矿产的埋藏情况与成矿有关的地质问题。

(2)物探异常具有多解性。工作中采用单一的物探方法,往往不易得到较为肯定的地质结论。一般情况应合理地综合运用几种物探方法,并与地质研究紧密结合,才能得到较为肯定的结论。

(3)每种物探方法都要求有严格的应用条件和使用范围。因为矿床地质、地球物理特征及自然地理条件因地而异,从而影响物探方法的有效性。

2.物探工作的前提

物探工作的前提主要有下列几方面。

(1)被调查研究的地质体与周围地质体之间,要有某种物理性质上的差异。

(2)被调查的地质体要具有一定的规模和合适的深度,用现有的技术方法能发现它所引起的异常。若规模很小、埋藏又深的矿体,则不能发现其异常。有时虽然地质体埋藏较深,但规模很大,也可能发现异常。故找矿效果应根据具体情况而定。

(3)能区分异常,即从各种干扰因素的异常中,区分所调查的地质体的异常。如铬铁矿和纯橄榄岩都可引起重力异常,蛇纹石化等岩性变化也可引起异常,能否从干扰异常中找出矿异常,是方法应用的重要条件之一。

(二)地球物理探矿的方法及方法的选择

1.物探找矿的条件分析

(1)物探找矿有利条件:地形平坦,因物理场是以水平面作基面,越平坦越好;矿体形态规则;具有相当的规模,矿物成分较稳定;干扰因素少;有比较详细的地质资料。最好附近有勘探矿区或开采矿山,有已知的地质资料便于对比。

(2)物探找矿的不利条件:物性差异不明显或物理性质不稳定的地质体;寻找的地质体或矿体过小过深,地质条件复杂;干扰因素多,不易区分矿与非矿异常等。

2.物探方法的种类及主要用途

(1)物探方法的主要种类:

① 放射性测量法:寻找放射性矿床和与放射性有关的矿床,以及配合其他方法进行地质填图、圈定某些岩体等。对放射性矿床能直接找矿。

② 磁法(磁力测量):主要用于找磁铁矿和铜、铅、锌、铬、镍,铝土矿、金刚石、石棉、硼矿床,圈定基性超基性岩体进行大地构造分区、地质填图、成矿区划分的研究及水文地质勘测。

③ 自然电场法:用于进行大面积快速普查硫化物金属矿床、石墨矿床;水文地质、工程地质调查;黄铁矿化,石墨化岩石分布区的地质填图。

④ 中间梯度法(电阻率法):主要用于找陡立、高阻的脉状地质体。如寻找和追索陡立高阻的含矿石英脉、伟晶岩脉及铬铁矿、赤铁矿等。

⑤ 中间梯度装置的激发极化法:要用于寻找良导金属矿和浸染状金属矿床,尤其是用于那些电阻率与围岩没有明显差异的金属矿床和浸染状矿体,效果良好。

⑥ 电剖面法按装置的不同分为:联合剖面法、对称四极剖面法。前者主要用于寻找和追索陡立而薄的良导体的金属矿体,后者主要用于地质填图,研究覆盖层下基岩起伏和对水文、工程地质提供有关疏松层中的电性不均匀分布特征,以及疏松层下的地质构造等。

⑦ 偶极剖面法:一般在各种金属矿上的异常反映都相当明显,也能有效地用于地质填图划分岩石的分界面。

⑧ 电测深法:可以了解地质断面随深度的变化,借以确定矿体顶部埋深以及了解矿体的空间赋有情况等。

⑨ 充电法:用以确定已知矿体的潜伏部分的形状、产状、大小、平面位置及深度;确定几个已知矿体之间的连接关系;在已知矿体或探矿工程附近寻找盲矿体和进行地质填图。

⑩ 重力测量:可用此法直接找富铁矿、含铜黄铁矿;配合磁法找铬铁矿、磁铁矿,及研究地壳深部构造、划分大地构造单元、研究结晶基底的内部成分和构造,确定基岩顶面的构造起伏,确定断层位置及其分布、规模,圈定火成岩体,以达到寻找金属矿床的目的。及用于区域地质研究,普查石油、天然气有关的局部构造。

⑪ 地震法:主要用于解决构造地质方面的问题,在石油和煤田的普查及工程地质方面广泛应用。

(2)物探方法的选择:一般是依据工作区的下列3个方面情况,结合各种物探方法的特点进行选择:一是地质特点,即矿体产出部位、矿石类型(是决定物探方法的依据)、矿体的形态和产状(是确定测网大小、测线方向、电极距离大小与排列方式等决定因素);二是地球物理特性,即岩矿物性参数,利用物性统计参数分析地质构造和探测地质体所产生的各种物理场的变化特点。如磁铁矿的粒度、品位、矿石结构等对磁化率的影响,采用方法的有效性等;三是自然地理条件,即地形、覆盖物的性质和厚度及分布情况、气候和植被土壤情况等。

❼  调查方法及其设备

大洋多金属结核矿产资源的勘查需要综合应用各类地球物理勘探方法和地质勘查方法。地球物理勘探方法有:海底地形地貌调查,重力、磁力调查,地震调查;多频探测和海底照相以及深拖和多波束回声测深等先进的勘探系统。各类地质勘查方法有:有缆地质采样、无缆地质采样、温度-盐度-深度测量等。在不同的勘探阶段所采用的方法种类以及工作量要求均有所差别。下面对各种调查设备(图版Ⅱ—2)及其方法作进一步阐述。

3.2.1地球物理勘查方法及其调查设备

1.海底地形地貌测量及其调查设备

海底地形地貌测量是大洋多金属结核调查中必须执行的调查项目之一。通过水深测量,可以了解海底地形特征和海底基本情况,从而为评价和开采矿区提供必须的基本资料。

在区域调查阶段,海底深度测量工作主要采用单波束回声测深仪,以揭示海底地形地貌。传统的做法是运用回声测深仪测量调查区的水深值以获得地形地貌的基本信息。近年来一些先进的测试仪器如SEABEAM等多波束测量装置的运用,使得海底地形地貌测量变得更加精确可靠。有关SEABEAM等仪器设备的性能和有关资料将在下面叙述。这里将阐述运用回声测深仪执行海底地形地貌调查的有关情况。

在区域调查阶段,水深测量常用的仪器为12.5kHz的万米测深仪,其测量精度由航行中船舶的定位精度和测深精度决定。所得的测量数据经过水深校正和声速校正后即可得到相应的水深值,用于绘制海底地形图。这种测深仪的缺点是水深数据采样间距大(1km),难以准确地反映地形地貌形态,常把较小的地形轮廓拉平,使海底起伏平缓化,复杂地区的地形简单化。

2.地震测量及其设备

为了解海底沉积物的分布特征、沉积层的内部结构和基底起伏,在大洋多金属结核勘查工作中往往采用单道地震的声波勘查方法。设备配置方案为NEC-20C单道剖面仪、数字地震仪、气枪、漂浮电缆等,资料以模拟方式记录或者数字化方式记录,炮号以数字方式记录在卫星导航系统的磁带上。工作航速常用6kn。测线首尾端点应有合格的导航定位点,单道地震的数字记录常常和其它声波探测结果综合用于多金属结核的分布状况的解释。

