❶ 初中物理课程标准是什么
初中物理课程标准是前言,课程性质课程基本理念等。物理学是人类科学文化的重要组成部分,是研究物质相互作用和运动规律的自然科学,它一直引领着人类探索大自然的奥秘,深化着人类对大自然的认识,是技术进步的重要基础。
初中物理课程标准特点
物理学的迅速发展及其相关技术的广泛应用,使基础教育物理课程面临新的机遇与挑战,为了适应时代发展的需要,义务教育物理课程应体现物理学的本质,反映物理学对社会发展的影响,应注重学生的全面发展,关注学生应对未来社会挑战的需求。
应发挥在培养学生科学素养方面的重要作用,为此本标准确定了学生经过义务教育阶段物理课程学习后应达到的要求,义务教育物理课程应综合反映人类在探索物质,相互作用和运动规律等过程中的成果。
❷ 什么是物理课程的基本原则
物理课程是按照教学目的(或目标)、要求,以及学生的认识规律,有计划地选取物理科学的内容,并将其改造成为学校的一门课程。
物理课程的基本原则
一、因材施教原则 。二、循序渐进原则 。三、主体性原则。
❸ 上大学学物理学些什么内容
《大学物理》课程教学大纲
一.课程基本情况
名称:大学物理
授课对象:土木工程、无机非金属材料工程、给水排水工程、工程力学、环境工程、高分子材料与工程、安全工程、环境科学、地理信息系统、计算机科学与技术、电子信息工程、电子信息科学与技术、电气工程及其自动化、交通工程、测绘工程、建筑环境与设备工程
考核方式: 考试
先修课程: 高等数学
后续课程: 力学
开课教研室:物理教研室
二.课程教学目标
1.任务和地位
大学物理课程是高等工业院校各专业学生的一门重要的必修基础课,它的基本理论渗透在自然科学的许多领域,应用于生产技术的各部门,它是自然科学的许多领域和工程技术的基础;它所包含的经典物理、近代物理和物理学在科学技术上应用的初步知识等都是一个高级工程技术人员所必备的。
2.知识要求
通过课堂讲解及讨论,课后布置适当的作业任务,再加上大学物理实验课的辅助作用,使学生能够对课程中的基本概念、基本理论、基本方法有比较全面的、系统的认识和正确的理解,并具有初步的分析、解决物理问题的能力。
3.能力要求
通过大学物理课的学习,一方面可以使学生较系统地掌握必要的物理基础;另一方面使学生初步学习科学的思想方法和研究问题的方法。这些都起着开阔思路、激发探索和创新精神,增强适应能力,为其在今后学习相关的专业基础课程打下良好的基础。学好大学物理课,不仅对学生在校的学习十分重要,而且对学生毕业以后的工作和进一步学习新理论、新知识、新技术,不断更新知识,都将发生深远的影响。
三.教学内容的基本要求和学时分配
1.教学内容及要求
⑴力学部分的基本要求:
①理解质点、刚体、惯性系等概念;了解引入这些概念和模型在科学研究方法上的重要意义。
②掌握位置矢量、位移、速度、加速度等概念及其计算方法;根据给定的用直角坐标表示的质点在平面内运动的运动方程、能灵活熟练地求出在任意时间内质点的位移和任意时刻质点的速度和加速度;对一些涉及简单积分的力学问题,也能根据给定的加速度和初始条件求速度和运动方程等。根据给定的用直角坐标表示的质点作圆周运动的运动方程,能灵活、熟练地求出运动质点的角速度、角加速度、切向加速度、法向加速度和加速度;了解任意平面曲线运动的切向加速度和法向加速度的概念和求法。
③掌握牛顿三个定律及其适用条件,理解用矢量(包括投影形式)和微分方程形式写出的牛顿第二定律。了解量纲及引入量纲的物理意义。
