导航:首页 > 物理学科 > 原子物理学是什么理论

原子物理学是什么理论

发布时间:2022-11-19 07:55:46

⑴ 原子物理

经过相当长时期的探索,直到20世纪初,人们对原子本身的结构和内部运动规律才有了比较清楚的认识,之后才逐步建立起近代的原子物理学。

1897年前后,科学家们逐渐确定了电子的各种基本特性,并确立了电子是各种原子的共同组成部分。通常,原子是电中性的,而既然一切原子中都有带负电的电子,那么原子中就必然有带正电的物质。20世纪初,对这一问题曾提出过两种不同的假设。

1904年,汤姆逊提出原子中正电荷以均匀的体密度分布在一个大小等于整个原子的球体内,而带负电的电子则一粒粒地分布在球内的不同位置上,分别以某种频率振动着,从而发出电磁辐射。这个模型被形象的比喻为“果仁面包”模型,不过这个模型理论和实验结果相矛盾,很快就被放弃了。

1911年卢瑟福在他所做的粒子散射实验基础上,提出原子的中心是一个重的带正电的核,与整个原子的大小相比,核很小。电子围绕核转动,类似大行星绕太阳转动。这种模型叫做原子的核模型,又称行星模型。从这个模型导出的结论同实验结果符合的很好,很快就被公认了。

绕核作旋转运动的电子有加速度,根据经典的电磁理论,电子应当自动地辐射能量,使原子的能量逐渐减少、辐射的频率逐渐改变,因而发射光谱应是连续光谱。电子因能量的减少而循螺线逐渐接近原子核,最后落到原子核上,所以原子应是一个不稳定的系统。

但事实上原子是稳定的,原子所发射的光谱是线状的,而不是连续的。这些事实表明:从研究宏观现象中确立的经典电动力学,不适用于原子中的微观过程。这就需要进一步分析原子现象,探索原子内部运动的规律性,并建立适合于微观过程的原子理论。

1913年,丹麦物理学家玻尔在卢瑟福所提出的核模型的基础上,结合原子光谱的经验规律,应用普朗克于1900年提出的量子假说,和爱因斯坦于1905年提出的光子假说,提出了原子所具有的能量形成不连续的能级,当能级发生跃迁时,原子就发射出一定频率的光的假说。

⑵ 原子物理与量子物理的区别

一、两者研究方向不同

原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。它主要研究:原子的电子结构;原子光谱;原子之间或与其他物质的碰撞过程和相互作用。

量子物理是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论它与相对论一起构成现代物理学的理论基础。

二、两者科学运用不同

原子物理学的发展对激光技术的产生和发展,作出过很大的贡献。激光出现以后,用激光技术来研究原子物理学问题,实验精度有了很大提高,因此又发现了很多新现象和新问题。射频和微波波谱学新实验方法的建立,也成为研究原子光谱线的精细结构的有力工具。

量子物理不仅是现代物理学的基础理论之一,在化学等学科和许多近代技术中得到广泛应用。没有量子物理作为工具,就不可能有化学、生物、医学以及其他每一个关键学科的引人入胜的进展。量子物理的杰作改变了我们的世界,科学革命为这个世界带来了的福音,也带来了潜在的威胁。

(2)原子物理学是什么理论扩展阅读

量子物理的基本要点:

一、波函数

系统的行为用薛定谔方程描述,方程的解称为波函数。系统的完整信息用它的波函数表述,通过波函数可以计算任意可观察量的可能值。在空间给定体积内找到一个电子的概率正比于波函数幅值的平方,因此,粒子的位置分布在波函数所在的体积内。

粒子的动量依赖于波函数的斜率,波函数越陡,动量越大。斜率是变化的,因此动量也是分布的。这样,有必要放弃位移和速度能确定到任意精度的经典图象,而采纳一种模糊的概率图象,这也是量子力学的核心。

二、波的干涉

波相加还是相减取决于它们的相位,振幅同相时相加,反相时相减。当波沿着几条路径从波源到达接收器,比如光的双缝干涉,一般会产生干涉图样。粒子遵循波动方程,必有类似的行为,如电子衍射。至此,类推似乎是合理的,除非要考察波的本性。

