A. 物理矛盾实例和解决方法
我们首先来看阿奇舒勒的矛盾矩阵。
阿奇舒勒矛盾矩阵由39个通用工程参数和40个创新原理构成,矛盾矩阵第一列表示改进的参数,第一行表示恶化的参数,共有39*39个小格子,每一个小格子代表一个工程矛盾(具体说明),非对角线上小格子所表达的矛盾为技术矛盾。该矛盾由对应小格子里所提供的创新原理解决(具体说明)。
需要说明:
1、不同的矛盾提供原理数不一样(1、
2、
3、4),尽可能应用所提供的创新原理解决问题,否则你定义的矛盾有问题;
2、如果非对角线上小格子里面没有数字,表明该矛盾在实际工程中不存在;
3、对角线上小格子里面没有数字,并不表示不存在矛盾,而是另一类矛盾。
我们知道,技术矛盾是两个参数之间形成的矛盾,即当一个参数改进时,引起另一个参数的恶化;当我们用同样的方式描述对角线上小格子所表达的矛盾时,应该是“当一个参数改进时,又引起该参数的恶化”,也就是说,对角线上小格子对应的正反两个参数是一个参数,说明这些参数自身产生了矛盾,这样的矛盾称物理矛盾。例如,笔记本携带时应该小点,使用时应该大点,对笔记本的尺寸相反的要求就构成了物理矛盾。本章研究物理矛盾及其解决方法。
幻灯片2
§1 物理矛盾的定义
•物理矛盾的定义:
•当一个技术系统中对同一个参数具有相互
排斥(相反的或是不同的)需求时,所产生的
矛盾称为物理矛盾。
对于技术系统的元素,物理矛盾有以下三种情况:
第一种情况,这个元素是通用工程参数,不同的设计条件对它提出了完全相反的要求,例如:对于建筑领域,墙体的设计应该有足够的厚度以使其坚固,同时墙体又要尽量薄以使建筑进程加快并且总重比较轻。建筑结构的材料密度应接近零以使其轻便,同时材料密度也应该足够高以使其具有一定的承重能力。另外还有:温度既要高又要低;尺寸既要长又要短;材质既要软又要硬等等。
第二种情况,这个元素是通用工程参数,不同的工况条件对它有着不同(并非完全相反)的要求,例如:灯泡的功率既要是25瓦,又要是100瓦;一个工件的形状,既要是直的,又要是弯的等等。
第三种情况,这个元素是非工程参数,不同的工况条件对它有着不同的要求,例如:冰箱的门既要经常打开,又要经常保持关闭;道路上既要有十字路口,又要没有十字路口。
B. TRIZ理论解决问题的一般过程有哪些
TRIZ理论解决问题的一般过程包括五个步骤:分析问题、找准冲突、原理解决、对比评价、具体实施。
①分析问题包括功能分析、理想解分析、可用资源分析、冲突区域分析
功能分析的目的是从完成功能的角度分析系统、子系统、部件。理想解分析是采用与技术及实现无关的语言对需要创新的原因进行描述,创新的重要进展往往在该阶段通过对问题深入的理解来取得。可用资源分析是要确定可用物品、能源、信息、功能等。这些可用资源与系统中的某些元件组合将改善系统的性能。冲突区域分析则是要理解出现冲突的原因。
②找准冲突在产品创新过程中是最难解决的一类问题
冲突是指系统一个方面得到改进时削弱了另一方面的期望或表现出两种相反状态。TRIZ理论的目的就是解决冲突,只有找准冲突才能有效地解决冲突。
③原理解决是要获得冲突解的方法
有物理与技术两种冲突解决原理。运用TRIZ理论挑选能解决特定冲突的原理,其前提是要按标准参数确定冲突,然后针对冲突从TRIZ理论的40条原理中找到解决冲突的办法。
④对比评价阶段将所求出的解与理想解进行比较,确信所作的改进不仅能够满足技术需求而且能够推进技术创新。
⑤具体实施就是在前面所有的理论分析工作都已完成且确认无误之后,将其转化为具体实施细节应用到实际问题当中。
C. 物理矛盾可以通过分离矛盾的方法解决,有几种分离原则
解决物理矛盾的分离原则
1、空间分离:将矛盾双方在不同的空间分离以降低解决问题的难度。当系统矛盾双方在某一空间出现一方时、空间分离是可能的。
2、时间分离:将矛盾双方在不同的时间分离、以降低解决问题的难度。当系统 矛盾双方在某一时空中只出现一方时时间分离是可能的。
3、条件分离:将矛盾双方在不同的条件下分离、以降低解决问题的难度。当系统矛盾双方在某一条件下只出现一方时、条件分离是可能的。
4、整体与部分分离:将矛盾双方在不同的层次分离、以降低解决问题的难度。当系统矛盾双方在系统层次只出现一方时整体与部分分离是可能的。
D. 科学家也会的原理和哪些物理定律有冲突
1、胡克:英国物理学家;发现了胡克定律(F弹=kx)
2、伽利略:意大利的着名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。
3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。