④掌握功的概念、能熟练地计算作用在质点上的变力的功;掌握保守力作功的特点及势能、势能差的概念,会计算万有引力势能。
⑤掌握质点的动能定理、动量定理、并能用它们分析和解决质点在一个平面内运动的力学问题。掌握机械能守恒定律、动量守恒定律及它们的适用条件,能用机械能守恒定律、动量守恒定律分析少数质点组成的系统在一个平面内运动的力学问题。了解普适的能量转换和守恒定律。
⑥了解转动惯量的概念;掌握刚体绕定轴转动定律(简称转动定律);在已知转动惯量的条件下,能熟练地应用转动定律分析,计算有关问题。
⑦理解动量矩(角动量)概念;通过质点在平面内运动和刚体绕定轴转动的情况学习和理解动量矩守恒定律及其适用条件。
⑧理解牛顿力学的相对性原理;掌握伽利略坐标、速度变换,能用伽利略变换计算在不同惯性系中质点一维运动的坐标、速度变换问题。
⑵热学部分的基本要求:
①宏观意义上理解平衡状态、平衡过程,可逆过程、不可逆过程等概念;掌握内能、功、热量、热容等概念。
②掌握热力学第一定律,能熟练地应用该定律和理想气体状态方程分析、计算理想气体各等值过程及绝热过程中的功、热量、内能改变量、以及循环过程的效率。了解致冷系数。
③理解热力学第二定律的两种叙述,了解两种叙述的等价性。
④理解几率和统计平均值的概念。从微观统计意义上理解平衡状态、内能、可逆过程和不可逆过程等概念。了解热力学第二定律的统计意义。掌握熵的概念,理解熵增加原理。
⑤掌握理想气体的压强公式和温度公式,理解气体压强、温度的微观统计意义;理解系统宏观性质是微观运动的统计表现;了解从建立模型、进行统计平均处理到阐明宏观量微观质的研究方法。
⑥理解麦克斯韦速率分布定律;理解速率分布函数和速率分布曲线的物理意义;理解气体分子热运动的算术平均速率,方均根速率和最概然速率。
⑦理解气体分子平均能量按自由度均分定理及理想气体的内能公式。会计算理想气体的热容量。
⑧理解气体分子平均碰撞频率及平均自由程。了解真实气体的实验等温线及范德瓦尔斯方程。
⑨了解阿伏伽德罗常数、波耳兹曼常数等数值和单位;了解常温、常压下气体分子数密度、算术平均速率、平均自由程及分子有效直径等的数量级。
⑶电磁学部分的基本要求
①掌握电场强度、电势、磁感应强度的概念。在一些简单的对称情形下,对于连续、均匀分布静电荷或稳恒电流,能计算其周围或对称轴上任何一点的电场强度,电势或磁感应强度;在已知几个简单、典型的场源分布时,能利用迭加原理计算它们的组合体的电场或磁场分布。
②掌握电势与场强积分的关系,理解场强与电势梯度的关系。
③理解静电场的环流定理和高斯定理,了解它们在电磁学中的重要地位;掌握用高斯定理计算场强的条件和方法;能熟练地应用高斯定理计算简单几何形状均匀带电体电场中任意一点的电场强度。会分析、判断和计算简单、规则形状导体或少数导体组成的导体系处于静电平衡时的场强、电势和电荷分布。
④理解稳恒磁场的高斯定理和安培环路定律,了解它们在电磁学中的重要地位;掌握用安培环路定律计算磁感应强度的条件和方法;能熟练地应用安培环路定律计算简单几何形状载流导体磁场中任意一点的磁感应强度。
⑤掌握安培定律和洛仑兹力公式。理解电偶极矩、磁矩的概念。能计算电偶极子,载流平面线圈在电、磁场中所受的力矩。能分析和计算电荷在正交的均匀电磁场(包括纯电场、纯磁场)中的运动。了解霍耳效应及其应用。
⑥了解介质的极化,磁化现象及其微观机理,了解铁磁质的特性。理解介质中的高斯定理和安培环路定律;会用介质中的高斯定理和安培环路定律计算介质中的电位移和磁场强度,并能由已知的电位移和磁场强度求相应的电场强度和磁感应强度。