单道地震资料与多频探测资料结合往往能获得较好的解释结果,这项调查常用于多金属结核的初期阶段。

3.多频探测及其设备

多频勘探数据处理系统(multi-frequency exploration system)是一种利用多种频率的声波勘探深海多金属结核丰度和粒度大小的计算机数据处理系统。该系统可以在正常的航行速度(10~12kn)下工作,并可以在船上对已获得的数据进行处理,迅速获得多金属结核的丰度和粒度值。

多频勘探数据处理系统主要由声波发射和接收、模拟信号检测和数据处理三部分组成。在声波发射和接收部分配置有浅层剖面仪(SBP)、测深仪(PDR)和窄波束测深仪(NBS)等装置。模拟信号检测部分的功能是对声波信号进行放大、滤波。数据处理部分则对声波信号进行数字化、存储及数据处理。目前,它采用频率为:SBP——3.5kHz,PDR——12kHz,NBS——30kHz三种不同频率的声波发射和对应的接收仪器。

多金属结核呈席状分布于海底表层,表层沉积物一般为硅质粘土、深海粘土、硅质软泥或钙质软泥。这类沉积物富含孔隙水,质地松软均匀,声速接近于水或比水略低,声波在此层的反射率很低,可以近似地认为不受阻碍地穿透这一沉积层(即透声层),多金属结核连同下伏的沉积层在3.5kHz浅层剖面上表现为一席状披盖的无反射带或弱反射带(即透声层)。沉积速率过高或过低的海域都不利于结核的生长,只有特定厚度的声波透声层才有利于多金属结核的赋存。多频探测系统使用MFES-100B多频勘探数据处理系统与3.5kHz浅层剖面仪和12kHz回声测深仪联机的方式测量结核的丰度,若要测量结核的粒度还需配置30kHz窄波束剖面仪。多频探测与单道地震检测资料相结合往往可以得到更好的解释效果。

多频探测与其它方法结合能得到更完满的结果,这包括用地质采样等多种手段。一些国家利用多频探测系统进行多金属结核调查,其结果与实际抓斗取样结果相比较,相关系数达0.7。

当多频勘探数据处理系统与调查船的其它声波探测器,如回声探测器和深海浅层剖面仪一起使用时,可连续测得海底多金属结核的分布密度和大小等资料。在此种情况下,回声测深仪和深海浅层剖面仪等的频率在理论上应在下列范围:3~5kHz、8~15kHz和25~35kHz。因为所欲探测的结核的大小的直径为几厘米到>10cm不等,所以多频勘探数据处理系统能与任何一般规格的声波探测仪器结合使用,只要从这些仪器测得的声波输出信号给予线性放大,并加以控制,以避免饱和即可。

多频勘测的具体工作方法与其它物探方法类似,测网的布置要依照不同的调查阶段而定。按不同的精度要求和比例尺选择适当的数据采集时间间隔,通常是每公里采集3~4个点,因而对不同的航速要有不同的采集时间间隔,以保证勘探精度要求。

多频探测系统与无缆式抓斗或有缆抓斗相比较有如下优点:

(1)速度快;

(2)可以获得连续的整条测线的数据;

(3)相关系数为0.7~0.9;

(4)工作方便,安全可靠。

与海底照相和海底电视相比较,多频探测系统成本低、速度快、安全可靠并不受海底地形起伏和海山等障碍物的影响。它适合于在大洋中进行大面积的连续调查。

4.重力、磁力测量及其仪器设备

重力、磁力测量往往在大洋多金属结核调查的初期进行,其目的是了解调查区域的构造特征、岩浆活动以及海底地形、地貌变化的控制因素。我国现有的调查船往往都配置有这类设备,如海洋四号船使用KSS-5型海洋重力仪和G821G型核子磁力梯度仪;向阳红16号船配置有KSS-5型海洋重力仪和CHHK-2型海洋核子磁力仪。

5.海底照相及其设备

通过海底照相,在照片上可直接观察到多金属结核在大洋表面的赋存状态,求得其覆盖率、粒径和丰度,并了解洋底表层沉积物的特征、底栖生物的活动等信息。海底照相通常采用两种方法和设备:

(1)自返式海底照相系统该设备配合自返式采样装置可以拍摄采样点的海底沉积物和多金属结核的分布特征。美国Boathos公司生产的改进型4201自返式抓斗配备有海底照相系统。这种系统把袖珍的135相机装在一高压密封罐中,照相机系有2.0kg的重物,当与海底接触时启动电磁快门。在取样前触发一次照相,拍摄的海底面积最大为2.1m×1.4m。

图3—1海底照相系统

(2)拖曳式海底照相系统该系统的作用是探明海底多金属结核赋存状态,照片供研究人员计算结核覆盖率、推算丰度及其它解释使用。海洋四号采用英国Camera Alive公司生产的CI800和CI256型海底照相系统(图3—1),两系统的结构和原理相同,均由照相机、闪光灯、声脉冲发生器、触发器、直流电源和同步控制器组成。前者可以连续拍摄800张135彩色胶片,后者可以连续拍摄256张135彩色胶片(照相机镜头离海底距离3m,每张胶片的画面最大覆盖面积3.9rn×2.6m)。照相系统工作时,钢缆连结,万米绞车收放,声脉冲发生器和回声测深仪的应答器确定和控制海底照相机到达海底预定深度,每触发一次拍摄相片一张。系统结构合理,性能良好,成功率达到80%左右。

亦有一些国家将海底电视勘查系统用于大洋多金属结核海区海床勘查,当然这些设备的技术性能亦应满足如下要求:①作业深度——6000m;②拖曳速度——2.5kn;③电视离海底距离——3~10m;④像帧数——2×3150;⑤电视系统——慢速扫描标准。

6.先进的勘查系统及其设备

深拖系统和多波束回声测深仪等先进勘探系统是西方国家在多金属结核勘探阶段采用的手段,尤其是带有电视/照相装置的深拖系统,它可用于海底表层多金属结核的直接观察和评价。深拖装置所配备的浅层剖面仪、旁侧声纳以及多波束回声测深仪配置的测深仪、浅层剖面仪和旁侧声纳等均可以快速、精确地提供海底有关地形起伏、成分[1]、海底结构和构造等信息。这些设备往往在勘查的后期阶段使用。我国现已引进了这类设备,在开辟区内结核勘查的中、后期阶段,可以利用这些勘查系统获得精确可靠的资料。

(1)深拖系统深拖系统主要由声学拖体和光学拖体两部分组成。以美国Simrad公司制作的AMS-60SI型深拖系统为例,该装置的声学拖体配备有浅层剖面仪(4.5kHz)、旁侧声纳(56.7kHz)等测量系统,具有旁侧声纳、条带水深测量和浅地层剖面测量等多种声学测量功能;光学拖体配置有一套电视/照相系统。工作水深可达6000m。该设备还备有为旁侧声纳和浅层剖面资料归位校正的传感器。当作业中因拖鱼深度变化而引起的地形畸变时,可通过联机自动归位校正。拖鱼结构设计最大拖速为8kn,然而,该系统在运用浅层剖面仪(4.5kHz)、旁侧声纳(56.7kHz)等测量系统进行工作时,则将深拖装置置于海底之上50m处,以拖速1.5kn进行航行。

