⑴ 物理九大基本学科
力学
声学
热学
分子物理学
电磁学
光学
原子物理学
原子核物理学
固体物理学
物理学是研究物质的结构、相互作用和运动规律以及它们的各种实际应用的科学.它是自然科学的基础,是近代科学技术的主要源泉.
物理学是一门基础学科.在物理学研究过程中形成和发展起来的基本概念、基本理论、基本实验手段和精密测量方法,不但成为其它学科诸如天文学、化学、生物学、地学、医学、农业科学和计量学等学科的组成部分,还推动了这些学科的发展.物理学还与其它学科相互渗透,产生了一系列交叉学科,如化学物理、生物物理、大气物理、海洋物理、地球物理、天体物理等.
物理学也是各种技术学科和工程学科的共同基础.在近代物理发展的基础上,产生了许多新的技术学科,如核能与其它能源技术,半导体电子技术,材料科学等,从而有力的促进了生产技术的发展和变革.19世纪以来,人类历史上的四次产业革命和工业革命都是以对物理某些领域的基本规律认识的突破为前提的.当代,物理学科研究的突破不断导致各种高新技术的产生和发展,从而在近代物理学与许多高科技学科之间形成一片相互交叠的基础性研究与应用性研究相结合的宽广领域.物理学科与技术学科各自根据自身的特点,从不同的角度对这些领域的研究,既促进了物理学的发展和应用,又促进了高科技的发展和提高.
通常根据研究的物质运动形态和具体对象不同,物理学可主要分为如下几个二级学科:理论物理、粒子物理与原子核物理、原子与分子物理、凝聚态物理、等离子体物理、声学、光学以及无线电物理,本专业的主要涉及光学、凝聚态物理和理论物理三个二级学科十学科方向.
主要研究方向及其内容:
1.光信息存储与显示(光学)
X射线影像存储材料和电子俘获光存储材料的制备、性能、存储机理及其应用的研究;有机、无机电致发光材料的制备、传输机制、激发态过程的机理及其显示器件的研究.
2.光电子材料与器件物理(光学)
研究稀土发光、半导体发光、阴极射线发光、高能射线发光、上转换发光、长余辉发光、白光LED照明、无汞荧光灯、光学薄膜基本设计、超声、光存储、有机发光、载流子传输材料、有机光致发光和电致发光材料等的制备;研究光致发光和电致发光机理、载流子传输机制等;研究发光二极管、无机有机薄膜电致发光器件、厚膜交/直流驱动软屏、电子油墨(或电子纸)、光电探测器等光电子器件;研究这些材料和器件的新技术和新工艺以及它们的应用.
3.激光与光电检测技术(光学)
主要研究各种激光与光电检测方法、技术及其应用,包括激光干涉测量技术、光电传感技术、激光超声技术、激光多普勒振动检测技术、红外检测技术、激光扫描测量技术及微纳米测量技术等.此外常规的无损检测手段中光电技术的使用也是本领域的研究内容之一.
4.光信息传输与光信号处理(光学)
研究光在各种光纤和各种光波导中的传输特性,以及由它们构成的光纤通信系统与光纤传感系统.包括导波光学、非线性光纤光学、光纤通信系统;以及利用光纤构成的传感系统,比如电压、电流、气体等传感器和智能蒙皮、分布传感系统、生物光纤传感器等.并涉及到全光网络、全光信号处理等方面的研究课题.
5.光物理(光学)
本研究方向在激光与原子、分子、团簇及凝聚态物质的相互作用、光学超快现象、光与生物体相互作用和THZ光的理论和应用等前沿课题上开展深入系统的研究.研究领域涉及激光与物质的相互作用及其用于激光探测等基础研究和应用基础研究,希望在非线性光学、激光与原子分子相互作用、OCT、超快光物理、有机聚合物的光子学和THz物理等研究方面取得突破性的进展,开拓和发展若干新的研究方向,为国家经济建设服务.
6.稀土物理(凝聚态物理)
本方向研究凝聚态物质中稀土离子的能级和激发态过程.当前研究的主要方向是稀土离子高能激发态的结构,辐射跃迁,无辐射跃迁,电子--声子偶合,组合混杂,真空紫外激发的稀土发光材料中的物理问题.
7.纳米结构与低维物理(凝聚态物理)
低维体系是研究小空间尺度的新的物理效应,已成为凝聚态物理最活跃和最富有生命力的重要前言领域之一,它与物理、化学、生物、医药学、材料、电子学、光电子学、磁学、能源和环境等多学科交叉,该体系的能带可人工剪裁性、表面界面效应、量子尺寸效应、隧穿效应等赋予它许多原来三维固体不具备的、内涵丰富而深刻的新现象、新效应、新规律,并广泛地被用来开发具有新原理、新结构的固态电子、光电子器件.