⑦了解电动势的概念,掌握法拉第电磁感应定律,了解定律中“-”号的物理意义,理解动生电动势和感生电动势。
⑧理解电容、自感系数和互感系数的定义及其物理意义。
⑨理解电磁场的物质性以及电能密度、磁能密度的概念;在一些简单的对称情况下,能计算空间里储存的场能。
⑩理解涡旋电场、位移电流、电流密度的概念;了解麦克斯韦方程组(积分形式)的物理意义。
⑷波动和光学部分的基本要求
①了解普通光源的发光机理,理解获得相干光的方法。
②掌握光程的概念,以及光程差和位相差的关系,能分析杨氏双缝干涉实验、牛顿环实验中干涉条件和分布规律。了解洛埃镜中的半波损失问题。
③了解麦克耳逊干涉仪的工作原理及干涉现象的应用。
④理解惠更斯一菲涅耳原理,掌握用半波带法分析单缝夫琅和费衍射条纹分布的规律,会分析缝宽及波长对衍射条纹分布的影响。了解单缝衍射条纹亮度分布规律。
⑤掌握光栅衍射公式,会分析光栅衍射条纹分布规律和光栅常数及波长对光栅衍射条纹分布的影响,了解光栅衍射条纹和光栅光谱的特点及其在科学技术上和生产中的应用。
⑥了解衍射现象对光学仪器分辨本领的影响。
⑦了解自然光和线偏振光的获得方法和检验方法。
⑸近代部分的基本要求
①理解绝对黑体辐射谱线,了解斯特藩—波尔兹曼和维恩位移定律及它们的应用。
②理解普朗克量子假设,了解普朗克量子假设在近代物理学发展中的重大历史意义。
③掌握康普顿效应问题中光的经典波动理论遇到的困难。
④理解爱因斯坦的光子假设,了解康普顿散射频移公式的基本依据和思想,了解爱因斯坦光子理论在光电效应,康普顿效应研究中取得的成就及其在物理学发展中地位。
⑤理解光的波粒二象性,掌握光波波长与光子动量间的关系。
⑥理解实物粒子具有波粒二象性,掌握描述物质波动性的物理量(波长、频率)和粒子性的物理量(动量、能量)之间的关系。
⑦了解波函数及其统计解释。了解测不准关系,并能用测不准关系对微观世界的某些物理量作估算。
⑧理解一维定态薛谔方程,理解一维无限深陷阱情况下薛定谔方程的解,理解能量量子化。
2.时间分配和进度
⑴质点运动学与动力学 14学时
⑵刚体的定轴转动 8学时
⑶狭义相对论 4学时
⑷温度与气体动理论 6学时
⑸热力学基础 12学时
⑹静电场 16学时
⑺磁场、电磁感应 16学时
⑻振动和波动 10学时
⑼光的干涉、衍射及偏振 14学时
⑽量子物理的基本概念 8学时
3.教学内容的重点、难点。
⑴力学部分
重点:
利用微积分列出运动方程;位移 速度 加速度的矢量表示法;曲线运动。
牛顿三定律的内容;牛顿三定律的应用。
动量定理、动能定理、动量守恒定律和能量守恒定律。
转动惯量、角动量、转动动能等概念的理解;转动定律、角动量定理、转动的动能定理。
难点:
利用微积分列出运动方程。
牛顿三定律的应用;对惯性系的理解,力学相对性原理。
保守力的理解;动量定理、动能定理、动量守恒定律和能量守恒定律的应用条件。
转动定律、角动量定理、动能定理的推导;角动量定理的应用。
⑵气体动理论和热力学部分
重点:
热力学第一定律、热力学第二定律 ;各种变化过程中理想气体的物态方程。
能量均分定理、三种统计速度、平均自由程。
难点:
应用理想气体的物态方程解题;各种变化过程中理想气体物态方程的推导和理解。
能量均分定理、麦克斯韦气体分子速率分布律。
⑶电磁学部分
重点:
高斯定理的理解和应用;静电场的环路定理。
高斯定理有介质时电场中的应用;电场的能量。
毕奥萨伐尔定律的应用;安培环路定理的应用;磁场中的高斯定理。
