❶ 物理CPU,物理cpu内核,逻辑cpu概念详解
CPU(Central Processing Unit)是中央处理单元,
本文介绍物理CPU,物理CPU内核,逻辑CPU,
以及他们三者之间的关系,
一个物理CPU可以有1个或者多个物理内核,
一个物理内核可以作为1个或者2个逻辑CPU。
物理CPU就是计算机上实际安装的CPU,
物理CPU数就是主板上实际插入的CPU数量。
在Linux上查看/proc/cpuinfo,
其中的physical id就是每个物理CPU的id,
有几个不同的physical id就有几个物理CPU。
每颗物理CPU可以有1个或者多个物理内核,
通常每颗物理CPU的内核数都是固定的,
单核CPU就是有1个物理内核,
双核CPU就是有2个物理内核。
在Linux上查看/proc/cpuinfo,
其中的core id就是每颗物理CPU的物理内核id,
有几个不同的core id就有几个物理内核。
总的CPU物理内核数 = 物理CPU数 * 每颗物理CPU的内核数
操作系统可以使用逻辑CPU来模拟真实CPU。
在没有多核处理器的时候,
一个物理CPU只能有一个物理内核,
而现在有了多核技术,
一个物理CPU可以有多个物理内核,
可以把一个CPU当作多个CPU使用,
也就是所谓的逻辑CPU。
没有开启超线程时,逻辑CPU的个数就是总的CPU物理内核数。
然而开启超线程后,逻辑CPU的个数就是总的CPU物理内核数的两倍。
在Linux上查看/proc/cpuinfo,
其中的processor就是逻辑CPU,
有几个processor就有几个逻辑CPU。
总的逻辑CPU数 = 物理CPU个数 * 每颗物理CPU的核数 * 超线程数
总的逻辑CPU数 = 总的CPU物理内核数 * 超线程数
基于上面的基本概念,
理解一下常说的几核几线程。
如果计算机有一个物理CPU,
是双核的,支持超线程。
那么这台计算机就是双核四线程。
实际上几核几线程中的线程数就是逻辑CPU数。
对于两路四核超线程计算机,
两路指计算机有2个物理CPU,
每颗CPU中有4个物理内核,
CPU支持超线程,
就有242=16个逻辑CPU,
这就是通常所谓的16核计算机。
原文链接: https://blog.csdn.net/bugzeroman/article/details/89167528
【1】查看CPU型号:cpu型号是E7-4820
【2】查看物理cpu个数:物理核心数是2核
【3】查看逻辑cpu的个数:逻辑cpu个数是32个
【4】查看cpu是几核:cpu是8核
从上面查看结果来看:一共2个物理cpu,32个逻辑cpu,8个物理内核
逻辑CPU数量=物理cpu数量 x cpu cores 这个规格值
32不等于2*8,说明服务器的CPU支持超线程技术且开启了超线程。
load average 在32以下表示能正常运行。
❷ cpu核数是什么意思
CUP核数即一个CPU由多少个核心组成,核心数越多,代表这个CPU的运转速度越快,性能越好。对于同一个数据处理,一核CPU相当于1个人处理数据,双核CPU相当于2个人处理同一个数据,4核CPU相当于4个人去处理同一个数据,因此处理核心数越多,CPU的工作效率也就越高。
(2)如何理解cpu多核逻辑物理扩展阅读:
核心cpu主要分原生多核和封装多核。
原生多核指的是真正意义上的多核,最早由AMD提出,每个核心之间都是完全独立的,都拥有自己的前端总线,不会造成冲突,即使在高负载状况下,每个核心都能保证自己的性能不受太大的影响,通俗的说,原生多核的抗压能力强,但是需要先进的工艺,每扩展一个核心都需要很多的研发时间。
封装多核是只把多个核心直接封装在一起,比如Intel早期的PD双核系列,就是把两个单核直接封装在一起,但两核心只能共同拥有一条前端总线,在两个核心满载时,两个核心会争抢前端总线,导致性能大幅度下降。