8.固体发光(凝聚态物理)
固体发光是固体光学的一个重要组成部分,它是物体将吸收的能量转化为光辐射的过程.它主要包括:光致发光、阴极射线发光、高能射线发光、电致发光和生物发光等.固体发光有很多重要的应用,例如:照明光源、阴极射线等各种发光显示器、高密度光存储材料、核辐射探测等.近年来固体光学又有很多新的发展,诸如有机电致发光、多孔硅、低维体系、量子剪裁等.本研究方向瞄准学科前沿,主要开展了无机及有机电致发光材料及机理、发光存储材料及机理、上转换材料及机理等诸多有特色的研究工作.
9.数学物理与计算物理(理论物理)
数学物理学是以研究物理问题为目标的数学理论和数学方法.它探讨物理现象的数学模型,即寻求物理现象的数学描述和诠释和.从二十世纪开始,由于物理学内容的更新,数学物理也有了新的面貌.伴随着对电磁理论,量子理论和引力场的深入研究,人们的时空观念发生了根本的变化,数学物理成为研究物理现象的有力工具.随着电子计算机的发展,数学物理中的许多问题可以通过数值计算来解决,由此发展起来的计算物理都发挥着越来越大的作用.计算机直接模拟物理模型也成为重要的方法.本研究方向主要研究广义相对论和宇宙学,数学物理的几何结构,大型物理体系的数值计算和并行算法等.
10.凝聚态理论(理论物理)
理论物理的一个重要分支是凝聚态物理中的量子多体理论,它是应用现代多体理论和量子场论研究凝聚态物理中的新现象、揭示新现象中的物理本质.当前研究的主要方向:计算凝聚态物理,强关联电子系统和介观体系中的物理问题,低维量子系统中的电声相互作用,凝聚物质中的量子输运理论,以及非费米液体、自旋输运和Mott相变等.
⑵ 高维空间物理学简介 以及相关的教材或着作 低维空间的呢
根据90年代提出的M理论(超弦理论的一种),宇宙是十一维的,由震动的平面构成的。在爱因斯坦那里,宇宙只是四维的(三维空间和一维时间),现代物理学则认为还有七维空间我们看不见。
科学家们对我们已认知的维与可能存在但未被认知的维之间的区别是如何解释的呢?他们打了一个比方:一只蚂蚁在一张纸上行走,它只能向右或向左,向前或向后走。对它来说高与低均无意义,这就是说,第3维的空间是存在的,但没有被蚂蚁所认识。同样,我们的世界是由四维构成的(三个空间维,一个时间维),但我们没有觉察到所有其他的维。
物理学家的解释
根据物理学家的看法还应该有7个维。尽管有这么多的维,但这些维是看不见的,它们自身卷在了一起,被称为压缩的维。为了弄清这种看法,让我们再以蚂蚁为例展开我们的想象。我们可以设想一下,将蚂蚁在上面行走的那张纸卷起来,直到卷成一个圆筒形。如果蚂蚁沿着的纸壁走,最后它又会回到出发点,这就是压缩维的一个例子。如果能沿着着名的麦比乌斯带走,也会发生上述现象,当然,它是3维的,但如果沿着它走过,总是会回到出发点的。麦比乌斯带从维的角度讲是压缩的,按照物理学它有3个维,但谁在上面行走,都只能认知人一个维。这就有点像左图上的人:上行或者下行,但永远不会走到尽头。如果蚂蚁不是沿着纸筒弯曲的壁行走,它就永远不会返回到原出发点。这就是二维(或者说被我们所感知的那种维)的例子,沿着它一直走,就不可能返回到原来的出发点。
霍金的解释
霍金提出了他的宇宙模型,给出了11维空间,认为要描述宇宙,X、Y、Z和T(时间)4个未知数是不够的,要加到11个未知数之后,才能够解释宇宙的很多结构。另一种说法,宇宙十一维是爱德华.维顿提出来的。
这些“维”同样是天文学家无法探测的。
有关维数的理论
以现今人类的智慧,维数是不可想象的.让我们从4维这个时间上为起点,这个时间概念仅适用于地球这个生命圈,其它星球肯定会存在不同形式的生命圈,那么整个宇宙会有无数个时间的概念,即无数个四维。如果大爆炸理论成立的话,这些无数的四维都存在一个质点内,你能想象在这个质点之外又多少个质点吗?如此,第5维空间为一个质点即宇宙。这就可以解释为什么佛经中记述圆满智慧者在芥子中可以见到大千世界(宇宙)的原理。又宇宙内外质点无处不在,物理学已经证明了光,电,磁均是粒子波动,同理人的思维,意识均将被证明是质点序列的波动。那么这个第六维应该是遍满一切处的,所有事物都是以概念区分的,是由我们大脑的意识所认知的,这样我们就可以将这个六维命名为"识"。至于第七维,试想你能跳出概念这个圈子吗?如果一切概念都抛弃的话,(连抛弃都是概念)应该说呈现出来(不能说还剩下)什么呢?我们暂时命名“空”吧,注意这个空可不是平时概念上的空无,也不是没有超弦理论的十维空间之后,推出了十一维空间的超膜理论。
“美国科学”上M理论的文章