我国购置的深拖设备,包括一套AMS-60SI标准配置的声学拖体和一套电视/照相光学拖体、甲板控制和数据采集工作站、后处理工作站以及Dynacon柴油机-液压绞车系统和万米同轴电缆。在声学和光学拖体中,各种设备的技术指标分别如下:

旁侧声纳

发射频率56.7kHz

发射功率2000W(RMS,Hi设置)150W(RMS,Lo设置)

带宽水平1.5°±0.1°垂直600

最小旁辨压缩20dB

信号带宽.8kHz

磁通门罗经KVHC100,0.10分辨率

横纵摇传感器0.1°分辨率

压力/深度传感器0.01m分辨率

条带水深测量系统为同相干涉测量,增加了一组换能器和相关电路,包括波束寻找和波束正常化特征电路。

海底剖面仪

发射频率4.5kHz

发射功率500W(RMS)

带宽±25°

光学拖体的配置

ColmekTVTM多路传输系统

Simradphotosea5000D照相机

Simradphotosea1500SD闪光灯①成分泛指地层分层、分层结构等。

Ospreysitoe 1323电视摄像机

600TV线5×10-4LUX

电视照明灯

高度计Simrad Mesotech Mode 1807

电视信号传输速率实时黑白传输30帧/s

这项装置应能满足多金属结核后阶段详查工作的要求。

(2)多波束回声测深仪海底多波束测量系统能提供较高密度和较高质量的地形测量资料。目前在一些先进国家,该设备的使用已经逐渐取代了单波束的深海测深仪。法国从1980年开始在“让·夏尔科”号海洋科考船使用Sea Beam多波束回声测深仪,在认识海底含多金属结核地区的地貌方面取得了重大进展。这个系统发出16束狭窄的声波(每束2°40′),构成一个复杂的系列,能自动补偿船的纵横摇动。在进入船只本身的航行数据后可以得出航道两侧相当于海底深度2/3的长条的海底地形图。在5000m水深的海域其测量的分辨率不大于20~30m。多波束回声测深仪的优点是能在相对较短的时间内进行大面积的探测,在5000m水深的海域内可以在25天内完成面积为3万km2的测区。利用多波束回声测深仪可以显现回声测深仪不能显现的一些地貌和构造特征。但在勘探的最后阶段,仍无法取代高分辨率的深拖系统。

这类测量系统的深度测量范围为10~11000m,最新一代的海底多波束测量系统包括:海底测深系统、旁侧声纳和浅层剖面仪。目前已有德国的ATLAS公司、挪威的SINRAD公司和美国的SEABEAM仪器公司生产制作这类系统。

以SEABEAM仪器公司制作的SEABEAM2100型为例,其主要装置有:发射换能器子系统、水听器子系统、发射机子系统、接受机和声纳处理机子系统、工作站以及绘图处理机和显示储存子系统。

最新一代的多波束测量系统集测深、旁侧声纳和浅地层剖面仪功能于一体,可以同时测量并获得海底宽幅的地形资料、旁侧声纳图像资料、海底浅地层剖面资料,绘制海底等深线图,并揭示有关地形起伏、成分、海底结构和构造等有用信息。

SEABEAM 2100型多波束测量系统的主要技术指标:

深度范围10~11000m

频率2~7kHz

声源电平233dB/(μPa·m)

发射功率30kW(峰值线性)

TX动态范围70dB

TX脉冲射窗口矩形、余弦

3.2.2地质勘查方法及其调查设备

在各个阶段的多金属结核调查中,都必须按测站系统地采集地质样品用于直接的观察、描述和测试研究。研究目的不同,调查要求不同,所采用的采样设备也不同。以下将列举各种样品采集装置及其用途。

1.有缆地质采样器

有缆地质采样的项目包括抓斗、箱式取样器、拖网、重力取样器和重力活塞取样器等多种采样手段。

(1)抓斗抓斗是采集多金属结核或表层沉积物样品最常用的设备。有缆抓斗的配套装置是带钢缆的深海绞车和供取样器投放和回收的倒L型吊架或A型架。在离取样器50~100m处的钢缆上装上声脉冲发生器,它产生的脉冲信号及海底反射信号由测深仪接收,以便操作人员掌握抓斗到达海底的情况,及时进行定位和回收。通常采用的抓斗的开口面积为0.25m2(50cm×50cm)。目前我国大洋多金属结核调查所采用的抓斗多选用中国科学院(青岛)海洋研究所制作的大洋50型抓斗。

(2)箱式取样器箱式取样器(图版Ⅰ—1)用于采集不受扰动的海底沉积物样品,其取样面积为0.25m2(50cm×50cm)。箱式取样器用钢缆连结,由万米绞车释放和回收。在投放海底采集样品时,根据声脉冲发生器发出的信号确认取样器是否已抵达海底。

(3)拖网拖网(图版Ⅰ—2)用于海底拖曳采集多金属结核和岩石样品,其网口为1.2m×0.6m,钢质。网身为尼龙绳编织,网眼一般为1.5cm×1.5cm,长度2m左右。网尾固定一重锤,以维持网身伸展状态。收放及拖曳作业则用钢缆及万米绞车进行,必要时船舶配合以低速移动。

(4)重力取样器重力取样器用于采集柱状沉积物样品,取心直径为7.3cm,长度为3.2m。用钢缆连接,由万米绞车控制释放和回收。重力取样器和其它有缆采样器一样,需要在钢缆上安装一声脉冲发生器,作为取样器到达海底的应答手段,便于操作人员控制释放和回收。目前我国在大洋多金属结核矿产资源调查中常用的重力取样器为美国Benthos公司所产的2175型重力取样器。

(5)重力活塞取样器在采集长柱状沉积物岩心时往往需要采用大型重力活塞取样器(图版Ⅰ—3)。这种取样器的优点是被采集的沉积物样品不被扰动,而且能获得有足够长度的沉积物岩心。Benthos公司生产的2450型重力活塞取心器能获得15.2m长的岩心,经过一定的改装还可获得更长的岩心。岩心的长度取决于研究工作的需要以及调查船工作面的大小。在安装有声脉冲发生器的重力活塞取心器到达海底时,取样器巨大的自重和活塞底局部真空所造成的压差将柱状沉积物压入样管,即可获得这种长柱状沉积物样品。声脉冲发生器和回声测深仪的应答,将保证操作人员能正确了解重力活塞取心管到达海底的时间,以便控制它的收放。

这种取心器只是在对某些地点进行详细勘探时才系统地使用。它既能从沉积物表层,也能从较深的地层采集样品。这些样品不仅能用于土质特性的研究,还可以对这些含结核地区的地质史进行科学研究(例如:沉积学、地球化学、生物学、年代测量等)。