要提高封装多核的性能,在多任务的高压下尽量减少性能损失,只能不断的扩大前端总线的总体大小,来弥补多核心争抢资源带来的性能损失,但这样做只能在一定程度上弥补性能的不足,和原生的比起来还是差了很多,而且后者成本比较高,优点在于多核心的发展要比原生快的多。
参考资料:网络-cpu
❸ 多核是什么意思,核和CPU是什么关系
多核是指在一枚处理器(processor)中集成两个或多个完整的计算引擎。核跟CPU的关系是:核属于CPU的一部分。
多核CPU就是基板上集成有多个单核CPU,早期PD双核需要北桥来控制分配任务,核心之间存在抢二级缓存的情况,后期酷睿自己集成了任务分配系统,再搭配操作系统就能真正同时开工,2个核心同时处理2“份”任务。
(3)如何理解cpu多核逻辑物理扩展阅读
与单核处理器相比,多核处理器在体系结构、软件、功耗和安全性设计等方面面临着巨大的挑战,但也蕴含着巨大的潜能。
多核能利用集成度提高带来的诸多好处,让芯片的性能成倍地增加。
多核处理器比单核处理器具有性能和效率优势,多核处理器将会成为被广泛采用的计算模型。在驱动pc安全性和虚拟化技术的重大进程过程中,多核处理器扮演着中心作用,这些安全性和虚拟化技术的开发用于为商业计算市场提供更大的安全性、更好的资源利用率、创造更大价值。
❹ cpu多核这个核具体准确的说是什么
多核单从硬件的角度上看是多个物理核心,就是实际上一颗U里面有多个运算核心,现在的多核是共同处理一个程序,比如解压一个WINRAR文件,多个核心共同参与,每个核心使用率就低了,共同完成,比如说这个核心处理这部分,那部分核心处理另一部分,原则上讲是可以加快处理速度的
多核的话,每个核都有寄存器,加在一块就是整块U的寄存器,总线也是共用的,不过理论上总线的速度还是比U的总体速度要大的,不然限制了U的发展,再者就是单核双线程,比如Intel的i3 i5的CPU都是双核四线程,i7是四核八线程,单核的处理能力更强了
有什么要问的还可交流,我对硬件这一块有一定了解
❺ cpu物理核与逻辑核的关系
1.首先要明确物理cpu个数、核数、逻辑cpu数的概念 1.物理cpu数:主板上实际插入的cpu数量,可以数不重复的 physical id 有几个(physical id) 2.cpu核数:单块CPU上面能处理...
2.通过查看/proc/cpuinfo来产看cpu相关信息 1.物理cpu数:[XXXX@server ~]# grep ‘physical id’ /proc/cpuinfo|sort|uniq|wc -l 2...
❻ 什么是多核处理器
CPU作为电脑的核心组成部份,它的好坏直接影响到电脑的性能。下面是我带来的关于什么是多核处理器的内容,欢迎阅读!
什么是多核处理器:
多核心 cpu 主要分原生多核和封装多核。原生多核指的是真正意义上的多核,最早由AMD提出,每个核心之间都是完全独立的,都拥有自己的前端总线,不会造成冲突,即使在高负载状况下,每个核心都能保证自己的性能不受太大的影响,通俗的说,原生多核的抗压能力强,但是需要先进的工艺,每扩展一个核心都需要很多的研发时间。封装多核是只把多个核心直接封装在一起,比如Intel早期的PD双核系列,就是把两个单核直接封装在一起,和原生的比起来还是差了很多,而且后者成本比较高,优点在于多核心的发展要比原生快的多。
原生多核最原生多核指的是真正意义上的多核,早由AMD提出,每个核心之间都是完全独立的,都拥有自己的前端总线,不会造成冲突,即使在高负载状况下,每个核心都能保证自己的性能不受太大的影响,通俗的说,原生多核的抗压能力强,但是需要先进的工艺,每扩展一个核心都需要很多的研发时间。折叠封装多核封装多核是只把多个核心直接封装在一起,比如Intel早期的PD双核系列,就是把两个单核直接封装在一起,但两核心只能共同拥有一条前端总线,在两个核心满载时,两个核心会争抢前端总线,导致性能大幅度下降,所以早期的PD被扣上了"高频低能"的帽子,要提高封装多核的性能,在多任务的高压下尽量减少性能损失,只能不断的扩大前端总线的总体大小,来弥补多核心争抢资源带来的性能损失,但这样做只能在一定程度上弥补性能的不足,和原生的比起来还是差了很多,而且后者成本比较高,优点在于多核心的发展要比原生快的多。