在九八年二月的“美国科学”上,有一篇介绍M理论的文章。The Theory of M: M Stands for Magic, Mystery or Member (M理论:M代表魔术、奥秘或成员)。讲了统一场论的最新进展。一个粒子不但有电荷的相吸,还有磁场的相互作用。两者的统一构成引力。我们一直以为影响无限小的粒子的因素与影响着地球般大小的星球的因素是不同的。因为过去的所有理论难以用于同时解释粒子和星球的运动。也难以解释引力的形成。而M理论则正是一种正在形成的可以解释从无限小的粒子到无限大的宇宙的统一场地论学说。文章中说这个理论为近年来越来越多的实验所证实,可能是继相对论以来,本世纪最伟大的物理学理论之一。据说在超弦理论的研究中,发现十维空间还有理论漏洞,新的膜理论就再在超弦的线上展拓成超膜,以十一层空间来解释宇宙。而只有其中四维空间可为人类所感觉,其余的感觉不到的空间,就如声波和光谱一样,我们人类听不到的超声波和也看不到红外线,却不因我们的不能察觉而就可认为根不存在。正是在更高的空间里,物体的电场和磁场相互作用形成万有引力。也只有引入更多的空间才可以解释为什么分子的结构有左旋和右旋的向性不同。而宇宙的许多自然之谜如黑洞、超自然力、意志力、时空通道等,以更多空间的理论才有可能存在和解释。
【通俗解释】
大家都知道什么思“画地为牢”。就是你在一张纸上画一只老虎,然后你想困住它,怎么弄?哈哈,画地为牢,你只要在纸上画上一个牢,把纸里的老虎困住就行了。为什么老虎走不出来?因为在一张纸的二维平面里面,没有“高”这个概念。正因为如此,老虎才被人画牢所困。那么三维的老虎呢?三维的老虎需要真正的笼子,因为二维的牢困住二维的虎,三维的虎当然要用三维的牢才可以困住。也就可以所,二维的牢困不住三维的虎,因为三维的虎比二维的虎多出一个“高”来。就是说,在维度上,我们可以认为三维比二维高级。
⑶ 低微材料物理是研究什么的
《低维材料热物理》将突出介绍低维材料热物理性质特有的基本理论和实验研究方法。全书结构安排如下:第一章简要介绍三维材料的热物理性质一般规律和常用测试技术,帮助读者对材料热物理研究快速入门;第二章介绍低维材料内的热输运过程,这是决定低维材料热物理性质的基本理论;第三章至第五章分别介绍二维材料、一维材料和零维材料的热传导性质;第六章介绍低维材料的比热容;第七章介绍低维材料的热膨胀性质;第八章介绍低维材料的热发射性质;第九章介绍低维材料的热电性质;第十章介绍低维材料热物性的理论分析方法。该书是我国第一本专题介绍低维材料热物理性质的着作,而同类书籍往往着墨于微/纳米尺度传热、纳米结构输运等等,相比而言,《低维材料热物理》可读性更强,更切合实际。
关于热辐射本质的理论,最早提出的“微粒说”,不能解释“绕射”现象和光谱中的光色问题,随后麦克斯威尔根据电磁场结构理论提出了“电磁波动说”,但也不能解释辐射的所有现象。于是,根据20世纪初普朗克创建的“量子说”,在“能”的观点上修改了过去的“微粒说”,认为单色光是由一群能量子即光子组成的,从而对“光电效应”、光谱中辐射能量的分布作出了解释。但是,至今只用一种理论还不能解释辐射的所有现象。辐射既具有波动特性,又具有量子特性。
⑷ 四维和五维是什么
1、四维,即指维度,是一个空间概念。物理学中以维度来形容时空坐标的数目,四维即四个维度,它是由无数个三维组成的,而三维是由无数个二维组成的。其它高维度的组成方式以此类推,三维以上的维度统称高维度。
2、五维指的是能量无界限。据俄罗斯《宇宙信息分析高架网》报道:俄罗斯引力协会科学家在乌里扬诺夫斯克市举办的宇宙学研讨会上称,人类可以沿“黑洞”在时间机器上旅行。国立莫斯科大学德米特里·戈利采夫教授指出,宇宙学家发现了令爱因斯坦相对论受到怀疑的第五维空间。
(4)低维物理是什么扩展阅读:
按照正常的维数计算,从点到线到面再到体,基本上已经满足完成了我们所认知的世界,不管扩展到宏观的宇宙,还是微观世界的原子等,都能以体积单位来进行测量。 无论是科学家的计算得出,或者平常的我们想象中得出,事实只能证明,在我们已经认知的三维世界里,每一种维度都有无限可能性。无数个点无数个线无数个面。
我们所处的世界是一个由无穷无尽的点线面构成的体世界。那么如果很多科学界的想法在完全成立的情况下,我们将时间加入到维度当中,让其成为空间的标准维度。我们可以发现它会出现前三维度的相同的事情。我们的这一瞬让它成为点,而我们的下一瞬将沿着这一点的轨迹继续运动,成为一条线性。而在四维理论中 时间不可回流是四维时间的标准现象,依此证明我们确实身处四维空间当中。
⑸ 什么是高维空间 什么是低维空间
宇宙是十一维的,由震动的
平面构成
的.在
爱因斯坦
那里,宇宙只是
四维
的(
三维空间
和
一维
时间),现代
物理学
则认为还有
七维空间
我们看不见.