4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。
5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。
6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。
7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。
8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。
9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。
10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e。
11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。
12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。
13、安培:法国科学家;提出了着名的分子电流假说。
14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。
15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。
16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。
17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。
18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。
19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。
20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。
21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)
22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。
23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。
24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。
25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。
26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。
27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。
28、乍得威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。
29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。
30、贝克勒尔:法国物理学家;首次发现了铀的天然放射现象,开始认识原子核结构是复杂的。
31、玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者。
32、约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素
E. 技术矛盾和物理矛盾的概念,各自怎么解决
技术矛盾:指技术系统中两个参数之间存在相互制约,是在提高技术系统的某一参数时,导致了另一个参数的恶化而产生的矛盾。
解决方法:1.寻找系统矛盾性能之间的妥协方案(为了提高一个性能指标,在另一个性能指标上可以做出的牺牲是多少)
2.寻找消除矛盾的办法(如何做到双赢)。
前一种途径得到的是典型的工程解,后一种途径的结果是创造性的发明解。
物理矛盾:当一个技术系统中对同一个元素具有相反的需求时,就出现了物理矛盾。
解决方法:实现矛盾双方的分离,包括空间分离,时间分离,条件分离,系统级别分离。
(5)解决物理冲突的原理有哪些扩展阅读:
技术矛盾和物理矛盾的联系:
技术矛盾和物理矛盾都反映的是技术系统的参数属性,就定义而言,技术矛盾是技术系统中两个参数之间存在着相互制约;物理矛盾是技术系统中一个参数无法满足系统内相互排斥的需求。