双核双核就是2个核心核心(Die)又称为内核,是CPU最重要的组成部分。CPU中心那块隆起的芯片就是核心,是由单晶硅以一定的生产工艺制造出来的,CPU所有的计算、接受/存储命令、处理数据都由核心执行。各种CPU核心都具有固定的逻辑结构,一级缓存、二级缓存、执行单元、指令级单元和总线接口等逻辑单元都会有科学的布局。
折叠编辑本段技术原理从双核技术本身来看,到底什么是双内核?毫无疑问双内核应该具备两个物理上的运算内核,而这两个内核的设计应用方式却大有 文章 可作。据现有的资料显示,AMD Opteron 处理器从一开始设计时就考虑到了添加第二个内核,两个CPU内核使用相同的系统请求接口SRI、HyperTransport技术和内存控制器,兼容90纳米单内核处理器所使用的940引脚接口。而英特尔的双核心却仅仅是使用两个完整的CPU封装在一起,连接到同一个前端总线上。
可以说,AMD的解决方案是真正的"双核",而英特尔的解决方案则是"双芯"。可以设想,这样的两个核心必然会产生总线争抢,影响性能。不仅如此,还对于未来更多核心的集成埋下了隐患,因为会加剧处理器争用前端总线带宽,成为提升系统性能的瓶颈,而这是由架构决定的。
因此可以说,AMD的技术架构为实现双核和多核奠定了坚实的基础。AMD直连架构(也就是通过超传输技术让CPU内核直接跟外部I/O相连,不通过前端总线)和集成内存控制器技术,使得每个内核都自己的高速缓存可资遣用,都有自己的专用车道直通I/O,没有资源争抢的问题,实现双核和多核更容易。而Intel是多个核心共享二级缓存、共同使用前端总线的,当内核增多,核心的处理能力增强时,像多个城市群利用一个快速路,车辆很多快速路上肯定要遇到堵车的问题。
HT技术是超线程技术,是造就了PENTIUM 4的一个辉煌时代的武器,尽管它被评为失败的技术,但是却对P4起一定推广作用,双核心处理器是全新推出的处理器类别;HT技术是在处理器实现2个逻辑处理器,是充分利用处理器资源,双核心处理器是集成2个物理核心,是实际意义上的双核心处理器。
其实引用《现代计算机》杂志所比喻的HT技术好比是一个能用双手同时 炒菜 的厨师,并且一次一次把一碟菜放到桌面;而双核心处理器好比2个厨师炒两个菜,并同时把两个菜送到桌面。很显然双核心处理器性能要更优越。按照技术角度PENTIUM D 8XX系列不是实际意义上的双核心处理器,只是两个处理器集成,但是PENTIUM D 9XX就是实际意义上双核心处理器,而K8从一开始就是实际意义上双核心处理器。
看了什么是多核处理器文章内容的人还看:
1. CPU的处理技术有哪些
2. CPU怎样设置才能变得更快
3. 什么是双核技术
4. cpu和gpu有什么区别?哪个性能好
5. CPU怎么查看
6. cpu双核心四线程什么意思
7. 玩转GTA5的千元级多核CPU推荐
8. cpu买什么好
❼ CPU逻辑核心数和物理核心数是什么意思
物理
核心
数就是所谓的几核处理器,
逻辑
核心就是
超线程
。
单核处理器
开启超线程,逻辑核心是2,物理核心是1。超线程得来的逻辑核心与物理核心差距很大。你这个就是单核双
线程
。
❽ CPU的基础知识
我们通常会将CPU比喻为人类的大脑,是计算机的核心硬件,决定了一台电脑的运算性能好坏。我们在选购CPU的时候,通常都会在网上查询处理器型号参数,主要是看主频、核心、线程、缓存、架构等参数,下面就让我带你去看看CPU的基础知识吧,希望能帮助到大家!