科学家们对我们已认知的维与可能存在但未被认知的维之间的区别是如何解释的呢?他们打了一个比方:一只蚂蚁在一张纸上行走,它只能向右或向左,向前或向后走.对它来说高与低均无意义,这就是说,第3维的空间是存在的,但没有被蚂蚁所认识.同样,我们的世界是由四维构成的(三个
空间维
,一个时间维),但我们没有觉察到所有其他的维.
⑹ 低维功能材料物理好就业吗
材料物理专业是多学科知识交叉、渗透的一门专业,它给现代材料的研究、开发和应用以及相关科学的发展带来了新的空间,为新材料的可持续发展提供完善而系统的理论指导和技术保障。因此,材料物理专业的就业前景十分广阔。
1材料物理专业简介
材料物理专业提供物理学、材料科学、材料化学和材料物理的基本理论、基本知识和基本技能的系统学习,材料探索、制备与合成的思维与技能等方面的基本训练,以及材料加工、材料结构与性能测定及材料应用等方面的专业训练,旨在帮助学生掌握材料物理及其相关的基础知识、基本原理和实验技能,具备运用物理学和材料物理的基础理论、基本知识和实验技能进行材料探索和技术开发的基本能力,能发展成为在材料科学与工程及其相关交叉学科(材料、物理、化学、生物、医学等)继续深造或在相应领域从事材料物理研究、教学、应用开发等方面的创新性人才。
材料物理专业主要课程为材料科学基础、工程材料学、材料的力学性能、功能材料、微电子材料、材料的相与相变基础物理、近代物理、固体物理等。
2材料物理专业就业前景
毕业生适宜到材料相关的企业、事业、技术和行政管理部门从事应用研究、科技开发、生产技术和管理工作,适宜到科研机构、高等学校从事科学研究和教学工作,可以继续攻读材料相关的工程学科、交叉学科的硕士学位。
材料物理专业在专业学科中属于理学类中的电子信息科学类,其中电子信息科学类共9个专业,材料物理专业在电子信息科学类专业中排名第3,在整个理学大类中排名第18位。
针对材料物理专业,招聘企业给出的工资面议最多,占比100%;3-5年工作经验要求的最多,占比50%;大专学历要求的最多,占比50%。
⑺ 铁电压电物理属于哪个专业
属于电子工程专业。电子工程专业主要围绕压电铁电材料与器件,功能陶瓷薄膜,铁电物理等三个主要方面开展研究工作。纳米结构与低维物理:研究新型稀磁半导体纳米棒、铁电纳米线、纳米超高密度磁记录介质。
⑻ 什么是低维物理
低维物理(包括薄膜物理、表面与界面物理和高分子物理)
⑼ 固体物理学的超点阵和低维固体
这是近二十年来固体物理学中新兴的领域。从60年代起人们开始在超高真空条件下研究晶体表面的本征特性以及吸附过程等。通过粒子束(光束、电子束、离子束或原子束)和外场(温度、电场或磁场)与表面的相互作用,获得有关表面的原子结构、吸附物特征、表面电子态以及表面元激发等信息,加上表面的理论研究,形成表面物理学。这些新的实验手段主要是各种表面能谱仪。它们及其分析方法已经发展成为表面技术,广泛用于大规模集成电路监控和分析等领域。同体内相比,晶体表面具有独特的结构和物理、化学性质。这是由于表面原子所处的环境同体内原子不一样,在表面几个原子层的范围,表面的组分和原子排列形成的二维结构都同体内与之平行的晶面不一样的缘故。表面微观粒子所处的势场同体内不一样,因而形成独具特征的表面粒子的运动状态,限制粒子只能在表面层内运动并具有相应的本征能量,它们的行为对表面的物理、化学性质起重要作用。 界面有固体-固体、固体-液体、固体-气体界面之分。固体器件的基础是在界面发生的物理过程,随着微电子技术发展,器件的尺寸日益缩小,表面和界面的物理效应更加突出。特别是硅场效应管的硅——二氧化硅界面形成表面势阱,在其中的电子构成二维运动的电子气,具有独特的性质,包括电子态局域化和von.克利青在1980年发现的量子霍耳效应以及D.崔琦在1981年发现的分数量子霍耳效应,涉及固体物理基本问题的现象。许多电化学过程发生在固体-电解液界面,腐蚀则常发生于固体-气体和固体-液体界面,因此界面物理和表面物理一样具有巨大的实际意义。 