波通常认为是媒质中的一种扰动,然而量子力学中没有媒质,从某中意义上说根本就没有波,波函数本质上只是我们对系统信息的一种陈述。

三、对称性和全同性

氦原子由两个电子围绕一个核运动而构成,氦原子的波函数描述了每一个电子的位置。然而没有办法区分哪个电子究竟是哪个电子,因此,电子交换后看不出体系有何变化,也就是说在给定位置找到电子的概率不变。

由于概率依赖于波函数的幅值的平方,因而粒子交换后体系的波函数与原始波函数的关系只可能是下面的一种:要么与原波函数相同,要么改变符号,即乘以-1。

⑶ 原子物理、核物理、粒子物理学的关系

原子物理主要研究原子核及核外电子,比如跃迁、电子轨道等;核物理研究原子核,比如衰变、裂变等,范围最小;粒子物粒除了研究构成原子核的质子、中子、电子外还研究其它粒子,如介子、重子、强子等,范围最广,包含了原子物理和核物理。

⑷ 量子力学(含原子物理学)是什么意思

量子力学是描述微观物质的理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。
量子力学是非常小的领域——亚原子粒子的主要物理学理论 。在微观世界里,粒子不是台球,而是嗡嗡跳跃的概率云,它们不只存在一个位置,也不会从点A通过一条单一路径到达点B。根据量子理论,粒子的行为常常像波,用于描述粒子行为的“波函数”预测一个粒子可能的特性,诸如它的位置和速度,而非确定的特性 。物理学中有些怪异的概念,诸如纠缠和不确定性原理,就源于量子力学。量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。

⑸ 什么是原子核物理

原子核物理学
原子核是比原子更深一个层次的物质结构。原子核物理学是研究原子核的性质,它的内部结构、内部运动、内部激发状态、衰变过程、裂变过程以及它们之间的反应过程的学科。

在原子核被发现以后,曾经以为原子核是由质子和电子组成的。1932年,英国科学家乍得威克发现了中子,这才使人们认识到原子核可能具有更复杂的结构。

质子和中子统称为核子,中子不带电,质子带正电荷,因此质子间存在着静电排斥力。万有引力虽然使各核子相互吸引,但在两个质子之间的静电排斥力比它们之间的万有引力要大万亿亿倍以上。所以,一定存在第三种基本相互作用——强相互作用力。人们将核子结合成为原子核的力称为核力,核力来源于强相互作用。从原子核的大小以及核子和核子碰撞时的截面估计,核力的有效作用距离力程约为一千万亿分之一米。

原子核主要由强相互作用将核子结合而成,当原子核的结构发生变化或原子核之间发生反应时,要吸收或放出很大的能量。一些很重的原子核(如铀原子核)在吸收一个中子以后,会裂变成为两个较轻的原子核,同时放出二十到三十中子和很大的能量。两个很轻的原子核也能熔合成为一个较重的原子核,同时放出巨大的能量。这种原子核熔合过程叫作聚变。

粒子加速器的发明和裂变反应堆的建成,使人们能够获得大量能量较高的质子、电子、光子、原子核和大量中子。可以用来轰击原子核,系统地开展关于原子核的性质及其运动、转化和相互作用过程的研究。

高能物理研究发现,核子还有内部结构。原子核结构是一个比原子结构更为复杂的研究领域,目前,已有的关于原子核结构,原子核反应和衰变的理论都是模型理论,其中一部分相当成功地反映了原子核的客观规律。

一公斤铀裂变时所释放的能量,相当于约两万吨TNT炸药爆炸时所释放的能量,一公斤重氢原子核聚变所释放的能量还要大几倍。轻原子核聚变为较重的原子核并释放能量的过程,就是太阳几十亿年来的能量来源,也是热核爆炸的能量来源。如果能使重氢的聚变反应有控制地进行,那么能源问题就将得到较彻底的解决。由于放射性同位素所放出的射线能产生各种物理效应、化学效应和生物效应,因此放射性同位素在工业、农业、医学和科学研究中有广泛的应用。

⑹ 什么是原子核物理学

英文名称:nuclear physics,属于物理学分支。研究原子核的结构和变化规律,获得射线束并将其用于探测、分析的技术,以及研究同核能、核技术应用有关的物理问题。简称核物理。如果说光的色散性揭示了引斥力与距离的平方成反的原因,那么光的叠加干涉也就是所谓的量子纠缠就揭示了电荷的引斥力和原子核力的产生原因。
起源