CPU的一些基本知识 总结
关于CPU和程序的执行
CPU是计算机的大脑。
1、程序的运行过程,实际上是程序涉及到的、未涉及到的一大堆的指令的执行过程。
当程序要执行的部分被装载到内存后,CPU要从内存中取出指令,然后指令解码(以便知道类型和操作数,简单的理解为CPU要知道这是什么指令),然后执行该指令。再然后取下一个指令、解码、执行,以此类推直到程序退出。
2、这个取指、解码、执行三个过程构成一个CPU的基本周期。
3、每个CPU都有一套自己可以执行的专门的指令集(注意,这部分指令是CPU提供的,CPU-Z软件可查看)。
正是因为不同CPU架构的指令集不同,使得__86处理器不能执行ARM程序,ARM程序也不能执行__86程序。(Intel和AMD都使用__86指令集,手机绝大多数使用ARM指令集)。
注:指令集的软硬件层次之分:硬件指令集是硬件层次上由CPU自身提供的可执行的指令集合。软件指令集是指语言程序库所提供的指令,只要安装了该语言的程序库,指令就可以执行。
4、由于CPU访问内存以得到指令或数据的时间要比执行指令花费的时间长很多,因此在CPU内部提供了一些用来保存关键变量、临时数据等信息的通用寄存器。
所以,CPU需要提供 一些特定的指令,使得可以从内存中读取数据存入寄存器以及可以将寄存器数据存入内存。
此外还需要提供加法、减、not/and/or等基本运算指令,而乘除法运算都是推算出来的(支持的基本运算指令参见ALU Functions),所以乘除法的速度要慢的多。这也是算法里在考虑时间复杂度时常常忽略加减法次数带来的影响,而考虑乘除法的次数的原因。
5、除了通用寄存器,还有一些特殊的寄存器。典型的如:
PC:program counter,表示程序计数器,它保存了将要取出的下一条指令的内存地址,指令取出后,就会更新该寄存器指向下一条指令。
堆栈指针:指向内存当前栈的顶端,包含了每个函数执行过程的栈帧,该栈帧中保存了该函数相关的输入参数、局部变量、以及一些没有保存在寄存器中的临时变量。
PSW:program status word,表示程序状态字,这个寄存器内保存了一些控制位,比如CPU的优先级、CPU的工作模式(用户态还是内核态模式)等。
6、在CPU进行进程切换的时候,需要将寄存器中和当前进程有关的状态数据写入内存对应的位置(内核中该进程的栈空间)保存起来,当切换回该进程时,需要从内存中拷贝回寄存器中。即上下文切换时,需要保护现场和恢复现场。
7、为了改善性能,CPU已经不是单条取指-->解码-->执行的路线,而是分别为这3个过程分别提供独立的取值单元,解码单元以及执行单元。这样就形成了流水线模式。
例如,流水线的最后一个单元——执行单元正在执行第n条指令,而前一个单元可以对第n+1条指令进行解码,再前一个单元即取指单元可以去读取第n+2条指令。这是三阶段的流水线,还可能会有更长的流水线模式。
8、更优化的CPU架构是superscalar架构(超标量架构)。这种架构将取指、解码、执行单元分开,有大量的执行单元,然后每个取指+解码的部分都以并行的方式运行。比如有2个取指+解码的并行工作线路,每个工作线路都将解码后的指令放入一个缓存缓冲区等待执行单元去取出执行。
9、除了嵌入式系统,多数CPU都有两种工作模式:内核态和用户态。这两种工作模式是由PSW寄存器上的一个二进制位来控制的。
10、内核态的CPU,可以执行指令集中的所有指令,并使用硬件的所有功能。
11、用户态的CPU,只允许执行指令集中的部分指令。一般而言,IO相关和把内存保护相关的所有执行在用户态下都是被禁止的,此外 其它 一些特权指令也是被禁止的,比如用户态下不能将PSW的模式设置控制位设置成内核态。
12、用户态CPU想要执行特权操作,需要发起系统调用来请求内核帮忙完成对应的操作。其实是在发起系统调用后,CPU会执行trap指令陷入(trap)到内核。当特权操作完成后,需要执行一个指令让CPU返回到用户态。
13、除了系统调用会陷入内核,更多的是硬件会引起trap行为陷入内核,使得CPU控制权可以回到 操作系统 ,以便操作系统去决定如何处理硬件异常。
关于CPU的基本组成
1、CPU是用来运算的(加法运算+、乘法运算__、逻辑运算and not or等),例如c=a+b。
2、运算操作涉及到数据输入(input)、处理、数据输出(output),a和b是输入数据,加法运算是处理,c是输出数据。
3、CPU需要使用一个叫做存储器(也就是各种寄存器)的东西保存输入和输出数据。以下是几种常见的寄存器(前文也介绍了一些)
MAR: memory address register,保存将要被访问数据在内存中哪个地址处,保存的是地址值
MDR: memory data register,保存从内存读取进来的数据或将要写入内存的数据,保存的是数据值
AC: Accumulator,保存算术运算和逻辑运算的中间结果,保存的是数据值