能带理论用于表面和界面的电子态的计算仍然有效。由于表面、界面电子的势能依赖于表面态、界面态中电子的填充情况,因此计算必须是自洽的。能带理论同表面技术的结合导致半导体超点阵材料出现。分子束外延技术使制备这种材料成为现实。再利用调制掺杂技术,可制备出高迁移率晶体管用于微波技术,以及性能优越的激光器用于光电子学技术。用这种材料特制的样品,在低温和强磁场下也观察到分数的量子霍耳效应。金属超点阵的研究也正在增长(见超结构)。 低维固体还包括层状化合物和链状结构的物质以及微颗粒组成的固体。它们具有独特的物理性质和微观过程。是现今很活跃的研究领域,在应用上富有潜力。层状结构化合物的主要特点是它的能带结构和电导率都是各向异性的,平行于层面的电导率与垂直层面的电导率之比可达千倍至十万倍。有的材料电导率可与铜、铝相比,在层状材料中由于费密面的结构以及与之有关的不稳定性质存在着电荷密度波或自旋密度波。链状材料具有准一维的结构,有的是导体,有的是半导体,也有的在一定压力下成为超导体。特别是聚乙炔等一维有机半导体。它具有两种不同的基本结构,两种结构交接处是一个界区,形成类似孤立子缺陷态,掺杂可使“孤立子”带电。它在链上运动引起电导。利用聚乙炔已可制成半导体器件,展示其应用前景(见低维导体)。
⑽ 谁看懂了,告诉我一下
这是别人发的 我复制过来,觉得说的非常到位:
首先,普及一下《星际穿越》中需要了解的名词:墨菲定律:事情如果有变坏的可能,不管这种可能性有多小,它总会发生。
1、任何事都没有表面看起来那么简单;
2、所有的事都会比你预计的时间长;
3、会出错的事总会出错;
4、如果你担心某种情况发生,那么它就更有可能发生。
牛顿第三定律:作用力与反作用力;
黑洞:由质量足够大的恒星发生引力坍缩产生的。黑洞的质量极其巨大,它产生的引力场极为强劲,以至于任何物质和辐射在进入到黑洞的一个事件视界(临界点)内,便再无力逃脱,传播速度最快的光(电磁波)也逃逸不出;
黑洞视界:简而言之就是在光都逃不出的地方你是什么都看不到的,所以黑洞你是观察不到的,但是离黑洞越远黑洞的引力就越小,当光线像切线一样离着黑洞越来越远的时候就收引力作用越来越小,小道只引起光的偏折而不是光无法逃脱时,那是我们就能看到哪儿的事物,但里黑洞再近一点光就被吸进去了,就什么都看不见了。这是这个能看见和看不见的界限就是视界;
奇点:时空无限弯曲的一点;
狭义相对论的钟慢效应:速度越快,越接近于极限速度,时间就会越慢。
双生子佯谬:(由狭义相对论推出)有一对双生兄弟,其中一个跨上一宇宙飞船作接近光速的长程太空旅行,而另一个则留在地球。结果当旅行者回到地球后,我们发现他比他留在地球的兄弟更年轻。这个结果是由狭义相对论所推测出的(移动时钟的时间膨胀现象)。
虫洞:是宇宙中可能存在的连接两个不同时空的狭窄隧道。认为透过虫洞可以做瞬时的空间转移或者做时间旅行。简单地说,“虫洞”就是连接宇宙遥远区域间的时空细管。暗虫洞可以把平行宇宙和婴儿宇宙连接起来,并提供时间旅行的可能性。
多维世界:弦理论中说世界有11个维度,而在物理学中有8个平行世界多维世界的理论模型,弦理论只是较为主流的一种。但是,每个理论都承认世界是多维的。如何理解多维度呢?从二维和三维举例吧,二维只有点和面,没有空间的概念。他们是以空间为基础向前走的,从纸的一边走向另一边只能沿着平面走,无法意识到外部空间。但是此时如果我把纸弯起来,成一个圆筒状,那么现在纸的两边相互重合了,此时有两种方法从一边到另一边,一是按原来方法走绕圆筒一周,第二就是反方向挪动一下。但是在二维世界中第二种方法就无法解释了(他们看到的永远是一个平面)于是他们就看到一个点瞬移到另外一点,这个就是简单意义上的空间扭曲,也可以说就是抄近道,在二维时空没有高度这个概念,是一直沿着长度前进,但是在三维时空高度是一个基础是一个可控制的量,但时间使我们沿着前进的量。于是在四维空间中我们可以像三维一样控制时间,从而可以访问过去,就像二维中的抄近道,发生了时光扭曲。