2.无缆地质采样

无缆地质采样包括自返式抓斗和自返式重力取心器等多种采样手段,现分别叙述如下:

(1)自返式抓斗自返式抓斗是取多金属结核的最主要手段。我国采用的是美制4201型自返式抓斗(图版Ⅰ—4),取样面积为0.2m2。自返式抓斗的工作原理为:用载有压载物(铁砂)的抓斗沉入海底后,自动触发装置把装有沉积物样品的抓斗取样网合拢,同时释放压载物。由于浮球的作用,网中的样品被带出水面。依靠导航定位、信号旗、闪光灯、无线电信标等装置的帮助回收自返式抓斗。这种抓斗在5000m左右水深的海域作业时每个站位的作业时间约为3~4h。采用自返式抓斗作业的最大优点是调查船可以在连续航行中采集样品。因此,这是获取多金属结核的主要设备。

装在取样器上的照相机,拍摄的每张照片涉及的海底面积约为1m2,拍摄方向稍微偏离垂直线。样品是在近于拍摄的同一时间取得的,取样的理论面积为0.18m2

取样系统的采获量随结核的大小而变化,不能将所采结核的重量直接折算为丰度(kg/m2);这一必要数据是通过对样品和海底照片进行严谨的分析比较而得出的。

这种采样装置在矿床勘查初期用得很多,实践证明,其损失率约为1%,颇为有效。每个采样点算作一个站位。一组站位(通常5~7个)构成一个测站。

(2)自返式重力取心器

自返式重力取心器用于采集海底柱状沉积物样品。其取心直径为7.3cm,最大取心长度为1.22m,其工作原理与自返式抓斗相同。采用自返式重力取心器的优点是获得未被扰动的柱状沉积物样品,以便研究这一深度内沉积物的沉积特征等各类地质信息。采集的沉积物样品回收则依靠导航定位以及取心器上所带的闪光灯的帮助,因此在夜间作业效果较好。

自返式取心器虽然容易操作,但是效果不稳定,在作业的可靠性(它不能用于固结沉积物)和测量有效性方面亦是如此。

图3—2温盐深(CTD)测量系统

3.温度-盐度-深度测量

目前,在大洋多金属结核勘查工作中,对调查站位海水的温度、盐度和水深(简称温盐深)的综合测量,常采用美国EG&G公司生产的MARK-Ⅲ型温盐深测量系统(图3—2)。其主要功能既满足了部分地质调查项目的要求,亦符合水文调查的需要。测量项目有海水的温度、盐度、深度、电导率、pH值、溶解氧、声速和密度的纵向分布值等,并可以选择12个不同深度水层采集水样。每个水样的体积为500ml,用于不同的研究目的。

3.2.3水文气象观察

水文气象调查工作虽然是一项辅助工作,但其调查结果对于多金属结核的地质成因及分布的探讨,对于调查规划的制定和实施都有重要意义。水文气象观察的内容应包括温盐深的测量、海流的测量和气象观察等项目。在不同的阶段,调查的内容和要求也不同。

1.水文地质调查

水文地质调查包括温度、盐度、水色透明度、海流和海浪的调查。水文地质调查一般采用定点调查的方式,它又可分为断面观测、大面观测和连续观测等几种。

由于水文地质调查往往是定点观测,采用温盐深仪测量系统(CTD)在测量观测点的水深的同时就可以满足温度和盐度的测量要求,因此,选用的设备必须满足工作区适用的水深范围和所测水文要素的测量要求。

海流观测主要是测定海流的流速和流向,辅助测量风速和风向,在测量过程中,对海流流速的准确度不大于±3cm/s;流向准确度不大于±10°。大洋海流的观测多采用声学多普勒剖面仪或自容式海流计,借助于深海测流浮标系统进行测量。近年来,计算机系统的配置,使得海流观测数据可以进行实时处理,处理后的数据可记录在磁盘上或磁带上。

海浪观测需要测量海浪的波高、周期、波向、波形和海况。海浪的观测既可以用目测,也可以用仪器测量。仪器测量一般采用浮标式加速度型测波仪。配有数据处理系统的测波仪,可借助系统的微机对观测资料进行实时处理,求得波高、有效波周期、最大波高和最大波周期;处理后的资料可以在荧光屏上实时地显现出来,也可以记录在磁盘和磁带上,通过回放机和打印机直接打印出来。

2.气象调查

各个航次的大洋调查都需要进行海面气象调查,因为它是为天气预报和水文地质调查目的服务的。大洋勘查中不断积累的气象调查资料亦将为今后对这一海区的多金属结核矿区的开发评价提供气象方面的依据。

海洋气象调查的内容包括海冰、表层气温、天气现象、能见度、云、风、空气的温度和湿度、气压等气象要素。这些项目均属于常规的调查工作,使用常规的设备就可以完成。在当前大洋多金属结核勘查中亦经常可以借助气象卫星发布的资料指导大洋调查工作的实施,然而在大洋多金属结核勘查工作中坚持进行这项气象调查有助于对气象卫星发布数据的正确性进行判别。不断积累的气象资料将有助于对预定的开发区作气象方面的正确评价。

❽ 海洋地球物理勘探的勘探方法

海洋地球物理勘探主要使用重力、磁力、地震和热流测量 4种方法。电法和放射性测量在海洋地区现仍处于理论探讨和方法试验阶段,没有投入实际应用。 根据震源产生的形式分为天然地震和人工地震两大类。
海洋地区的天然地震测量,是通过布设在岛屿上或海底的地震台站,观测天然地震所产生的体波、面波和微震,来研究海洋底部的构造活动、地壳厚度和低速层的展布等。
海洋地区的人工地震测量,是利用炸药或非炸药震源激发地震波,观测在不同波阻抗界面上反射,或在不同速度界面上折射的地震波。折射波法主要用来研究地壳深部界面和上地幔的结构,也称为深地震测深。它要求有强大的低频震源(例如使用大炸药量爆炸或使用大容积的空气枪激发),在运动中依次产生地震波,而在相当的距离之外观测地壳深部界面上的折射波和广角反射波(动爆炸点法)。至于浅层折射,除利用声呐浮标获取沉积层中速度资料之外,现已很少使用。反射波法在近海油气勘探中获得广泛的应用。
现代海洋地震勘探广泛采用组合空气枪作震源,用等浮组合电缆装置在水下接收地震波,通过数字地震仪将地震波记录于磁带上。这样不仅能够在观测船行进中实现快速和高效率的共深点反射的连续观测,而且能够使用电子计算机充分利用所获取的地震信息,精确地查明沉积岩不同层位的产状、构造及其岩性,以阐明沉积盆地及其中的局部构造和沉积环境,甚至给出烃类显示,为直接寻找油气提供依据。而根据反射地震波传播方案,采用高频频段观测的回声测深仪、地层剖面仪和侧扫声呐等,则是现代调查海底地形、地貌、浅层沉积物结构及其工程地质性质的重要手段。 亦称海底不稳定性或灾害性调查,是开发海洋的前期工程。通过回声测深、侧扫声呐、地层剖面仪以及高分辨率地震调查,结合海底取样和浅钻,提供基础资料。同样内容的观测和资料,也是海洋沉积、海底地形地貌、第四纪地质和固体矿产调查所需要的。