PC: Program Counter,保存下一个将要被执行指令的地址,保存的是地址值
CIR: current instruction register,保存当前正在执行的指令
4、CPU还要将一些常用的基本运算工具(如加法器)放进CPU,这部分负责运算,称为算术逻辑单元(ALU, Arithmetic Logic Unit)。
5、CPU中还有一个控制器(CU, Control Unit),负责将存储器中的数据送到ALU中去做运算,并将运算后的结果存回到存储器中。
控制器还包含了一些控制信号。
5、控制器之所以知道数据放哪里、做什么运算(比如是做加法还是逻辑运算?)都是由指令告诉控制器的,每个指令对应一个基本操作,比如加法运算对应一个指令。
6、例如,将两个MDR寄存器(保存了来自内存的两个数据)中的值拷贝到ALU中,然后根据指定的操作指令执行加法运算,将运算结果拷贝会一个MDR寄存器中,最后写入到内存。
7、这就是冯诺依曼结构图,也就是现在计算机的结构图。
关于CPU的多核和多线程
1、CPU的物理个数由主板上的插槽数量决定,每个CPU可以有多核心,每核心可能会有多线程。
2、多核CPU的每核(每核都是一个小芯片),在OS看来都是一个独立的CPU。
3、对于超线程CPU来说,每核CPU可以有多个线程(数量是两个,比如1核双线程,2核4线程,4核8线程),每个线程都是一个虚拟的逻辑CPU(比如windows下是以逻辑处理器的名称称呼的),而每个线程在OS看来也是独立的CPU。
这是欺骗操作系统的行为,在物理上仍然只有1核,只不过在超线程CPU的角度上看,它认为它的超线程会加速程序的运行。
4、要发挥超线程优势,需要操作系统对超线程有专门的优化。
5、多线程的CPU在能力上,比非多线程的CPU核心要更强,但每个线程不足以与独立的CPU核心能力相比较。
6、每核上的多线程CPU都共享该核的CPU资源。
例如,假设每核CPU都只有一个"发动机"资源,那么线程1这个虚拟CPU使用了这个"发动机"后,线程2就没法使用,只能等待。
所以,超线程技术的主要目的是为了增加流水线(参见前文对流水线的解释)上更多个独立的指令,这样线程1和线程2在流水线上就尽量不会争抢该核CPU资源。所以,超线程技术利用了superscalar(超标量)架构的优点。
7、多线程意味着每核可以有多个线程的状态。比如某核的线程1空闲,线程2运行。
8、多线程没有提供真正意义上的并行处理,每核CPU在某一时刻仍然只能运行一个进程,因为线程1和线程2是共享某核CPU资源的。可以简单的认为每核CPU在独立执行进程的能力上,有一个资源是唯一的,线程1获取了该资源,线程2就没法获取。
但是,线程1和线程2在很多方面上是可以并行执行的。比如可以并行取指、并行解码、并行执行指令等。所以虽然单核在同一时间只能执行一个进程,但线程1和线程2可以互相帮助,加速进程的执行。
并且,如果线程1在某一时刻获取了该核执行进程的能力,假设此刻该进程发出了IO请求,于是线程1掌握的执行进程的能力,就可以被线程2获取,即切换到线程2。这是在执行线程间的切换,是非常轻量级的。(WIKI: if resources for one process are not available, then another process can continue if its resources are available)
9、多线程可能会出现一种现象:假如2核4线程CPU,有两个进程要被调度,那么只有两个线程会处于运行状态,如果这两个线程是在同一核上,则另一核完全空转,处于浪费状态。更期望的结果是每核上都有一个CPU分别调度这两个进程。
关于CPU上的高速缓存
1、最高速的缓存是CPU的寄存器,它们和CPU的材料相同,最靠近CPU或最接近CPU,访问它们没有时延(<1ns)。但容量很小,小于1kb。
32bit:32__32比特=128字节
64bit:64__64比特=512字节
2、寄存器之下,是CPU的高速缓存。分为L1缓存、L2缓存、L3缓存,每层速度按数量级递减、容量也越来越大。
3、每核心都有一个自己的L1缓存。L1缓存分两种:L1指令缓存(L1-icache)和L1数据缓存(L1-dcache)。L1指令缓存用来存放已解码指令,L1数据缓存用来放访问非常频繁的数据。
4、L2缓存用来存放近期使用过的内存数据。更严格地说,存放的是很可能将来会被CPU使用的数据。
5、多数多核CPU的各核都各自拥有一个L2缓存,但也有多核共享L2缓存的设计。无论如何,L1是各核私有的(但对某核内的多线程是共享的)。
电脑 硬件知识 大全(CPU篇)
一, CPU(中央处理器)全球目前分两家来做,一家叫英特尔(牙膏大厂)一家叫AMD(农企),这两家CPU还是很好分辨的,电子硬件铁律就是买新不买旧!所以咱们只需要分辨出什么是新产品就可以!