但是四维的时间只是访问能控制过去,无法决定现在,就是说我能访问过去的时间点,但是如果我改变过去,可能我现在也会随之改变,但是再加上一个维度是,就出现了可能性这个维度了,四维是按着可能性往前走,就是说在四维中只有一种可能性,你改变过去,你就会从过去那个时间点开始走另一条路(无数可能性的一条)从而改变现在,于是你就在改变过去的瞬间突然改变了,这在四维无法解释。但是在五维世界中就说的通了,五维世界中可能性也向三维的长宽高可以改变,就是说你可以访问任意一个时间点(像三维空间中进房子一样),也可以访问每个时间点之前当以及之后的所有可能性,改变过去你会看到无数个因为改变过去而发生的可能性结果,这样你现在的改变就只是在改变过去时间点后无限可能结果的一种,这样就解释得通了。通俗来说就是我们生活的世界就是在无数可能性中随机选择的一种,其他的选择都在其他无数的平行世界里实现。电影中之涉及五维空间,具体更高的维度有更多的变化,有兴趣的可以看看我写的:QQ空间
高维空间的一些事实:高维可以看到低维的全部,但低维无法理解到高维的事物,只能感知,顺着一个高维比上一个低维多出的参量往下走,二维是长度,三维则是时间。我们一些低维无法解释的现象往往高维认为理所当然。低维的物理定律是高维的一个特殊情况,比如二维中平面运动就是立体运动的一个长度参量为零的特殊情况。个人臆断:高纬度看低纬度的所有生物都感觉是低智的。就像我们完全感觉不到二维生物的存在,同时四维人看我们所有的因缘机遇(因缘机遇这些就是无数可能性的一种)都是理所当然,因为他们可以看到我们一条过去将来的可能性,五维人则是可以看见四维人的所有可能性,所以他们看四维也觉得是低智的。
普及完毕,以下有大量剧透。
《星际穿越》可以说是诺兰最不具自己叙事结构的一部电影,整片基本还是一个顺叙,相对于《致命魔术》,《记忆碎片》来说,整个叙事就只有几个闪回,但是经过前几部的熏陶后简直是小儿科了,可以轻松跟上。
以下只适合没有看懂剧情,看懂的自行略过这几节:《星际穿越》讲述了在几十年后的一个接近集权主义(控制思想【否认阿波罗计划,控制教育水平,倡导不离开地球】)的世界中,地球的环境问题每况愈下,由于引力异常,不仅是有极端的天气如沙尘暴,还有一些物种的灭亡。主要引人注意的就是粮食作物的灭亡(小麦,秋葵都是濒危物种了),于是整个人类开始种植玉米,生存问题成为当时人们最大的问题,于是人们把教育部分搁置,主要为了生存。由马修麦康纳饰演的库珀就是这样一位飞行员,转行做了农民,他丧妻和儿子女儿墨菲还有岳父住一起,和女儿墨菲关系最为亲密。可是一直以来女儿说他的房间里有个幽灵(Ghost)总是无缘无故的有书落下来,甚至弄坏了她的玩具。可是作为父亲的库珀总是认为是女儿的幻觉,一直安慰她,向她解释科学。终于有一天,在一次全家外出观看棒球赛遭遇了强沙尘暴中,女儿卧室忘记关了窗。当一家人回到家,库珀和墨菲赶到墨菲的房间时,发现了吹进家的沙尘由于引力异常而呈现一些特殊粗细条纹状的排列,经过研究之后,库珀认为这是二进制由一个不知是谁(电影中称为“他们”(They))传达的信息。经过二进制的破解,库珀发现那是一个位置的坐标,他和女儿最终发现那是一个NASA的研究总站。由于现在人们吃住都成问题,政府大力宣扬留在地球,而非向外探寻,于是NASA被迫削减预算,最终建在了荒山野岭中继续研究。
由于地球生存问题紧张,NASA的教授布兰德以及研究员他的女儿A.布兰德制定了A,B两个计划:A:布兰德一直在进行引力的研究,并且希望通过解出方程式解决操纵重力以造出廉价的殖民飞船,让人类在外太空空间站生活。B:在土星旁发现了一个不知是谁(They)设置的虫洞,并且已经派10个宇航员穿越虫洞寻找适合生存的星球,并且用已经培育好的受精卵在新的星球上繁殖,放弃地球上的人类,而使人类的下一代得以延续。