❾ 地球物理方法对海洋平台场址调查的应用与探讨

马胜中

(广州海洋地质调查局 广州 510760)

作者简介:马胜中,男,1968生,1990年毕业于中国地质大学(武汉),工程硕士,高级工程师,从事海洋环境地质、灾害地质和综合地质地球物理研究工作。E-mail:sz-m@163.com。

摘要 海洋石油钻井平台的安全就位和稳定施工,与井场区海底的工程地质条件密切相关。地球物理探测技术作为一门综合性较强的科学技术,在海洋工程地质和海洋灾害地质调查中有着不可替代的作用。实践证明,采用测深、侧扫声呐扫描、浅地层剖面、单道地震、高分辨率2D地震和海洋磁力测量等地球物理探测手段进行综合调查,对钻井平台场址周围海域的地形变化和潜在地质灾害因素,具有很好的揭示作用。

关键词 平台场址调查 海洋地球物理探测 海洋地质灾害

1 前言

随着我国经济的发展和战略储备的需要,我国原油勘探开发的重点由陆地逐渐转向海域。我国近海海底蕴藏着丰富的矿产资源,现已探明石油资源量达246×108 t,天然气15.79×1012m3,占全国油气总资源量的23%。然而在油气开发中,屡屡遭到海洋地质灾害的破坏,不均一的持力层多次造成渤海、珠江口盆地钻井平台的倾斜和位移,使国家蒙受重大经济损失。

钻井平台场址灾害调查在石油钻井之前进行,既要探测诸如断层、浅层气地层情况以应对钻井或采油时发生的井架倒塌、井喷、着火和溢油等灾害,又要调查与钻井平台基础有关的土工问题,以避免事故和灾害发生。据资料,1955~1980年间,美国每年发生钻井船基础严重破坏的事故3~4起,经济损失和人员伤亡巨大。海洋结构物场地调查是确定影响固定式平台和海底管线等工程结构物的设计、布局、施工及安全操作的工程地质条件。1969年,卡米尔飓风袭击密西西比河三角洲,引起海底大面积土体滑移,造成3个平台破坏,损失1亿多美元[1]。可见,海洋石油钻井平台场址调查研究在油井钻探开发中有着重要的作用。我国海洋石油开发工作起步较晚,直到20世纪80年代初,我国才真正开始海洋工程地质勘察工作,近十年来,我们对石油钻井平台场址调查研究做了许多实验工作,随着调查技术的不断进步,研究正向深海挺进。

海洋平台的设计和建造需对平台场地进行包括海底地形地貌、海底表层、浅地层结构等内容的海洋工程地质勘察,从地貌、沉积物特征和地质测年等方面,利用实测的和平台设计用的海洋水文资料以及场地内土的物理力学参数,对海底稳定性进行分析计算,并在分析研究的基础上,进行场地的海底稳定性评价。

2 海洋常见灾害地质类型

海洋常见的灾害地质类型[2-5]如下:

活动断层、地震和火山等。它们不仅可能对海底构筑物造成直接破坏,而且地震可能诱发滑坡、浊流、沙土液化等其他灾害。

滑坡、崩塌、浊流和泥流等,它们的活动可能对钻井平台、海底管线构成直接破坏。

海底沙丘、海底沙波、潮流沙脊、冲刷槽、凹凸地和浅谷等,属于地貌类型的灾害,其分布和气象水文条件有关。

浅层气、泥底辟、软弱夹层、可液化砂层等。它们呈承压流体、塑性体状态存在于第四纪浅地层中。当海底构筑物基础触及这些地质体时,都有可能发生灾害。

埋藏古河道、埋藏古湖沼、埋藏起伏基岩面、埋藏珊瑚礁等。它们一般是浅地层中的透镜体,当钻井平台桩脚插入不同地质体时,由于持力不均会导致平台歪斜,甚至倾覆。

3 地球物理方法对平台场址调查的应用和研究

3.1 海底地形地貌探测

海底地形地貌探测包括单波束测深、多波束测深和旁侧声呐等,是通过探测声波在水下或岩土介质内的传播特征来研究岩土性质和完整性的一种物探方法,只是它们使用的声波频率和强度有差异,高频能提高分辨率,而低频则能提高声波的作用距离和穿透深度[6~9],目前很多探测系统都采用双频或多频探头结构,提高仪器的探测能力。

3.1.1 单波束测深和多波束测深

单波束测深系统是利用其换能器从水面向海底发射一束声脉冲,声波传到水底界面被反射,再回到换能器被接收,通过时间函数的转换,形成一组时间离散的数字量系列,进行实时处理,而在记录纸上直接显示测线上连续起伏变化的海底剖面。反映了海底表面形态的凸凹性质、高差大小和延伸范围(发育规模)。

多波束测深系统是一种由多个传感器组成的复杂系统,在测量断面内可形成十几个至上百个测点点条幅式测深数据,几百个甚至上千个反向散射数据,能获得较宽的海底扫幅和较高的测点密度,它具有全覆盖、高精度、高密度和高效率的特点。测深资料反映了海底表面起伏变化、高差大小和延伸范围,利用计算机处理和绘图技术,可制成所测海区海底地形图。

3.1.2 侧扫声呐扫描

侧扫声呐技术运用海底地物对入射声波反向散射的原理来探测海底形态,能直观地提供活动形态的声成像。旁侧声呐是一种高分辨率、多用途的水声设备,在海洋测绘、海底目标探测(如探测沉入水底的船、飞机、导弹、鱼雷及水雷等)、大陆架和海洋专属经济区划界、海洋地质、海洋工程、港口建设及航道疏浚等方面有广泛的应用。

侧扫声呐采用深拖型侧扫声呐系统,使用双频频率100/500 kHz,量程100/200 m,拖体距离海底10~30 m,可以获取海底表面的各种目标探测物,获取的声呐图像质量较高,可以分辨出海底表面的管道和电缆,海底物体的高度可以根据物体的阴影来确定。几种地球物理方法同步作业可以相互印证(图1)。

图1 侧扫声呐和单道地震剖面显示的灾害地质类型

3.2 中、浅地层探测

3.2.1 浅地层剖面测量

浅地层剖面测量系统是探测海底以下30 m内的浅层结构、海底沉积特征和海底表层矿产分布的重要方法之一。浅地层剖面系统的发射频率较低,一般在2.5~23 kHz之间,产生声波的电脉冲能量较大,发射声波具有较强的穿透力,能够有效穿透海底数十米的地层[10~11],地层分辨率在8 cm以上。它可以提供调查船正下方地层的垂直剖面信息,它可以准确地反映出地层界面及可能存在的浅层气、浅断层和古河道等海底地质灾害因素或其他物体(如管线)。浅地层剖面仪的穿透深度则因工作频率和海底沉积物类型的不同而异。