物理矛盾和技术矛盾是有相互联系的。例如,为了提高子系统Y的效率,需要对子系统Y加热;但是加热会导致其邻接子系统X的降解。
这是一对技术矛盾。同样,这样的问题可以用物理矛盾来描述,即温度要高又要低。温度高可提高Y的效率,但是恶化了X的工况;而温度低无法提高Y的效率,但也不会恶化X的工况。
所以,技术矛盾与物理矛盾之间,是可以相互转化的。
F. 针孔既要大又要小怎么解决这个物理矛盾
解决物理矛盾技巧:
1、空间分离:将矛盾双方在不同的空间分离以降低解决问题的难度。其中当系统矛盾双方在某一空间出现一方时、空间分离是可能的。
2、时间分离:将矛盾双方在不同的时间分离、以降低解决问题的难度。当系统矛盾双方在某一时空中只出现一方时,时间分离是可能的。
3、条件分离:将矛盾双方在不同的条件下分离、以降低解决问题的难度。当系统矛盾双方在某一条件下只出现一方时、条件分离是可能的。
4、整体与部分分离:将矛盾双方在不同的层次分离、以降低解决问题的难度。当系统矛盾双方在系统层次只出现一方时整体与部分分离是可能的。
原理须知
针孔的大小最小也有中指那么大,针孔它里面是有集成电板,和芯片等一些电子元件组成的,所以呢,针孔的形状有很多种,但大小体积都差不多,小也小不不过小拇指。
利用小孔成像原理来得到影像的镜头,它造价低廉,原理简单,但是有一个致命的弱点:透过小孔的光线太少而导致曝光时间过长。在阳光下使用针孔镜头拍摄照片需要花几分钟到十几分钟,在夜晚拍摄时曝光时间则要达到几个小时。
G. 什么是技术冲突什么是物理冲突
技术冲突是指技术系统中两个参数之间存在着相互制约;是在提高技术系统的某一参数时,导致了另一个参数的恶化而产生的矛盾。
物理冲突是技术系统中一个参数无法满足系统内相互排斥的需求。比如说,要求系统的某个参数既要出现又不存在,或既要高又要低,或既要大又要小等等。相对于技术矛盾,物理矛盾是一种更尖锐的矛盾,创新中需要加以解决。
(7)解决物理冲突的原理有哪些扩展阅读:
物理矛盾和技术矛盾是有相互联系的。例如,为了提高子系统Y的效率,需要对子系统Y加热;但是加热会导致其邻接子系统X的降解。这是一对技术矛盾。
同样,这样的问题可以用物理矛盾来描述,即温度要高又要低。温度高可提高Y的效率,但是恶化了X的工况;而温度低无法提高Y的效率,但也不会恶化X的工况。所以,技术矛盾与物理矛盾之间,是可以相互转化的。
H. 物理矛盾及其解决原理
物理矛盾是当一个技术系统的工程参数具有相反的需求,就出现了物理矛盾。比如说,要求系统的某个参数既要出现又不存在,或既要高又要低,或既要大又要小等等。相对于技术矛盾,物理矛盾是一种更尖锐的矛盾,创新中需要加以解决。具体来讲,物理矛盾表现在:
1)系统或关键子系统必须存在,又不能存在;)系统或关键子系统具有性能“F”,同时应具有性能“-F”,“F”与“-F”是相反的性能;3)系统或关键子系统必须处于状态“S”及状态“-S”,“S”与“-S”是不同的状态;
4)系统或关键子系统不能随时间变化,随时间变化。从功能实现的角度,物理矛盾可表现在:
1)为了实现关键功能,系统或子系统需要具有有用的一个功能,但为了避免出现有害的另一个功能,系统或子系统又不能具有上述有用功能;2)关键子系统的特性必须是取大值,以取得有用功能,但又必须是小值以避免出现有害功能)系统或关键子系统必须出现以获得一个有用功能,但系统或子系统又不能出现,以避免出现有害功能物理矛盾可以根据系统所存在的具体问题,选择具体的描述方式来进行表达。总结归纳物理学中的常用参数,主要有3大类:几何类、材料及能量类、功能类。
I. 解决物理矛盾的一般解法有多少
物理矛盾可以通过分离矛盾的方法解决。空间分离:将矛盾双方在不同的空间分离以降低解决问题的难度。当系统矛盾双方在某一空间出现一方时、空间分离是可能的。
J. 在TRIZ理论中,矛盾是如何解决的
(一)冲突解决理论
1、技术冲突解决原理
TRIZ提出描述技术冲突的39个通用工程参数:运动物体质量、静止物体质量、运动物体长度、静止物体长度等。为了解决技术冲突,TRIZ理论提出了40 项发明原理,如分割、分离、局部质量、不对称等。通过研究,Altshuller提出了冲突矩阵,该矩阵将描述技术冲突的39个工程参数与40条发明原理建立了对应关系,解决了设计过程中选择发明原理的难题。
2、物理冲突解决原理