库珀误打误撞地找到了NASA实验室,而布兰德教授也相信就是(“They”)的那种力量选中了库珀作为B计划的宇航员。此时B计划已经有十名宇航员去执行了任务,他们只有三个还在通过虫洞用二进制传输那里星球的基本数据,那里也算是符合生命条件的星球。但是库珀虽然自己对飞行依然充满激情,但是依然对自己女儿依依不舍,怕自己一去无法回来。于是布兰登教授向他保证了自己A计划的可行性,并且保证他回来的时候会将方程解出(好像解不出是因为没有黑洞里的数据)并且B计划只是一个备案,就算找不到合适的星球也有充足的燃料回程,不像之前的宇航员一样。于是在再三权衡之后,为了自己下一代,库珀踏上了征程。临走之前,他给女儿一块表,告诉她,爸爸在外太空以光速飞行,时间会变慢,等到他回来时比比看自己的手表和女儿的手表差了多少,或许自己回来时自己和女儿一样大。女儿一直不能接受,还说自己破解了幽灵(Ghost)传达的话,说STAY(留下)。
于是,他,A.布兰德,机器人TARS,罗米利还有多伊尔去穿越虫洞,带着受精卵去验证那三个依然有信号的星球。在虫洞穿越中,A.布兰德发现了时光逆转——她正在和一个也许是以前宇航员的人在握手。
第一个星球里黑洞较近,时光的延迟也较大,宇航员一小时等于地球上的七年,库珀,TARS,多伊尔去那个星球上探索,可是发现的仅仅是滔天的巨浪和信息记录发送器的残骸。为了收集信息发送器A.布兰德不顾库珀的阻拦,最终大家都遭遇了巨浪海啸,还搭上了多伊尔的性命。然而A.布兰登才意识到这个发送了10年信息的探测器由于虫洞的时光扭曲可能是几个小时前才刚刚登陆此星球。
当他们从登陆舱回到主舰时,发现同行的罗米利已经苍老了好多,由于时间效应燃料成为了一个大问题(好像燃料不足是这样的,不大记得了),而且另外两颗星一颗为费曼星:资源显示适合人类,燃料可以供着陆并且返回地球,另一颗,它上面派去的宇航员是A.布兰德的恋人,原本十多年过去了她对他的生死已经不抱希望,可是当她意识到时光扭曲后意识到可能恋人任活着,但是这颗星里黑洞很近,燃料也不足。库珀和A.布兰德产生了相反的意愿,但最终大家去了更可能有人类的曼恩星球。
当他们在曼恩星球上找到曼恩并且复活速冻的曼恩之后,准备探寻星球,并且搭建繁衍室,并且发展人类的下一代,且让曼恩(被他故意拆卸)的废弃机器人去黑洞中寻找数据,方便博士的A计划。但是在一次探寻中曼恩博士向库珀揭露这都是谎言,其实自己真正这儿感到孤独而故意发送错误的数据,希望有人来救自己。并且企图谋杀库珀,可这被A.布兰德化解,曼恩炸掉了繁衍室,让罗米利误伤而死。之后曼恩企图上主舰逃回地球,最后在库珀和A.布兰德的阻止下让他自取其灭。
现在,地球上墨菲已和父亲年龄一样,她正在布兰德教授的手下执行A计划,然而在布兰德教授的弥留之际,告诉她这一切都是骗局,自己其实早就解出了方程的一半,现在的研究都是无功而返,没有黑洞的数据,一切都是没有用,自己在几十年前就弄清楚了只有找到人类的新星球才能延续种族,于是A计划就是哄骗库珀和自己女儿踏上征程的骗局。
当身在空间站(只能接受信息而不能发送)的库珀和A.布兰德知道后,万念俱灰,但他们最终决定去向最后一个星球。通过利用黑洞的引力弹射,但是经历黑洞只是库珀自己主动将自己和机器人TARS甩入黑洞,根据动量定理让A.布兰德获得更多的动量。
被卷入黑洞的库珀发现自己的时光发生了逆转,自己正在于以前刚刚来虫洞时的A.布兰德握手,也就是第一次穿越虫洞时和A.布兰德握手的不是别人正是做自己旁边未来的库珀。此时库珀进入了五维空间,他看到了书构成的五维空间,看到了无穷的可能性,于是他意识到这个好像是女儿的书房,接着他看见了不同时间段的女儿。他不断通过推到书的方式利用摩尔密码的传达方式,暗示女儿和当时的自己这一切是骗局,出去就回不来,于是他就利用摩尔密码拼出了STAY(留下),此时大家也就明白了,他一直是女儿的幽灵(Ghost)。女儿一直是在和未来的父亲对话,并且(They)就是库珀本人。此时机器人TARS在探测这黑洞的种种数据并且和库珀保持联系,库珀便希望通过这种方式,告诉女儿这些数据,并且相信在一个时空中女儿能破解自己的密码,最后解决方程式完成A计划。