1、 先说一个误区,以前所有人都觉的CPU要高,我多少多少预算,我就要买i7,i9。 其实这个是不对的,i3 i5 i7 i9 这只是英特尔对自家消费级产品的一个等级划分而已,而且,CPU(中央处理器)这个东西仅仅是像人类大脑一样,分辨数据,计算数据而已,跟整体电脑性能几乎没太大关系,也可以换个思路想,你觉得健全的身体更有作用呢还是有一个天才般的头脑更强呢?这个问题看似很蠢,但是现实一点就是,可能你的工作需求根本不需要一个天才般得头脑,更需要灵活的四肢,口语表达能力。你的感官等等。人类站在生物链的顶端不仅仅只靠大脑而已。
↑ 上面说的有点多,不过只是让你们对电脑从新认知一下,颠覆你们被奸商洗脑的思想
2、说英特尔之前大家可以先网络一个协议,叫《瓦森纳协定》,全称为《关于常规武器和两用物品及技术出口控制的瓦森纳协定》目前共有美国、日本(无关紧要)、俄罗斯(无关紧要)、等40个成员国(不含中国),对某些国家禁止出售高技术产品等等。为什么在咱们家很少有公司能研发高技术产物,原因就在这个瓦森纳协定里面,任何高科技产物,军事方面医疗方面,生物方面美国都禁止其他国家出口给咱们,之前说的天河二号表示抱歉,天河二号前段处理器为4096颗FT-1500 16核心SPARC V9架构处理器,40nm制程,FT-1500处理器是由国防科技大学为天河1研发(天朝),主板是由浪潮集团研发(天朝)。并不全部自主研发,中央处理器为英特尔提供,型号为E5 2692v2 12核处理器,16000个运算节点,每个节点配备两颗E5 12核处理器,三个Phi 57核心的协处理器。
话说回来华为是真的强,作为电子硬件 爱好 的我是真的感受到华为的能力。自主研发能与美国高通抗衡。部分人说华为东拼西凑代工什么的,嗯?请现实点,没有一家公司能全部自主研发!你这是鸡蛋里面挑骨头
那么大家现在只能见到英特尔的 i 系列,也就是消费级处理器。 那么这么多 i 系列,怎么区分呢?
3、说到i 系列,就要 说说 英特尔这个公司,前两年是刚过40周年,发布了一个u,叫 i7 8086,这个u其实是致敬第一代__86架构 IMB PC处理器,所有PC端__86架构处理器的祖宗 Intel 8086,那么英特尔创始人之一戈登·摩尔在当时提出来一个很有意思的说法,延续至今,被大家称为摩尔定律!摩尔定律大概意思当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。换言之,每一美元所能买到的电脑性能,将每隔18-24个月翻一倍以上。这一定律揭示了信息技术进步的速度。那么英特尔也勉为其难的按照这个定律对自家处理器进行更新。
4、i7 6700(四核八线程 CPU主频3.4Ghz 最大睿频4.0Ghz 14nm工艺 )
i7 7700 (四核八线程 CPU主频3.6Ghz 最大睿频4.2Ghz 14nm工艺 )
i7 8700 (六核十二线程 CPU主频3.2Ghz 最大睿频4.6Ghz 14nm工艺 )
i7 9700K(八核八线程 CPU主频3.6Ghz 最大睿频4.9Ghz 14nm工艺 )
诶!有没有发现,同样是i7 但是具体参数不一样,核心也不一样,频率也不一样。那么i3 也好i5也好 i7也好,后面第一个数字就代表年份。按照摩尔定律,他们价格其实是一样的,老产品还会更便宜。也就是说你六年前能买到i7 6700,那么同样的价格能买到现在的i7 8700,这也是诸多奸商行骗的一个手段,也是线下卖电脑为什么要说,i3不好i5好,顶配买i7。一方面是可以用老产品来混淆新产品,二是给你灌输一个思想,买电脑处理器好就行。
那么区分就很简单了,以i3 8100为例子,8就是第八代酷睿处理器,100说的是规格也可以叫核心完整性,你可以比喻一下,第八代处理器完整度是1000 你100 300 400就可以划分出来,(当然性能不是按照这么划分,规格按照这个参数比喻一下)那么i3 8350K 中的350就是i3 这个等级中最高的(范围100-350)超过350,那就是400,这个规格就被划分到 i5 8400,那么i5 划分区域为(400-650)上至700 那就是i7 8700,是不是懂了!诶我去,原来就这么简单?还以为能有多难!同代产品,等级越高性能越好。但是不同代产品差距就很大!!!!