1896年,A.-H.贝可勒尔发现天然放射性,人类首次观测到核变化,通常将它作为核物理学的开端。此后的40多年,主要从事放射性衰变规律和射线性质的研究,并用射线对原子核作初步探讨;还创建了一系列探测方法和测量仪器,一些基本设备如各种计数器、电离室等沿用至今。探测、记录射线并测定其性质,一直是核物理研究和核技术应用的一个中心环节。等等
原理

放射性衰变的研究证明了一种元素可以通过α衰变或β衰变而变成另一种元素,推翻了元素不可改变的观点;还确立了衰变规律的统计性。统计性是微观世界物质运动的一个根本性质,同经典力学和电磁学所研究的宏观世界物质运动有原则上的区别。衰变中发射的能量很大的射线,特别是α射线,为探索原子结构提供了前所未有的武器。1911年,E.卢瑟福等用α射线轰击各种原子,从射线偏折的分析确立了原子的核式结构,并提出原子结构的行星模型,为原子物理学奠定基础;还首次提出原子核这个词,不久便初步弄清了原子的壳层结构和其电子的运动规律,建立和发展了阐明微观世界物质运动规律的量子力学。

⑺ 原子物理学是怎样诞生的

原子的内部结构又是个什么样子呢?在20世纪初,科学界说法不一。有的说原子像台球,而英国物理学家卢瑟福的老师汤姆生认为像西瓜。

“老师的假说到底对不对呢?”卢瑟福想,假如说原子真像个西瓜,如果用比原子更小的粒子做“炮弹”来轰击它,必然很容易穿过它而笔直地前进。他决定用一种叫做“α”的粒子做“炮弹”来做一次轰击原子的实验。

卢瑟福在助手盖革和马斯登的帮助下制作了一部α射线侦测仪器。卢瑟福通过实验发现,情况并不是像老师说的那样。卢瑟福把原子结构模型形象地比喻为“小太阳系”:“原子既不是台球,也不是西瓜,而是一个空旷的结构。它的中心有个体积极小,带阳电的核,外面绕着核转的是带阴电的电子。打个比方:原子核好比太阳,是原子的中心;电子就像行星,绕着太阳转……”

1911年卢瑟福公开了他的研究成果。卢瑟福创立的崭新的原子结构理论具有划时代的意义,原子物理学从此诞生了!