浅地层剖面测量系统采用德国INNOMAR公司SES-96参量浅层剖面系统,外接涌浪补偿系统,可输出水深数据。采用发射功率18 kw,主频100 kHz,差频4~12 kHz,在平台场址调查中一般使用差频8 kHz,探测到的地层分辨率较高,浅海可以探测管道,可以与磁力探测相互验证。

3.2.2 单道地震剖面测量

单道地震记录系统由单道数据采集处理系统、震源系统、信号接收电缆、EPC记录仪组成。主要用于了解海底以下200 m范围内的中、浅地层结构、沉积特征。

单道地震与油气地震勘探技术具有相同的工作原理。单道地震探测采用的震源能量小、频带宽(几十赫兹到几千赫兹)、主频高(几百赫兹到上千赫兹),一般选用电火花和气枪作为震源,能量从几十焦耳到几千焦耳,地层的穿透深度从几十米到数百米。

海上最常用的震源有空气枪和电火花二种,在平台场址调查中一般使用电火花震源,震源系统由震源控制箱、声源装置(电极、声脉冲发生器)组成。

如英国的CSP1500震源系统,主要包括CSP1500震源控制箱、SQUID500型电极、SQUID2000型电极或AA200型BOOMER组成电火花震源,该震源的激发能量级别为100~1500J,而且重复激发所需的时间较短。法国的SIG800J震源系统,采用120或200极鱼骨型电火花电极,能量输出270J、540 J和800J。在平台调查中一般选择250~800J的激发能量,激发间隔0.5 s(图2)。荷兰的GEO-SPARK 10kJ震源系统,GEO-SPARK2×800型电极能量输出在100~10000 J之间,最大工作水深为4500 m,最大穿透深度为750 ms,可以满足深水井场调查的需要。

我们选用法国的SIG16 4.8.12型和SIG16 12.12.34型水听器,英国的AAE20单道信号接收电缆,荷兰的GEO-Sense信号接收电缆,检波器按0.15~1 m的间隔并联组成,该接收电缆具有较高的灵敏度和较宽的频率响应,适用于高频反射信号的数据采集。

记录仪器与以上震源和水听器配套使用的是DELPHSEISMIC数据采集系统。该系统不仅可以主动控制震源每秒的激发次数,而且通过连接GPS导航系统,能够时时记录每一炮道的经纬度坐标,便于精确定位。该仪器的动态范围90db,16位模数转换,而且具有极高的采样频率,在与BOOMER震源配合使用时,其采样率高达6000~10000 Hz,极高的采样频率更有利于高频有效信号的接收。在海上单道地震数据采集过程中,可以通过控制测量船的速度来调整记录道间的距离,船速越慢,道间距越小,地震波组的连续性越好。在震源每秒激发二次的情况下,测量船体以3.5节的速度航行,地震记录道间的距离小于1 m,可见,该方法更适用于高精度的浅层地震勘探。

在资料处理流程中,采用有效的方法技术对数据进行信噪分离,削弱多次及绕射等干扰波的影响,可进一步提高单道地震记录的信噪比和分辨率,图3(左)清楚显示了浅层气及其沿着断层上升,红色椭圆圈着的反射波为强振幅,反射同相轴反转,具明显的反相特征;图3(右)显示了各种形态的埋藏古河道。

图2 单道地震剖面

图3 单道地震剖面显示的浅层气和埋藏古河道

3.3 高分辨率2D多道地震剖面测量

高分辨率2D地震资料的采集一般使用48道或96道多道地震电缆,为了避免虚反射对高频成分的压制作用,震源和检波器电缆的沉放深度比较浅,一般震源的沉放深度3m,一般电缆的沉放深度4 m,地震震源一般是小容量GI气枪震源或套筒枪组合震源,以保证产生高频率的地震子波。这种方法采集到的地震资料频带可达20~350 Hz,比常规的地震采集资料的频带(20~50 Hz)要高得多,完全可以满足识别薄层及地层结构的需要,提高了精度。

3.4 海洋磁力测量

磁法是利用地下岩矿石或者岩土介质之间的磁性差异所引起的磁场变化(磁异常)来寻找有用矿产,查明地下构造和解决其他地质问题的一种探测方法。磁力是解决工程地质调查中探测含磁性物体的有效手段。在各种调查中,我们使用GS880铯光泵磁力仪和SeaSPY海洋磁力仪,针对不同的研究目的分别采用不同的调查方法,均能获得满意的效果。它的优势在于不仅能够探测暴露于海底的磁性异常体,同时对于覆盖于海底以下的磁性异常体也有效。

在调查中的应用,由于海底光缆路由海域存在着已经敷设过的海缆(包括海底通讯电缆、电力电缆和光缆等),经过岁月的变迁,这些海缆在海域中的坐标有了变化,有的是否还存在也不明确;另外,过去敷设海缆时的定位仪存在较大的误差,为了探明光缆路由线交汇的海底电缆的精确位置,必须对光缆路由进行探测。在平台场址调查中,使用加拿大MarineMagnetics公司生产的SeaSPY海洋磁力仪进行勘察,结合旁侧声呐和浅地层剖面共同进行探测。图4是浅地层剖面探测到的管道,当磁力仪探头穿过电缆时测得的磁异常曲线,旁侧声呐扫描到的电缆和平台,磁异常的幅值一般可达几十到上百nT。

图4 浅层剖面、磁力和侧扫声呐探测到的管道、电缆和采油平台

4 结论与讨论

平台场址地质调查的方法主要有两种:一种为地球物理方法,另一种为地质取样方法。目前地球物理方法应用得比较广泛的是单波束测深或多波束测深、侧扫声呐、浅层剖面探测、单道地震、高分辨率2D地震和磁力测量等,以上六种水下探测系统在高精度的定位系统的支持下配合使用,可使我们获得平台场址内三维的工程地质条件,特别是危害工程建设的各种灾害地质现象的形态、规模、位置及其发展趋势等性质。其优点是比较经济、快速,对各种地球物理勘探方法都有各自解决某一方面地质问题的能力,各有优势和局限性。因此,在调查时要视调查的目的与要求,采用多种方法进行综合调查,使各种方法优势互补,以便取得最佳的成果。根据20多年来的实践经验,采用以高分辨率地震为主的综合浅层物探技术,同时在井位和预计抛锚位置进行2~3 m长的地质重力取样和地质浅钻,物探和地质取样相互结合,是了解海洋地质灾害因素、灾害的类型以及海洋工程地质有关问题的行之有效的调查方法,它能够既经济又快捷地为业主提供资料。

参考文献

[1]顾小芸.海洋工程地质的回顾与展望[J].工程地质学报,2000,8(1):40~45.

[2]金庆焕,李唐根.南沙海域区域地质构造[J].海洋地质与第四纪地质,2000,20(1):1~8.

[3]刘光鼎,陈洁.中国前新生代残留盆地油气勘探难点分析及对策[J].地球物理学进展,2005,20(2):273 ~275.

[4]陈洁,温宁,李学杰,南海油气资源潜力及勘探现状[J].地球物理学进展,2007,22(4):1285~1294.

[5]刘锡清,刘守全,等.南海灾害地质发育规律初探[J].中国地质灾害与防治学报,2002,13(1):12~16.