Terninko于1998年提出的物理冲突描述方法为:(1)为实现关键功能,子系统要具有一有用功能,但为了避免出现一有害功能,子系统又不能具有上述有用功能。(2)关键子系统的特性必须是一大值以能取得有用功能,但又必须是一小值以避免出现有害功能。 (3)关键子系统必须出现以取得一有用功能,但又不能出现以避免出现有害功能。TRIZ提出采用分离原理解决物理冲突的方法,包括空间分离和时间分离、基于条件的分离、整体与部分的分离。英国Bath大学的Mann提出,解决物理冲突的分离原理与解决技术冲突的发明原理之间存在关系,一条分离原理可以与多条发明原理存在对应关系。
(二)物—场模型分析方法
物—场分析是用符号表达技术系统变换的建模技术。物—场模型分析方法产生于1947—1977年,每一次的改进都增加了新的可用的知识,现在已经有了76 种标准解。这些标准解是最初解决问题方案的精华,因此,物—场分析为我们提供了一种方便快捷的方法,利用这种方法,可以在汲取基本知识的基础上产生不同想法。
TRIZ理论认为,技术系统构成要素S1、作用体S2、场 F三者缺一就会造成系统不完整。而当系统中某一物质的特定机能没有实现时,系统就会产生问题。为了控制这一物质产生的问题,有必要引入另外的物质。由此产生这些物质之间的相互作用并伴随能量(场)的产生、变换、吸收等,物—场模型也从一种形式变换为另一种形式。因此各种技术系统及其变换都可用物质和场的相互作用形式表述。
利用物—场分析方法分析系统存在的问题,建立系统的物—场模型,并提出问题解决对策的步骤如下:(1)指定物体S1;(2)指定场;(3)建立物—场初期模型;(4)指定作用体S2;(5)生成所希望的物—场模型;(6)提出解决问题的对策。
(三)发明问题解决算法
TRIZ认为,一个问题解决的困难程度取决于对该问题的描述或程式化方法,描述得越清楚,问题的解就越容易找到。TRIZ中,发明问题求解的过程是对问题不断地描述、不断地程式化的过程。经过这一过程,初始问题最根本的冲突被清楚地暴露出来,能否求解已很清楚,如果已有的知识能用于该问题则有解,如果已有的知识不能解决该问题则无解,需等待自然科学或技术的进一步发展。该过程是靠ARIZ算法实现的。
ARIZ (Algorithm for Inventive Problem Solving)称为发明问题解决算法,是TRIZ的一种主要工具,是解决发明问题的完整算法,该算法采用一套逻辑过程逐步将初始问题程式化。该算法特别强调冲突与理想解的程式化,一方面技术系统向理想解的方向进化,另一方面如果一个技术问题存在冲突需要克服,该问题就变成一个创新问题。
ARIZ中冲突的消除有强大的效应知识库的支持。效应知识库包括物理的、化学的、几何的等效应。作为一种规则,经过分析与效应的应用后问题仍无解,则认为初始问题定义有误,需对问题进行更一般化的定义。
应用ARIZ取得成功的关键在于没有理解问题的本质前,要不断地对问题进行细化,一直到确定了物理冲突,该过程及物理冲突的求解已有软件支持。
综上所述,由于TRIZ将产品创新的核心—--产生新的工作原理过程具体化,并提出了规则、算法与发明创造原理供设计人员使用,它已经成为一种较完善的创新设计理论。
(四)应用TRIZ的一般过程
TRIZ解决问题的一般过程被划分为四个步骤,如图所示:
(1)分析
分析是TRIZ的工具之一,是解决问题的一个重要阶段。功能分析的目的是从完成功能的角度而不是从技术的角度分析系统、子系统、部件。理想解是采用与技术及实现无关的语言对需要创新的原因进行描述,创新的重要进展往往在该阶段对问题深入的理解所取得。确认哪些使系统不能处于理想化的元件是使创新成功的关键。设计过程中从一起点向理想解过渡的过程称为理想化过程。可用资源分析是要确定可用物品、能源、信息、功能等。这些可用资源与系统中的某些元件组合将改善系统的性能。冲突区域的确定是要理解出现冲突的原因。区域既可指时间,又可指空间。假如在分析阶段问题的解已经找到,可以移到实现阶段。假如问题的解还没有找到,而该问题的解需要最大限度的创新,则基于知识的三种工具:原理、预测、效应等都可采用。
(2)原理
原理是获得冲突解的方法。有技术与物理两种冲突解决原理。TRIZ引导设计者挑选能解决特定冲突的原理,其前提是要按标准参数确定冲突。有40条原理。
(3)预测
预测又称为技术预报。TRIZ确定了8种技术系统进化的模式。当模式确定后,系统、子系统及部件的设计应向高一级的方向发展。
(4)效应
效应指应用本领域,特别是其他领域的有关定律解决设计中的问题。如采用数学、化学、生物等领域中的原理,解决设计中的创新问题。
(5)评价
该阶段将所求出的解与理想解进行比较,确信所作的改进不仅满足了技术需求而且推进了技术创新。TRIZ中的特性传递( feature transfer)法可用于将多个解进行组合以改进系统的品质。