① 初中物理力学受力分析方法
受力分析的方法与步骤
1、 明确研究对象进行受力分析前,要先弄清受力的对象。我们常说的“隔离法”、“整体法”,指的是受力的对象是单个物体,还是由多个物体组成的整体。对于连接体,在进行受力分析时,往往要变换几次研究对象之后才能解决问题。有时候,选取所求力的受力物体为研究对象,却很难求出这个力,这时可以转移对象,选取这个力的施力物体为研究对象,求出它的反作用力,再根据牛顿第三定律,求出所求力。
2、有序地分析受力
养成按一定的步骤进行受力分析的习惯,这样可以避免漏力或添力。一般分三步走:先分析重力;然后找出跟研究对象接触的物体,分析接触力,如弹力、摩擦力等;最后分析电场力、磁场力等。
斜面
3、确定物体是否受到力的作用,有三个常用的方法:(1)假设法;(2)根据运动状态判断受力情况;(3)用牛顿第三定律。
② 如何解释物理中的重力
重力是由于地球的吸引作用产生的力。
重力与万有引力的区别:
1.重力的由来
重力只是万有引力的一个分力,万有引力指向地心,物体在地球上跟随地球作圆周运动,所以万有引力的一小部分被用来维持这个圆周运动,剩下的就是我们能感觉到的重力。
2.为什么重力的方向是竖直向下而不是指向地心?
因为重力是万有引力的一个分力,这个分力与刚才提到的另一小部分力(向心力)一般不与引力同方向。这里的竖直向下是指与水品面相垂直。
3.为什么g的值在不同纬度有所不同?
因为向心力在不同纬度大小不同。因为赤道处物体圆周运动轨道半径最大,所以向心力最大,所以g的值最小。在极点物体不作圆周运动,所以重力就与万有引力相同达到最大值。
③ 重力的问题分析
一个是解释卫星失重的观点:人造卫星的向心加速度,“它的大小等于卫星所在高度处重力加速度的大小。这跟在以重力加速度下降的升降机中发生的情况类似”。
必须分析下面的问题:
不考虑地球的公转和地球以外的其他星球的影响,在地球以外的某惯性系下进行研究。这就既能观察到地球的自转,更能观察到卫星的正确运行轨道。在这个惯性系下,重力原定义认为,地球对物体的万有引力可以分解为随地球自转的向心力和重力这两个力。用这样的思维方法进行下面的分析。(地球的万有引力简称地球引力)
设想赤道上有一个与同步卫星等高的支架。第一步把一个物体放到支架底部。在支架的约束下,物体随地球自转而做匀速圆周运动。物体所受地球引力被分解为一个很小的向心力和一个比地球引力小不多的重力。接下来,把重物从底部逐步向上移动,先后放到支架的不同高度的位置上。在这个过程中,地球引力越来越小,分解出来的向心力越来越大,且逐渐逼近地球引力。分解出来的重力越来越小,且逐渐趋向零。最后一步,把物体移到支架的顶部。这时向心力就等于地球引力了,而重力就小到零了,物体成了一颗新的同步卫星了。它的向心力决然不等于重力,那么向心加速度能等于重力加速度吗?显然不能。实际上任何一颗卫星受的地球引力的作用效果只有一个,产生加速度。即全部用来提供向心力,没有留下一点使物体获得重量的作用效果。作用效果没有了,重力就是零了,重力加速度也是零了。正确地说应该是:“完全失重的原因是:卫星的向心加速度的大小等于卫星所在高度处的万有引力加速度的大小。
在解释卫星失重的观点中,生硬地把自由落体中的规律用到卫星上,说“这跟在以重力加速度下降的升降机中发生的情况类似” ,有似是而非的感觉。如果忽略地球自转,万有引力就是重力,这种近似研究就可以说成:“这跟在以万有引力加速度下降的升降机中发生的情况类似”就正确了。