[6]Spiess F N.Seafloor research and ocean technology[J].MTS Journal,1987,21(2):5~17.

[7]Wille Peter C.Sound Images of the Ocean in Research and Monitoring [M].Berlin:Springer,2005.

[8]Fish J P,Carr H A.Sound Reflections(Advanced Applications of Side Scan Sonar).Oreans:Lower CapePublishing,2001.

[9]金翔龙,海洋地球物理研究与海底探测声学技术的发展.地球物理学进展,2007,22(4):1243~1249.

[10]Dybedal J.Kongsberg Defence &Aerospace AS.Training Course TOPASPS 018 Parametric Sub-bottom Profiler System,2003.

[11]Dybedal J .Kongsberg Defence &Aerospace AS.TOPASPS 018 Operator Manual,2002.

Marine Geophysical Survey Techniques and Their Applications to Well Site Survey

Ma Shengzhong

(Guangzhou Marine geological Survey,Guangzhou,510760)

Abstract:The safety of marine oil drilling platform is closely related to the submarine engineeringgeological conditions of the well site.Geophysical technique has an irreplaceable role in marineengineering and hazard geological survey.Practice proves that,using geophysical instruments in-cluding echo sounder,sidescan sonar,sub-bottom profiler,single-channel seismic,high resolu-tion 2D seismic and marine magnetometer etc.to carry out a comprehensive survey can efficientlyreveal the topography and potential geo-hazards of the well site area.

Key words:Well site survey Marine geophysical survey Submarine geo-hazards

❿ 地球物理勘探知识

地球物理勘探是利用地球的物理特性与原理,根据各种岩石及其他矿物之间的密度、磁性、电性、弹性、放射性等物理性质的差异,选用不同的物理方法和物理勘探仪器,探测工程区域内的地球物理场的变化,以研究不同物理场的地质内涵,了解区域内水文地质和工程地质条件和矿藏分布的勘探和测试方法。

地球物理勘探一般分为重力勘探、磁力勘探、电法勘探和人工地震勘探几类。地球物理勘探,它是运用物理学原理勘查地下矿产、研究地质构造的一种方法和理论,简称物探。地球物理勘探是地质调查、地质学研究、矿产勘查当今不可或缺的非常实用的一种最常用手段和方法。

实际探测的区域重力场、航磁场是区域内地质构造在地球物理场中的反映,这些物理场与区域成矿作用、矿产富集与成矿区带的形成、分布也是相关的,并且也能互为因果。地球物理勘探主要用于了解地下的地质构造、圈闭、断层发育情况、有无矿床生成的可能、有无矿床保存条件,矿体是否具备开发的条件等。相对于钻井勘探,它是着眼于较为宏观的或称战略方面的勘探。钻探则是侧重于点上勘探。地震勘探也需借助于区域内已有钻探成果如录井、测井、测试资料进行标准层的确定和标准层地质属性确定,从而展开对剖面分析与解释。物探与钻探的结合,共同推进地质找矿研究工作的进展。因此,在勘探界,有“地质指路,物探先行,钻探验证”之说。学习物探的人,也需了解钻探知识,它们是紧密相依的相关学科。

(一)人工地震勘探知识

人工地震,是地球物理勘探中的主要手段,在石油和天然气勘探、煤田勘探和工程地质勘探以及地壳和上地幔深部结构探测中发挥着重要作用。它是利用炸药人工激发产生地震波在弹性不同的地层内传播规律来探测地下的地质情况。炸药爆炸产生地震波在地下传播的过程中,遇到不同岩石或其他物质时其弹性系数发生变化,从而引起地震波声的变化,产生反射、折射和透射现象,再通过仪器接收变化后的地震波数据,利用地震波速度和岩石矿物的相关性,对地震波进行处理、解释后,反演出地下情况的知识。

在油气田勘探中,人工地震用于寻找有利于油气聚集的构造圈闭。其工作主要程序分为:地震波和与地震波相关数据的野外采集、采回的数据室内处理和对处理数据的数据解释三个环节,相应产生了野外采集的原始地震资料、室内计算机数据的处理资料和数据的解释成果资料三个部分。

野外数据采集是人工地震勘探的基础工作,其产生的数据也是基础资料也称原始资料,主要是地震测线和地震波数据;人工地震勘探中的数据处理环节,是将野外采集到的地震数据波去粗取精去伪存真工作过程,通过“去噪”和“校正”技术处理,提高原始数据分辨率,这个过程就形成处理数据,再由处理数据形成可视的地震剖面图和一些其他成果图件及文字性的处理报告。

(1)二维地震资料处理过程:原始资料的解编和观测系统的定义→振幅补偿、双向去噪→单炮去噪→野外静校正→地表一次性预测反褶积→速度分析→剩余校正→叠前去噪→速度分析→最终叠加→叠后去噪→偏移处理→最终二维处理显示剖面。

(2)三维地震资料处理过程:原始资料的解编和观测系统的定义→高通滤波→野外静校正→三折射静波校正→三维地表的一致性振幅补偿→三维地表一次性反褶积→抽CDP 道集→速度分析①→三维剩余静校正→三维 DMO→速度分析②→三维DMO叠加→三维去噪→三维道内插→三维进一步法时间偏移→三维修饰处理→三维数据图像显示。

解释环节是前期数据处理环节产生的成果,运用相关知识,结合钻井等其他勘探资料,通过用计算机工作站技术进行分析研究,推断地层沉积、地下构造特征、岩性和含流体等地质结构情况。这种分析研究和推断结论产生的资料,称解释成果。解释成果主要有:断面识别成果、特殊地质现象解释、构造图和厚度图成果、三维可视立体解释构造图和文字性的解释报告。

地震数据解释阶段的工作,一般将其归纳为四项工作:构造解释;地层解释;岩性解释和矿产检测;综合解释。

地质科技人员阅读解释资料,最好能要了解解释程序和解释结论产生的过程,如二维资料解释,是在收集工区内已有地质资料基础上进行的,剖面解释首先是选择区域内有代表性的剖面,确定标准层和标准层的地质属性,然后在进行非标准层的追踪;进行时间剖面的对比,断面的识别与解释;不整合面、超覆、古潜山等特殊地质现象的解释;构造图、厚度图、等厚度图的编制过程。了解它的解释工序和过程,就能深度看懂和彻底消化这些解释资料,而不是一知半解、囫囵吞枣。

近几年来随着时代的发展,人工地震勘探技术有了新的进展,储层预测和油藏描述技术方法已被油田类企业广泛利用。其中油藏描述中圈闭描述、地层沉积描述、储集体描述、油气储量计算技术在不断发展和深化,水平分辨率和垂直分辨率区分地质特征的识别能力也在不断提高,地震层析成像技术初步运用,人工神经网络技术也在酝酿发展。三维可视化技术的利用等方面的知识都应了解或掌握。四维地震就是在三维地震的基础上加上时间推移,用于监测油气开采动态情况,油田开发的采收率一般在25%~30%之间,三维地震技术用于油田开发后采收率可提高到45%,据报道,将四维地震技术方法用于油田开发后采收率可提高到65%以上。