电磁感应定律;动生电动势 感生电动势 自感电动势和互感电动势;全电流环路定理;麦克斯韦方程组。
难点:
对电场的理解;高斯定理的应用。
有介质的高斯定理。
毕奥萨伐尔定律的应用;安培环路定理的应用。
动生电动势,感生电动势,自感电动势和互感电动势的区别。
麦克斯韦方程组。
⑷波动和光学部分
重点:
简谐运动的运动方程;简谐运动的合成。
平面简谐波的波函数应用;波的干涉。
杨氏双缝干涉试验;薄膜干涉;单缝衍射;光栅衍射;光的偏振。
难点:
简谐运动的合成。
平面简谐波的波函数应用;波的叠加原理。
几种干涉仪的区别;单缝衍射和光栅衍射的区别;光的偏振原理。
⑸量子物理基础
重点:
光的粒子性的理解、光电效应。
粒子的波动性、德布罗意假设。
薛定鄂方程。
难点:
光的波、粒二象性理解。
运用薛定鄂方程求解波函数。
4.本课程与其它课程的联系与分工
大学物理课程是高等工业院校各专业学生的一门重要的必修基础课,高等数学作为其先修课程,通过大学物理课程的学习,使学生能够初步的掌握运用数学知识解决物理问题,并为其在今后的学习和工作中运用数学方法解决实际工程问题打下良好的基础。通过物理课程的学习,使学生掌握分析、解决物理问题的方法,为其学习相关专业课程(力学等)做好准备。
5.建议使用教材和参考书目
建议使用教材:
《大学基础物理学》张三慧编,清华大学出版社,2003年8月。
教学参考书目:
《普通物理》(第4版)程守洙、江之永编,人民教育出版社,1982年12月。
《大学物理学》(第1版)吴百诗主编,西安交通大学出版社,1994年12月
《物理学》(第4版)东南大学等七所工科院校编,高等教育出版,1999年11月。
四.大纲说明
1、在整个教学过程中采用教师课堂教学(主要以板书教学为主,穿插利用投影仪教学)和学生课后自学相结合的形式。对需要掌握的重要原理和定律及计算方法要讲深讲透,对需要理解和了解的内容采取精讲和自学的学习方式。
2、习题课随教学进展情况灵活掌握;作业量由所有任课教师商讨后分章节布置给学生,并且作到及时的批改,及时反馈给学生。
3、本课程为考试课,平时成绩10%,考试成绩90%。考试采取书面笔试(闭卷)的方式,考试试卷内容尽量作到覆盖面广、难度适中、试题量恰当。
❹ 物理学专业学什么 主要课程有哪些
物理学专业主要学习高等数学、力学、热学、光学、电磁学、原子物理学、数学物理方法、理论力学、热力学与统计物理、电动力学、量子力学、固体物理学、结构和物性、计算物理学入门等。物理学是一门普通高等学校本科专业,属物理学类专业,基本修业年限为四年,授予理学学位。
物理学专业课程有高等数学、力学、热学、光学、电磁学、原子物理学、数学物理方法、理论力学、热力学与统计物理、电动力学、量子力学、固体物理学、结构和物性、计算物理学入门等。
有人说,物理专业本科生转行比不转行要正常得多,而且越TOP的物理系越是这样。这里的“转行”指的是不去搞学术研究的东西,更恰当的说法应该是“没有热爱物理到以学术为工作的程度”。
表面上看,物理学专业出身的小伙伴们好像什么都能做,又好像什么都做不了。这是因为咱们学的东西太基础,就业面太宽,看起来没有什么特别对口的职位,以致于咱们专业的就业率很难突破90%。事实上,物理学的专业背景在实际工作应用中很有优势,既有不俗的数学基础,又具备工程领域的根基。许多物理出身的前辈们都受益于这两点。所以,不论做什么,物理人都能得心应手。
❺ 物理课程的基本理念是什么你是如何理解这几个方面的 国培作业 急急!