5、例子:i5 7400(四核四线程 CPU主频3.0Ghz 最大睿频3.5Ghz 14nm工艺 )
对标:i3 8100 (四核四线程 CPU主频3.6Ghz 无睿频加速 14nm工艺 )
对标:i3 7100 (二核四线程 CPU主频3.9Ghz 无睿频加速 14nm工艺 )
诶,i3 8100这个第八代处理器居然要比第七代i5 7400还要强?价格呢?i3 8100全新盒装1049元,(散片 845)。i5 7400性能低 全新盒装1299元(散片1030)。
是不是没有对比就没有伤害,更别提i3 7100这个渣渣了,所以并不是i5牛皮i7顶级,是根据工艺来判断,判断标准上面都写了。还有一点就是按照你的需求,尽管你是i7 9700K这样的CPU,你其他硬件跟不上,跟断手断脚没区别,还不如不买。那么如何来正确的搭配其他配件呢,啊哈哈哈哈哈,就看你们的留言了。支持过50人就继续更新。毕竟你们不支持我也没动力继续写下去呀。哈哈哈哈。
看不懂CPU?学会看CPU只需明白这5点,如此简单!
第一点:CPU型号的含义
现在呢,根据英特尔和AMD的方式,可以将处理器分为4个级别:
1、 入门:Core i3/Ryzen 3
2、 普通:Core i5/Ryzen 5
3、 高级:Core i7/Ryzen 7
4、 发烧:Core i9/Ryzen 9
在入门级下面,还有常见的英特尔的赛扬、AMD速龙处理器等等,而在发烧级上面,则有英特尔的__芯片组处理器以及AMD的线程撕裂者等等。
下面列举一个例子,详细解说其他部分,比如Intel Core i9-9900K!
其中,后面的第一个数字通常是表示第几代产品,而这里的“9900K”的第1个9则表示是第9代产品。后面的其他数字,则表示同一代产品中的各种型号。
一般情况下,数值越高越好,因为这通常表示更多的核心线程或更高的频率。
另外,英特尔CPU产品末尾带字母“K”,则表示可以超频。而且,英特尔CPU通常带有核显,如果带有”F”代表没有核显。
AMD的Ryzen处理器都可以超频,尾部的”__”通常表示意味着更高的处理器频率。但是AMD的处理器很少带核显,如果末尾有字母”G”,则表示带有核显。
第二点:CPU的规格参数
CPU的组成其实是很复杂的,有许多的不同的规格和参数,下面就简单讲其中几个相对更重要的规格参数!
1、核心数量:是指CPU的物理核心数量,一般情况下核心数量越多越好,建议4核起步
2、线程数量:是指CPU可以处理的独立进程数,通常线程数越多越好,而理论上线程数等于内核数。不过,随着多线程能力的加入(英特尔的超线程、AMD的SMT),一个物理核心是可以创建两个线程的。
3、CPU频率:是指芯片运行的速度,单位为GHz,数字越高越快。
4、CPU缓存:目前只有3个级别的缓存,分别为:L1的容量最小但速度最快,L2容量和速度居中,L3容量最大但速度低。
5、TDP:是指处理器在不进行AV__任务,保持基本频率时,全速运行所能产生的最大热量值,一般来说TDP越高性能越强。而我们了解这一点,是为了更好的选择合适的散热器!