了解这些人工地震知识后,对于利用这些物探资料作用非凡。如我们在看解释报告结论有怀疑时,可查看数据处理资料,看看它的“去噪”和“校正”过程中是否有瑕疵,了解一下标准层及其地质属性的确定是否准确。看看解释过程和解释观念。而不懂处理技术方面的知识是发现不了其中的问题的,而有时候发现了一个瑕疵就发现了一个矿藏构造或是纠正了一个对地层的认识;学习物探类学科的学生或刚刚从事其他学科的技术工作的人员只有了解和系统掌握了这一学科知识,才能看懂这些物探资料,而要利用这些资料,首先是读懂它,然后才能发现其中蕴含的价值。即使你是工作多年的技术人员,你也得注意积累,因为人工地震在不同环境下的取得的数据,也会有巨大差距。如在沙漠地区因巨厚的地表浮沙形成低速层厚度横向变化很大,对数据采集中的激发和接收一致性影响较大,与此相应,它对地震波的能量衰减较为严重,对地震波的高频成分吸收强烈,对“静校正”提出了更高要求。同理,水网地区的人工地震与一般陆地人工地震“静校正”要求又有区别。处理与阅读这些资料奥妙无穷。

人工地震产生的物探资料主要有:

二维地震资料统计表

续表

三维地震资料统计表

二维、三维地震资料品种很多,但主要需看懂的资料是:

处理报告、解释报告及图件。尤其是图件中的“时间剖面”。

人工地震工程得到的是地震波数据,技术人员对数据的处理与解释结果体现在时间剖面上,而解释报告是对剖面的解读和总结的结论。一般表现为:推断地层分布、构造特征及流体性质,圈闭描述、地层沉积描述、储集体描述、矿产储量计算等。这些推断和描述是否准确,就得看推断和描述的依据和过程,得出自己独立的见解或对推断和描述给予赞成与否的结论。

(二)重力勘探知识

重力勘探是地球物理中的又一种勘探方法。它是利用组成地壳的各种岩石及其介质的密度差异引起的重力场变化原理,在野外通过重力仪器测量,对重力数据进行观测,研究其重力的变化,推断地下构造的一种物理勘探的方法。由于重力异常区场与区域内地质构造、深部地壳构造以及地形、地貌均呈相关性,通常能反映出断裂构造带断裂构造的重力异常梯度带与矿产资源分布具有密切关系。而且,从成矿理论到勘探实践看来,矿床往往是成群出现的,在一定范围内会集中出现矿体。研究区域内的重力情况,也是认识地质构造和发现矿产的又一个重要途径,地质资料馆中主要珍藏的是围绕重力异常产生的资料。

重力勘探产生的主要资料统计表

续表

要求能看懂的最主要的重力资料:

布格重力异常图。

布格重力剩余异常图。

趋势面分析报告。

重力勘探项目处理成果报告。

(三)电磁感应法勘探

电磁感应勘探法,分为电法勘探和磁法勘探。电法勘探,是利用地壳中多种岩石或其他固态、液态、气态介质的电学性质的不同,引起的电磁场在空间分布状态发生相应变化实际差异,来研究地质构造和寻找矿藏的一种物探方法。产生相关电法勘探图件和勘探文字报告。

磁法勘探是根据区域内各种岩石和其他介质的磁性不同,利用仪器发现和研究地球磁场及异常,进而寻找磁性矿体和研究地质构造的又一种地球物理勘探方法。磁异常是磁性地质体引起的,磁异常的分布与对应的区域地面及地下地层、岩层磁性相关。通常火山岩和变质岩易引起磁性异常,这种异常的变化激烈往往表明磁性体浅,意味着结晶体基底浅,反之,表示结晶体基底深。这样就能划分出隆起区和坳陷区,进而发现伴随火山岩活动的深大断裂带。

电法与磁法勘探,实践中通常不是各自独立进行的,而是利用电磁感应理论结合进行的勘探,它是在地质目标或矿体与相邻岩体存在电磁学性质差异时,通过观测和研究由地质目标或矿体引起电磁场空间和时间分布规律,寻找地质目标或矿体的方法。

电磁法勘探形成的地质资料统计表

续表

需要读懂的主要资料:

电法、磁法或电磁法勘探报告,测线大地电磁测深Ρyx/Ρxy剖面图、测线大地电磁测深曲线与断层关系对比图、测线地质——物探解释参考剖面图、测线大地电磁测深地质解释剖面图、大地电磁测深仪野外处理结果曲线、大地电磁测深仪对比曲线册、大地电磁测深及解释研究报告、大地电磁测深勘探报告。

(四)遥感技术

遥感技术,是指地质学科里运用的遥感探测技术,又称遥感地质或称地质遥感。遥感地质是综合应用现代遥感技术来研究地质规律、进行地质调查和资源勘察的一种方法。从宏观的角度,着眼于由空中取得的地质信息,即以各种地质体对电磁辐射的反应作为基本依据,结合其他各种地质资料及遥感资料的综合应用,以分析、判断一定地区内的地质构造情况。遥感技术对地质学研究和探矿方面的作用:

(1)能了解各种地质体和地质现象在电磁波谱上的特征。

(2)能了解地质体和地质现象在遥感图像上的判别特征。

(3)可以通过对地质遥感图像的光学及电子光学处理和图像及有关数据的数字处理和分析,得出相关认识。

遥感技术在地质制图、地质矿产资源勘查及环境、工程、灾害地质调查研究中广泛运用。

遥感技术在地质勘探上运用成果,得到遥感图像。它相当于一定比例尺缩小了的地面立体模型。能全面、真实地反映了各种地物(包括地质体)的特征及其空间组合关系。遥感图像的地质解译包括对经过图像处理后的图像的地质解释,即运用用遥感原理、地学理论和相关学科知识,以目视方法揭示遥感图像中的地质信息。遥感图像地质解译的基本内容包括:

(1)岩性及地层解译。解译的标本有色调、地貌、水系、植被与土地利用特点等。

(2)构造的解译。在遥感图像上识别、勾绘和研究各种地质构造形迹的形态、产状、分布规律、组合关系及其成因联系等。

(3)矿产解译及成矿远景分析。这是一项复杂的综合性解译工作。通常在大比例尺图像上,有的可以直接判别原生矿体露头、铁帽和采矿遗迹。但大多数情况下是利用多波段遥感图像(特别是红外航空遥感图像)的解译与成矿相关的岩石、地层、构造以及围岩蚀变带等地质体。除目视解译外,还经常运用图像处理技术获取区域矿产信息。

成矿远景分析工作是以成矿理论为指导,在矿产解译基础上,利用计算机将矿产解译成果与地球物理勘探、地球化学勘查资料进行综合处理,从而圈定成矿远景区,提出预测区和勘探靶区。利用遥感图像解译矿产已成为一种重要的找矿手段。

主要资料就是遥感图像——胶片和照片。对图像解译是阅读遥感资料的基本功。实践中阅读图片时,往往对照地面已开展的地质工作认识成果,可对遥感图像有更深入的解读。

阅读全文

与地球物理调查手段有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059