(一)在课程目标上注重提高全体学生的科学素养
(二)在课程结构上重视基础,体现课程的选择性
(三)在课程内容上体现时代性、基础性、选择性
(四)在课程实施上注重自主学习,提倡教学方式多样化
(五)在课程评价上强调更新观念,促进学生发展
❻ 大学课程中 大学物理学、基础物理学、普通物理学 有什么区别
大学课程中大学物理学、基础物理学、普通物理学三者的区别从难易
一,从难易角度看区别
大学物理学,是那些非物理专业需要学习的物理课,和高中文科班学的物理相似,不是很重要也很简单。
基础物理学是那些理科学校学习的物理基础,虽说是基础但学起来会感到难。也是这三个中最难的。
普通物理学是指那些工科学校学习的物理,相对要简单些。
二,从内容上看区别
大学物理学全书共13章涉及力学、热学、电磁学、振动和波、波动光学、狭义相对论和量子物理基础等。
基础物理学全书共十九章,主要介绍刚体的转动、流体力学、振动学、波动学、相对论、气体动理论、静电场、静电场中的导体和电介质。
直流电路、电流的磁场、电磁感应、光的干涉、光的衍射、光的偏振、光的吸收与散射、光的量子性、量子力学基础、激光、原子核与粒子物理。
普通物理学包括:牛顿力学、热学、电磁学、光学、原子物理学,但不包括”相对论“和"量子力学"以及物理学的前沿内容。
(6)物理课程中什么是课程的基础扩展阅读:
大学物理,是大学理工科类的一门基础课程,通过课程的学习,使学生熟悉自然界物质的结构,性质,相互作用及其运动的基本规律,为后继专业基础与专业课程的学习及进一步获取有关知识奠定必要的物理基础。但工科专业以力学基础和电磁学为主要授课。
通过课程的学习,使学生逐步掌握物理学研究问题的思路和方法,在获取知识的同时,使学生拥有建立物理模型的能力,定性分析、估算与定量计算的能力,独立获取知识的能力,理论联系实际的能力都获得同步提高与发展。
开阔思路,激发探索和创新精神,增强适应能力,提升其科学技术的整体素养。通过课程的学习,使学生掌握科学的学习方法和形成良好的学习习惯,形成辩证唯物主义的世界观和方法论。
本教学大纲适用4年制 高中起点本科层次物理专业《普通物理学》课程。一方面为学生较系统地打好必要的物理基础,使学生对物理学的方法、概念和物理图象,以及其历史、现状和前沿等方面,从整体上有个全面的了解.
另一方面使学生初步学习到科学的思维方法和研究问题的方法,培养独立获取知识的能力,提高人才科学素质的作用。 《普通物理学》是一门基于微积分水平的重要基础课程,适合在一年级第二学期和二年级第一学期开设。
普通物理学着重介绍各种物理现象和基本的物理方法,大部分内容属于经典物理学的范围。其脉络主要是根据人们对日常生活现象的常识性划分。
日常生活中的物理现象一般被分为“力、热、声、光、电、磁”等,普通物理也相应分为经典力学(含声学)、热学、电磁学和光学。普通物理学的许多基础概念在中学就已经引入。但大学中的科学和工程科目一般都要求系统的学习普通物理学。
此外,高中物理完全可以被视为大学普通物理学的简化和缩略,只不过高中的物理仅仅利用初等数学加以研究。
参考资料:网络——大学物理
网络——普通物理学
网络——基础物理学
❼ 大学物理学什么
《★★大学物理》网络网盘资源免费下载
链接: https://pan..com/s/1jVkCDt1F4RSi1JIPoz8pTg
★★大学物理|W9|W8|W7|W6|W5|W4|W3|W22|W21|W20|W2|W19|W18|W17
❽ 大学里的物理学专业是啥一般会开设什么课程
基本的物理课程中的力学,热学、电磁学、光学、基本的原子物理学,之后有难度的理论力学、电动力学(电磁学后续课程)、热力学与统计物理学,量子物理学,固体物理学,这些是纯物理的课程,基本的数学书有高等数学,线性代数,概率统计学,数学物理方程,还有其他基本的电子技术课程,数字电路,电路分析,模拟电路,工程光学,材料学基本的,还有理工类都得学的计算机基础,C语言编程,还有其他的单片机技术什么的,各个学校课程不一样,方向不一样,但这些是基本的,一般都会学。