6、IPC:是指同频性能,主要是用于不同架构的CPU之间的性能对比。但是,这个参数一般会不标注,需要各位朋友自己去看相关评测数据。
第三点:CPU对应主板的挑选
关于CPU对应主板的挑选,因为里面涉及比较多的点,比如插槽、 BIOS 以及芯片组等等,实际情况比较复杂,所以最好的 方法 就是,直接去官方网站查看CPU支持列表,同时咨询官方客服了解情况。
第四点:CPU型号的挑选
其实,我们想要了解CPU的知识,无非是想选择合适的CPU,使得电脑性价比更高,所以下面就来说一下如何根据实际情况选择CPU。
1、日常使用款
如果你只是简单的上网看视频、听音乐或者日常办公,那么双核心或者4核心的入门CPU都是可以的了。但是,考虑到4核心普及度,还是建议购买4核心的CPU。
2、游戏款
如果是想玩游戏,那么Intel i5或者Ryzen 5系列处理器基本就可以了,因为游戏性能更多是看显卡,所以综合一下,显卡花多点钱,整体性价比更高。
3、专业高性能款
如果你使用电脑时,偶尔需要会运行性能要求高的任务,比如视频编辑等等,但是不会作为专职使用。那么,英特尔的i7、i9或者AMD Ryzen7、Ryzen9处理器都是可以的。
4、 专业工作站款
如果你是专职于视频编辑,或者海量数据处理,那么建议使用HEDT平台的产品,主要是AMD的线程撕裂者处理器以及英特尔的__芯片组产品,因为它们具有大量的核心线程数量,适用于多线程任务处理。
5、 超频款
这个就简单了,现在AMD的处理器基本都开放了超频功能,而英特尔的CPU只有名称后缀带”K”字母,才开放了超频。另外,还有注意配套的主板芯片组等等。
第五点:电脑整体配置
CPU的重要性不言而喻,但是电脑是一个整体,我们还需要考虑显卡性能,存储性能等等。
如果电脑配置不平衡,那么整体性能会大幅度下降,正如上面所说,玩游戏的电脑需要侧重于显卡,打个比方在同等的条件下,i7处理器+GT__1050显卡的游戏性能,是比不上i5处理器+GT__1660显卡的。
而电脑存储性能,重点是容量,建议内存8GB起步,最好16GB。而电脑硬盘,大家都清楚SSD硬盘的性能是高于机械硬盘的。当然,还有其他需要考虑的问题,但是一定不要忘记整体配置的均衡是很重要的!
CPU的基础知识相关 文章 :
★ 电脑硬件的基础知识学习
★ 【电脑硬件知识】:电脑硬件基础知识你知多少?
★ cpu基础知识详解
★ 计算机硬件基本知识你知多少?
★ 【电脑硬件知识】:新手必备的四大电脑硬件基础常识
★ 电脑内存基础知识大全有哪些
★ 内存条的基础知识大全
★ 电脑入门,基础的硬件知识
★ 基础的硬件知识
★ 电脑主板的基础知识大全有哪些
❾ cpu的几核几线程如何理解,来个简单易懂的
1:几核指的是处理器有几个物理核心,比如说双核处理器,你可以理解为处理器内有2个核心,四核处理器就是内部有4个核心。
2:几线程指的是处理器是否支持超线程,比如一颗双核处理器,如果不支持超线程技术,那就是双核心双线程,但如果支持超线程技术,就是双核心四线程了,同理也有6核心12线程等,当然商用的平台有处理器可以做到一颗核心4个线程这里不多说了,楼主应该也不需要了解这些。
3:超线程的意思是,通过特定功能设计,把一颗处理器核心模拟为2个(或者更多)核心,让软件和系统可以更充分的利用CPU核心的性能、提升处理器工作效率,不过需要注意的是,超线程虽然虚拟单个处理器核心为多个内核,但是效率肯定是不可能达到单颗性能翻倍的,实际提升的效果取决于不同游戏、软件的优化情况。
以上纯手打,有问题可以追问我。
❿ CPU逻辑核心数和物理核心数是什么意思
一般来说,物理CPU个数×每颗核数就应该等于逻辑CPU的个数,如果不相等的话,则表示服务器的CPU支持超线程技术 ,所以您的电脑是双核的。
一 概念
① 物理CPU
实际Server中插槽上的CPU个数
物理cpu数量,可以数不重复的 physical id 有几个
② 逻辑CPU
Linux用户对 /proc/cpuinfo 这个文件肯定不陌生. 它是用来存储cpu硬件信息的
信息内容分别列出了processor 0 – n 的规格。这里需要注意,如果你认为n就是真实的cpu数的话, 就大错特错了
一般情况,我们认为一颗cpu可以有多核,加上intel的超线程技术(HT), 可以在逻辑上再分一倍数量的cpu core出来
逻辑CPU数量=物理cpu数量 x cpu cores 这个规格值 x 2(如果支持并开启ht)
备注一下:Linux下top查看的CPU也是逻辑CPU个数
③ CPU核数
一块CPU上面能处理数据的芯片组的数量、比如现在的i5 760,是双核心四线程的CPU、而 i5 2250 是四核心四线程的CPU