❶ 指数和对数的运算法则分别是什么
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
(1)物理的指数相乘相除怎么说扩展阅读:
对数的历史:
16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急。约翰·纳皮尔(J.Napier,1550—1617)正是在研究天文学的过程中,为了简化其中的计算而发明了对数.对数的发明是数学史上的重大事件,天文学界更是以近乎狂喜的心情迎接这一发明。
恩格斯曾经把对数的发明和解析几何的创始、微积分的建立称为17世纪数学的三大成就,伽利略也说过:“给我空间、时间及对数,我就可以创造一个宇宙。”
对数发明之前,人们对三角运算中将三角函数的积化为三角函数的和或差的方法已很熟悉,而且德国数学家斯蒂弗尔(M.Stifel,约1487—1567)在《综合算术》(1544年)中阐述了一种如下所示的一种对应关系:
同时该种关系之间存在的运算性质(即上面一行数字的乘、除、乘方、开方对应于下面一行数字的加、减、乘、除)也已广为人知。经过对运算体系的多年研究,纳皮尔在1614年出版了《奇妙的对数定律说明书》,书中借助运动学,用几何术语阐述了对数方法。
❷ 指数的基本公式
指数是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
指数与幂的概念的形成是相当曲折和缓慢的指数符号( Sign of power) 的种类繁多,且记法多样化。
我国古代“幂”字至少有十各不同的写法。
刘徽为《九章算术》作注,在《方田》章求矩形面积法则中写道:“此积谓田幂,凡广从相乘谓之幂( 长和宽相乘的积叫作幂) 。”这是第一次在数学文献上出现幂。
《准南子·天文训》讲到乐律,有这样几句话:“故黄钟之律九寸,而宫音调;因而九之,九九八十一,故黄钟之有选举权立焉......十二各以三成,故置一而十一三之,为积分十七万七千一百四十七,黄钟大数立焉。”可翻译如下:发出黄钟音律的管长 9寸,它的音调叫作宫。用 9 去乘它得81。81 这个数叫作黄钟数。12 律的每一个是根据三分损益这个原则造成的。所以将 3 乘了11次,得到的积,分管长 177147等份,这177147 叫作黄钟大数,以别于黄钟数81。很明显,“置一而十一三之”就是乘方运算,11 就是现在的指数。整句话包含式子
,具有指数的初步概念。
1607 年,利玛窦和徐光启合译欧几里得的 《几何原本》,在译本中徐光启重新使用了幂字,并有注解:“自乘之数曰幂。”这是第一次给幂这个概念下定义。
至十七世纪,具有“现代”意义的指数符号才出现。最初的,只是表示未知数之次数,但并无出现未知量符号。比尔吉则把罗马数字写于系数数字之上,以表示未知量次数。其后,开普勒等亦采用了这符号。罗曼斯开始写出未知量的字母。1631 年,哈里奥特( 1560-1621) 改进了韦达的记法,以 aa表示
, 以aaa 表示
。1636 年,居于巴黎的苏格兰人休姆( James Hume) 以小罗马数字放于字母之右上角的方式表达指数,如以
表示
,该表示方式除了用的是罗马数字外,已与现在的指数表示法相同。笛卡儿( 1596-1650) 以较小的印度阿拉伯数字放于右上角来表示指数,是现今通用的指数表示法。
❸ 指数计算公式是什么
1、loga(MN)=logaM+logaN;
2、logaMN=logaM-logaN;
3、logaMn=nlogaM (n∈R);
a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
(3)物理的指数相乘相除怎么说扩展阅读:
指数作为幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角。幂运算(指数运算)是一种关于幂的数学运算。同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减。幂的幂,底数不变,指数相乘。下面a≠0。
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。
❹ 指数幂的指数幂的运算法则
口诀:
指数加减底不变,同底数幂相乘除.
指数相乘底不变,幂的乘方要清楚.
积商乘方原指数,换底乘方再乘除.
非零数的零次幂,常值为 1不糊涂.
负整数的指数幂,指数转正求倒数.
看到分数指数幂,想到底数必非负.
乘方指数是分子,根指数要当分母.
说明:
拓展资料:
一般地,在数学上我们把n个相同的因数a相乘的积记做a^n。这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在a^n中,a叫做底数,n叫做指数。a^n读作“a的n次方”或“a的n次幂“。
一个数可以看做这个数本身的一次方。例如,5就是5^1,指数1通常省略不写。二次方也叫做平方,如5^2通常读做”5的平方“;三次方也叫做立方,如5^3可读做”5的立方“。
❺ 指数相乘运算公式
指数相乘运算公式:a^m·a^n=a^(m+n)。指数是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
幂运算是一种关于幂的数学运算。同底数幂相乘,底数不变,指数相加。同底数幂相除,底数不变,指数相减。幂的乘方,底数不变,指数相乘。
❻ 指数运算的公式有哪些
1、同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。
2、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。
3、幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。
4、积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。
基本的函数的导数:
1、y=a^x,y'=a^xlna。
2、y=c(c为常数),y'=0。
3、y=x^n,y'=nx^(n-1)。
4、y=e^x,y'=e^x。
5、y=logax(a为底数,x为真数),y'=1/x*lna。
6、y=lnx,y'=1/x。
7、y=sinx,y'=cosx。
8、y=cosx,y'=-sinx。
9、y=tanx,y'=1/cos^2x。
(6)物理的指数相乘相除怎么说扩展阅读:
记忆口诀
有理数的指数幂,运算法则要记住。
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
❼ 物理这种题计算幂该怎么算
同底数幂相乘指数相加(代数和);相除指数相减(代数和)。如:求体积为100立方厘米水的质量,V=100X10^-6=1x10^-4立方米,密度p=1X10^3千克/立方米,m=Vp=1X10^-4X1X10^3=1X10^(-4+3)=1X10^-1千克。
又如质量为10克的正方体放在水平桌面上,它与桌面的接触面积为10平方厘米,那么它对桌面的压强是多少?F=G=mg=10X10^-3X10=10^-1N;S=10X10^-4平方米;压强P=F/S=10^-1/10X10^-4=10X10^(-1-(-4))=10X10^3=10000Pa。
❽ 指数幂运算法则 是什么
指数幂的运算法则
(a≠0,p是正整数)。
(规定了零指数幂与负整数指数幂的意义,就把指数的概念从正整数推广到了整数。正整数指数幂的各种运算法则对整数指数幂都适用。)
混合运算
对于乘除和乘方的混合运算,应先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算。
拓展资料
法则口诀
同底数幂的乘法:底数不变,指数相加幂的乘方;
同底数幂的除法:底数不变,指数相减幂的乘方;
幂的指数乘方:等于各因数分别乘方的积商的乘方
分式乘方:分子分母分别乘方,指数不变。