观点中有“卫星高度处”这词语,说明观点本意是以地面为高度起点,并以地面为参照系,这就出现问题:一是在非近似研究(理论研究)中,以地面为非惯性系时牛顿运动定律不成立,不能研究卫星的动力学问题。二是卫星的动力学问题不属于近似研究的范围,也不能以地面为惯性系。所以“卫星高度处”的提法放哪儿都不适宜。必须在地球外某惯性系下才能正确地研究卫星的动力学问题,在此惯性系下卫星的动力学规律与地球的自转没有任何关系。可是重力这个虚拟力却是因为地球自转才能“存在”的,那么卫星失重的问题就与重力加速度挂不上钩了。
用重力的新定义研究,卫星受地球的万有引力和与之对应的惯性力相互抵消,卫星受的重力为零,但是卫星受的向心力不为零。或说重力加速度为零而向心加速度不为零,二者不可能相等。
对于正常运行的卫星来说,卫星内的物体得不到支持力,物体的重力就不可能存在,重力加速度也不存在了,但是向心加速度依然存在。从这方面看,向心加速度也不能等于卫星高度处的重力加速度。
实际上求卫星及其内部物体的重力时,是在一个非惯性系下进行的,而求它们的向心力时是在另一个惯性系下进行的, 本来两个参照系下,运动学的量就不该对比。 再一个问题是解释宇宙飞船失重的观点:在地面附近圆周轨道上运行的宇宙飞船,设它的线速度为υ “它的轨道半径近似等于地球半径R,航天员受到的地球引力近似等于他在地面测得的体重mg …… 还可能受到飞船座舱对他的支持力FN。引力与支持力为他提供了绕地球做匀速圆周运动所需要的向心力”。通过分析,列方程式并解出,“当 时座舱对航天员的支持力FN=0,航天员处于失重状态”。
需要思考下面的问题:
①为了得出FN=0这个精确(理想化)的等式,卫星轨道半径的值却近似地取了地球半径的值R,地球引力值也近似地取了地面上体重的值mg。做纯粹的理论推导的过程是不能像做近似计算那样取许多近似值。
②在这个观点中,只用在地面附近轨道上运行的宇宙飞船说问题,没有用任意轨道上的航天器说问题,也没进行拓展,所以没有广泛的意义。说明不了任意轨道上的航天器都会有失重现象发生。
③在观点中,通过近似推导,得出结论 “当 时座舱对航天员的支持力FN=0,航天员处于失重状态”。这里的“当”基本上是“条件”的意思。可是,只要是在地面附近的轨道上正常运行的航天器,失重现象就会无条件地发生!
④当等式 不成立时就有FN≠0,航天员就不会失重吗?不是,可是观点中说的很像“是”。实际上,即使此宇宙飞船的线速度发生改变,不再是 ,航天器也只会改变轨道,而失重现象必定存在着,除非开启发动机或掉到地面或其他星球上。 还有一个问题是,认为存在着“完全失重的环境”的观点:“绕地球做匀速圆周运动的宇宙飞船”内“航天员处于失重状态。”“其实任何关闭了发动机,又不受阻力的飞行器的内部,都是一个完全失重的环境。例如向空中任何方向抛出的容器,其中的所有物体都处于失重状态。”
在非惯性参照系下,物体完全失重的现象的本质,是物体所受万有引力和与这个万有引力产生的加速度对应的惯性力相互抵消,重力变为零,所以完全失重。物体一旦完全失重就与物体周围的空间环境没有任何关系,与“完全失重的环境”无关。举例说明:
①假设宇宙飞船或抛出的容器能像贝壳一样打开了,物体已经不在原来的“完全失重的环境”,可是物体的运动规律没有任何变化,不是仍然处于完全失重状态吗?