他联想到自己送给女儿的表,通过表秒针的相位变化来表示摩尔密码的点dot(.)、划dash(-)。
再次醒来时,库珀发现自己在病床上,被告知这是以女儿墨菲.库珀命名的空间站,女儿墨菲解决了A计划。再次与女儿相聚时,发现女儿已是十分苍老,而自己却依然正直壮年。两个人终究是不能在一起生活,而等待着库珀的是寻找A.布兰德,并且看看那个星球是什么样的……
写正式的影评之前写了这么多好累………
首先,诺兰大神完美将我一直在脑海中想的多维世界呈现在大银幕上,让我有一种突然找到了知音的感觉,现代物理学就是这么的美妙,它让你不懂,它让你去思考,它让你用自己的方式去感知这个世界。在思考的过程中你会发现是它创造了哲学,是它在一步一步中让你去找寻生命的意义,让你去找寻爱的意义。
除去电影中的科幻元素,其本质是一个温情的文艺片,它向我们讨论了关于孤独,关于勇气,关于隔阂与爱但终究关于绝望。
10位身先士卒的宇航员是孤独的,一个人面对浩瀚的星空,面对未知的未来,还有面对没有任何东西可以作为标准的宇宙,他们所体会到的使我们难以想象的绝望。宇宙中任何方向都可以是上方,没有任何一个标准,《地心引力》中斯通博士被甩出后对一切都是无能为力,唯一能做的就是看着不断眼前翻转的地球,空间中黑黑如也,没有一丝一毫可以依靠,可以抓住。身子向后无限地向黑暗中翻跟头,这种绝望也是《星际穿越》中所表达出来的,一个人开始面对整个人类,整个人类历史,人类未来,所有渺小的东西在一个宏大世界中都会有自卑与绝望。
在任务中库珀一次又一次发现我们自身就是像蝼蚁一样卑微与渺小,无论是面对巨浪还是面对费曼星无尽的荒原。甚至连我们自身都是无发左右的,我们无法左右命运,但这又确实是由未来的自己所决定的,这点很有意思。
我们一方面无法左右自己的命运,它或许在过去就已经定格,但是另一方面我们又只有在未来才能真正明白自己干了什么,在未来,我们发现对改变过去的自己无能为力,因为那时自己无法察觉,改变过的也不在我们这个世界,但是向过去不断传达信息,,我们发现那时的自己是受现在的自己控制,现在的自己希望回忆起当时有一种神秘的力量帮助过自己。命运是否真正把握在我们自己手中?诺兰表示了深深的绝望,这个说不出,看似说得出,又难以表达。
小时候的墨菲和父亲是隔阂的,那是是父亲太年长,父亲回来后他们依然是隔阂的,是因为墨菲已经成了一个比父亲更年老的人。一个体会到这种感觉的父亲,他一定也知道了所有墨菲的人生轨迹,就像你突然变小到了小学的一天,但是你的记忆没变,你知道未来的一切,你经历过了一切,但你无法向人倾诉,你知道那都是徒劳,这种事情解释不清,也没有人会相信。你开始寂寞,你开始急,和一群和你经历一切的人要抹去记忆重新开始,你心中有他们的样子,有和他们的点点滴滴,但他们刚刚认识你,这样的隔阂便是绝望。诺兰的父女这样处理让我联想到这样一个问题。
“爱是一种力量,让我们超越时空感知她的存在。”
虽然影片一直在强调外出寻找新的栖息地,但是一切的穿越都是为了回归。终究导演还是说了一个回归的故事,而联系回归的纽带就是爱。一直在逃离,但是逃得越远,爱的纽带就会将我们捆得越紧,它是一种穿越时空的存在。无论物理距离上有多远,无论时空上的差距有多大,你在我眼中永远是个孩子,我在你心中也永远是个守护神。但是随着时空这一无法阻止的力量,你再也回不来了,虽然我们团聚,但是我们茫然地张着嘴,再也找不准那首往日的旋律。这是导演对一切一切物是人非的感慨,年代变迁,我的几分钟你就经历了一切。当两个人在时间上的标准不统一的时候,再多的解释也是苍白,人因为孤独而陷入深深的绝望。是啊,面对飞速发展的城市与来来往往的冰冷的人群,向谁倾诉过去的样子,你无法阻止它的发展,当它来临之时就只能默默接受,这种绝望只有在向外探寻的逃离中得到弥补,可是这只会麻木。
一切的穿越都是为了回归,可是回去的时候,我们发现物是人非。我们千辛万苦却只达到了令自己深深绝望的境界,该怎么办。这我想就是导演希望通过穿越背后所传达的东西。