⑻ 原子物理的发展史

原子物理学 atomic physics 研究原子的结构、运动规律及相互作用的物理学分支学科。主要研究:①原子的电子结构。②原子的能级结构和光谱规律。③原子之间或原子与其他物质的碰撞和相互作用。 原子结构模型的建立 1897年J.J.汤姆孙发现电子,论证电子普遍存在,并确认它是各种原子的共同组成部分之后,对于在中性的原子内,正电荷和电子质量以及电子是如何分布的,成为摆在物理学家面前的首要问题。1904年汤姆孙提出原子的正电荷和质量均匀分布于原子体内、电子镶嵌在体内的“葡萄干圆面包模型”。1911年E.卢瑟福分析α粒子散射实验与汤姆孙原子模型的明显歧离,提出原子的有核模型,原子的正电荷和质量分布在中心很小的核内。原子的有核模型 得到 a 粒子散 射更为深入的实验研究支持而被 普遍接受。但是在原子的有核模型中,电子绕核运动有加速度,根据经典电动力学,将不断向外辐射能量,电子将最终塌缩于原子核,因而原子是不稳定的;而且电子绕核运动发出连续谱也与实际上原子的线状光谱不符。这些事实表明,研究宏观现象确立的经典电动力学不适用于原子中的微观过程,因此需要进一步探索原子内部运动规律,建立适合于微观过程的原子理论。 原子物理学和量子力学 1913年N.玻尔在卢瑟福的原子有核模型基础上,结合原子光谱的经验规律,应用M.普朗克、A.爱因斯坦的量子概念,提出原子结构的新假设,建立玻尔氢原子理论,成功地解决了原子的稳定性问题,并说明了原子光 谱的规律性 。玻尔理 论是原子理论发展的重要里程碑。1924年 L. V.德布罗意提出微观粒子具有波粒二象性 ,不久被实验证实,1926年E.薛定谔、W.K.海森伯、M.玻恩、P.A.M.狄拉克等人建立微观粒子运动规律的量子力学。量子力学的建立为解决原子问题提供了锐利的武器,量子力学在阐明原子现象的种种问题中也逐步发展和完善,从而开创了近代物理的新时代。20世纪30年代可称为原子物理的时代。原子物理学取得丰硕的成果,原子能级的结构和能级的精细结构、原子在外场中的能级结构、原子光谱规律、原子的电子壳层结构以及原子的深 层能 级结构和X射线标识谱等问题相继圆满解决,所获得的关于原子结构的种种知识成为了解分子的结构,固体的性质,以及说明许多宏观现象和规律的基础。 原子物理学的新阶段 20世纪50年代末期,由于空间技术、空间物理和核试验的发展,不仅要求精确测定原子光谱的波长 、研究原子的能级, 而且对于谱线强度 、跃迁几率、碰撞截面等也要求提供准确的数据,因此要求对原子物理进行新的实验和理论探索。原子物理学的发展曾对激光的产生和激光技术的发展作出重大贡献。激光问世之后,应用激光技术研究原子物理学问题,实验精度有了很大提高,从而发现很多新现象和新问题。微波波谱学新的实验方法也成为研究原子能级结构的有力工具。因此原子物理学的研究又重新成为很活跃的领域。原子碰撞研究已成为原子物理学的一个主要发展方向,研究课题非常广泛,涉及光子、电子、离子、中性原子等与原子和分子碰撞的物理过程,应用和发展了电子束、离子束、粒子加速器、同步辐射加速器、激光光源和各种能谱仪等测谱设备,以及电子、离子探测器、光电探测器和微弱信号检测方法,电子计算机的应用,加速了理论计算和实验数据的处理。原子光谱与激光技术的结合,达到了前所未有的高分辨率,利用激光高功率密度发展了非线性光学,饱和吸收、双光子吸收和多光子吸收等成为原子物理学中另一个十分活跃的研究方向 。极端物理条件( 高温、低温、高压、强场)下和特殊条件( 高激发态、高离化态 )下原子的结构和物性的研究也已成为原子物理研究中的重要课题。60年代开始发展起来的将低能离子长时间约束在一个很小的空间范围内运动的离子存储技术,使人们可以从实验上近似得到孤立的、静止不动的单个带电粒子。近年来利用激光技术将中性原子降温减速并约束于空间很小范围内的原子囚禁技术取得重要的成果。这种存储技术正被应用于多种原子物理测量工作,测量精度更进一步提高,已成为量子电动力学理论最精确的检验手段之一,并可望建立新的精度更高的光频标准。 原子物理学是其他基础科学和技术科学如化学、生物学、空间物理、天体物理、物理力学等的基础,激光技术、核技术和空间技术的研究也都要求原子物理学提供重要数据,因此研究和发展原子物理学至今仍有十分重要的理论和实际意义。

⑼ 原子物理与结构化学的区别是什么

原子物理是研究原子本身的性质,就算研究原子与原子之间的相互作用,原子与原子的整体的化学性质不发生改变;结构化学注重粒子与粒子相互作用,并且不同的作用方式会引起集合体的性质的变化。

⑽ 原子物理属不属于量子力学的分支

量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。

原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。它主要研究:原子的电子结构;原子光谱;原子之间或与其他物质的碰撞过程和相互作用。
所以不属于啦~~~~~

阅读全文

与原子物理学是什么理论相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:783
乙酸乙酯化学式怎么算 浏览:1440
沈阳初中的数学是什么版本的 浏览:1401
华为手机家人共享如何查看地理位置 浏览:1089
一氧化碳还原氧化铝化学方程式怎么配平 浏览:929
数学c什么意思是什么意思是什么 浏览:1459
中考初中地理如何补 浏览:1350
360浏览器历史在哪里下载迅雷下载 浏览:745
数学奥数卡怎么办 浏览:1444
如何回答地理是什么 浏览:1076
win7如何删除电脑文件浏览历史 浏览:1095
大学物理实验干什么用的到 浏览:1531
二年级上册数学框框怎么填 浏览:1750
西安瑞禧生物科技有限公司怎么样 浏览:1135
武大的分析化学怎么样 浏览:1288
ige电化学发光偏高怎么办 浏览:1378
学而思初中英语和语文怎么样 浏览:1716
下列哪个水飞蓟素化学结构 浏览:1467
化学理学哪些专业好 浏览:1523
数学中的棱的意思是什么 浏览:1109