② 在轨道上,让大卫星在不接触小卫星的情况下把小卫星装进大卫星。这样小卫星处在“完全失重的环境”,按上述观点说小卫星完全失重。可是小卫星进入大卫星前后的运行姿态并没有改变,所以小卫星在单独运行时虽然没有处在“完全失重的环境”,但是已经处在完全失重状态。
用上述“装入方”也能证明抛体自身一定处在完全失重的状态。
③ 在半空中一只长管上端的外部,用悬绳把一物体系入管内,悬绳另一端固定。然后使长管自由落下,此时管内是个“完全失重的环境”,但物体被固定着,它虽然处在“完全失重的环境”内,却没有失重。
④ 从放在地面上的长管上端,滴入一滴水使其自由下落,水滴呈球形,因为它处在完全失重状态。但是水滴经过的地方不是“完全失重的环境”。
实际上宇宙飞船自身或抛出的容器自身也必然处在完全失重状态。因为它们所受的万有引力与对应的惯性力也相互抵消,重力也是零,当然失重。所以说,“完全失重的环境”没有存在的意义。失重现象同时发生在物体的每一个质元上,是物体自身的事情,与所处的空间无关。 最后一个观点,近似方法采用的重力定义是:“地面附近一切物体都受到地球的吸引,由于地球的吸引而使物体受到的力叫做重力”。
①重力是高中力学重要的概念,重力的应用贯穿力学内容的前后。近似方法给出的重力定义,只轻轻地触动了一下重力的边沿,给出一个形象模糊的重力概念。带着重力疑团进入力学,用不明性能的重力工具解决一个个力学问题,会遇到许多困难。
②在近似研究中,并没有显现出重力独有的性质和重力独到的作用。实际上是用披着重力外衣的万有引力参加动力学的各种研究过程。虽然给出了重力的定义但是没有真正应用它。
③从实质的角度看,在地面附近,重力本身就是带有微小系统误差的万有引力,这个系统误差是地球自转引起的。既然如此,近似研究时引入万有引力就可以了,只需说明测量时必然存在系统误差,这种误差不影响万有引力的在地面附近的应用。这样就可以把重力在中学教材中抢占的位置还给万有引力。这样一来,在中学教材中重心要改成质心,重力加速度要改成万有引力加速度,重力势能要改成万有引力势能等等。重力的难度远大于万有引力,在中学阶段重力内容已经超出理解能力。 下面的例子都是不计地球自转的影响,以研究对象为非惯性系,研究对象相对于参照系静止,这样就可以在静力学范围内研究重力,这里着重分析加速运动物体的平稳运行(不倾覆)和重力的变化。设万有引力为F引 ,惯性力为F惯 ,重力为F重 。
1、在静力学范畴内,以规定的速度行驶在转弯处的火车为非惯性系(为使拐弯时的车速与所需向心力刚好匹配,此处外侧的铁轨比内的侧高出一定距离),研究车厢转弯时的受力情况。此时车厢做匀速圆周运动,向心加速度方向指向弯道内侧的圆心处,惯性力与向心加速度方向相反。车厢受到的地球万有引力与惯性力的合力就是重力,重力与两铁轨支力相互平衡。从(图1)可以看出重力不再是竖直向下,而是偏向弯道外侧,偏离竖直方向一个角度θ,即与两铁轨所在平面垂直,使重力作用线通过两铁轨支撑面的中央。重力大于万有引力,这时车厢出现超重现象。
实际应用:骑自行车的人在转弯的时候,总是让车身向弯道内侧倾斜一个适当角度,从而使人和车所受合重力的作用线通过车轮下狭窄的支撑面的中央,才能平稳骑行。
(图1)
2、在静力学范畴内,以加速向前行驶的汽车为非惯性系,研究用细绳悬挂在汽车上的小球相对于汽车静止时的受力情况。小球受到的地球万有引力与惯性力的合力就是重力,重力与细绳的拉力相互平衡。平衡后,重力与细绳在同一直线上(与汽车静止时的情况一样,都是重力与细绳在同一直线上),重力的方向向下偏后。从(图2)可以看出,重力偏离竖直方向一个角度θ,重力大于万有引力,小球出现超重现象。
实际应用:站在加速运动的汽车上的人,总是让身体向前倾斜一个适当角度(不再是垂直地面),使重力作用线通过脚下的支撑面的中央,人才能平稳。 (图2)
3、在静力学范畴内,以沿光滑的斜面 加速下滑的滑块自身为非惯性系,研究滑块的受力情况。滑块相对参照系处于静止状态。滑块受到的地球万有引力与惯性力的合力就是重力,重力与斜面的支力相互平衡。平衡后,重力的方向垂直指向斜面这个支撑面(与滑块静止在光滑的水平面上一样,都是垂直指向支撑面)。从(图3)可以看出,重力偏离竖直方向一个θ角,重力小于万有引力,滑块出现失重现象。
实际应用:加速下滑的滑雪者,必须让身体向前倾斜一个适当角度(不是垂直于地面。如果不考虑摩擦力,应该是垂直于斜面即垂直于山坡上的雪面),使重力作用线通过脚下的支撑面的中央,才能平稳滑行。
(图3)
④ 探究重力与质量的关系物理实验报告怎么写
实验目的:
探究重力的大小与质量的关系。
实验原理:
将被测物体挂在弹簧测力计下方,物体静止时,弹簧测力计的示数即为被测物体的重力。
实验器材:
弹簧测力计,铁架台,相同的钩码若干(质量已知)。
实验过程:
1.提出问题:
质量越大的物体,受到的重力越大。重力大小与质量的数量关系,会是怎么样的呢?
2.猜想与假设:
针对上述问题,提出你的猜想:
。
3.设计实验:
测出多个物体的质量和重力大小,然后进行比较,发现普遍规律。
4.进行实验:
(1)检查所用的测力计指针是否指零?
;若不指零,调零;观察并记录你所用弹簧测力计的量程为:
,分度值为:
。
(2)将弹簧测力计悬挂在铁架台上,将一只钩码挂在弹簧测力计下方,如图1,注意使力沿弹簧测力计的轴线方向,指针不与刻度盘摩擦,待静止时读数,将测得数据填入下表。
(3)继续将2只、3只……钩码分别挂在弹簧测力计下端,读出每一次静止时弹簧测力计的示数,填表。
(4)实验结束,整理器材
5.分析数据:
在图2中,以质量m为横坐标、重力G为纵坐标描点,连接这些点。
观察图像是不是过原点的一条直线?如果是,结合数学的正比例函数知识,可以说明:物体受到的重力与物体的质量成正比。
6.得出结论:
分析实验数据可以看到:质量增大,重力也增大,而重力与质量的比值不变;这个比值大约等于10N/kg,物理学中,我们用g来表示重力与质量的比值。由于我们所用的弹簧测力计不够精确,还有不同程度的误差,科学家们经过大量实验表明,这个比值大约为9.8N/kg,即物体受到的重力与物体的质量成正比;表达式为:G=mg。
7.评估与交流:
(1)根据重力和质量的关系,可以看出,物体所受重力与物体的质量有关,质量大的物体受到的重力大。
(2)重力的大小也不是一成不变的,在不同情况下有些细微变化,例如:离地面的高度增加,地球对物体的吸引力会减小,物体受到的重力会减小;由于地球是赤道略鼓,两极稍扁的椭球体,所以同一物体在纬度越高的地方,重力会越大。
(3)同一物体从月球到地球,所含物质的多少没有变,所以它的质量不变;但由于它在月球上受到的吸引力比在地球上的要小,所以重力变小。
⑤ 物理怎么受力分析
高一物理中物体的受力分析是学习力学知识的基础.是横在高一新生面前的一道门槛,跨不过它高中物理将很难过关。
物体的受力分析真的很难吗?回答是如果掌握了正确的分析方法.受力分析并不难,方法不正确就难了,让你无从入手。
什么是正确的受力分析方法呢?正确的受力分析方法有以下几步:
第一步:隔离物体。隔离物体就是把题目中要你分析其受力的那个物体单独画出来,不要管它周围与它相关联的其它物体.这一点很重要。
第二步:在已隔离的物体上画上重力和其它已知力。因高一物理初学时分析的都是地面上的物体,重力是一个已知力,要把它的作用点画到已隔离物体的重心上。另外,物体往往是在重力及其它主动力作用下才产生了与其它物体间的挤压、拉伸以及相对运动等.进而才产生了弹力和摩擦力,所以必须先分析它们。
第三步:查找接触点和接触面。就是查找被分析物体与其它物体的接触点和接触面。弹力和摩擦力是接触力,其它物体对被分析物体的弹力和摩擦力只能通过接触点和接触面来作用,这就是说寻找物体所受的弹力(拉力、压力、支持力)和摩擦力只能在被分析物体跟其它物体相接触的点和面上找,所以要查找接触点和接触面,而且要找全。每个接触点或面上最多有两个力(一个弹力,一个摩擦力)。
第四步:分析弹力(拉力、压力、支持力)。在被分析物体与其它物体的接触点或接触面上,如果有弹性形变(挤压或拉伸),则该点或面上有弹力,反之则没有。在确定弹力存在以后,弹力的方向就比较容易确定了,它总是跟接触面垂直,指向受力物体。弹力的方向,有三种情况:一是两平面重合接触,弹力的方向跟平面垂直,指向受力物体;二是硬点面接触,就是两个坚硬的物体相接触时,其中一个物体的一个突出端(点)顶在另一个物体的表面上(如梯子一端支地,一端靠墙),这时弹力的方向过接触点跟接触面垂直(如梯子靠墙端受的弹力跟墙垂直,靠地端受的弹力跟地面垂直)。如果接触面是曲面,弹力的方向跟曲面垂直,沿过接触点的曲面法线的方向。三是软点面接触,就是一个柔软的物体通过一个点连接到另一个物体表面上(如用绳或弹簧拉一物体).这时弹性形变主要发生在柔软物体上,所以这时弹力的方向总是沿着绳或弹簧的轴线,跟弹性形变的方向相反。
第五步:分析摩擦力。摩擦力分静摩擦力和滑动摩擦力,它们的产生条件是两物体接触处不光滑,除挤压外还要有相对滑动或相对滑动趋势。因此分析接触面上有无摩擦力.首先要看接触面是否光滑(这是题目中的已知条件).其次看有弹力没有(不光滑的有弹力的接触面上才可能有摩擦力)。然后进行有无摩擦力的判断:接触面上有相对滑动时有滑动摩擦力,其大小f=μn,方向跟物体的相对运动方向相反。接触面上没有相对滑动但有相对滑动趋势时有静摩擦力,它的大小和方向总是跟迫使物体产生相对滑动趋势的外力等大而反向。对静摩擦力不好判断的是物体何时具有相对运动趋势及运动趋势的方向。比较简单的判断方法还是假设法:设想接触面是光滑的,看这时物体是否还能相对静止,若还能相对静止就是没有运动趋势,没有静摩擦力;不能相对静止就是有相对运动趋势,相对运动趋势的方向就是此时的相对运动方向,这个接触面上有静摩擦力,方向跟相对运动趋势方向相反。要注意,静摩擦力的大小和方向总是随使物体产生相对运动趋势的外力的变化而变化,使物体保持相对静止。静摩擦力有最大值fmax=μu0n,当外力大于或等于最大静摩擦力时,相对静止被破坏,物体开始滑动。
把分析出的所有弹力、摩擦力都画在隔离体上,就画好了被分析物体的受力图。
把受力分析的方法总结起来,我编了几句顺口溜:受力分析不真难,掌握方法是关键。分析对象先隔离,已知各力画上面。接触点、面要找全,推拉挤压弹力显。糙面滑动动摩擦,欲动未动静摩现。隔离体上力画全,踏平门槛展笑颜。
例题:http://www.cnysgz.com/ygjy/ygwl/ArticleShow.asp?ArticleID=1637
另外弹力作用在接触面上,但是一般为了方便起见通常是花在物体的重心上的。