Ⅰ 物理学对我们有什么用
物理是一门自然科学。在生活中,处处都有物理现象。物理虽然很难学,但是你会发现,物理是一个很有趣的课程。
金属球实验
二、填报专业
在我们广东,高考是3+1+2的模式,首选科目是物理和历史中任选一门,对于理科生来说,会选择物理课程。毕竟,在高校填报专业志愿时,百分之九十多的专业条件必须是物理学科。
三、未来就业
就业方面很广泛,例如:物理老师,传授知识;科研工作人员,为国家做出贡献;天文学家,识辨天文。
结束语:
虽然好玩,但是很多学生物理成绩出现挂科,因此要培养起对物理感兴趣,爱上物理,下定决心,认真复习,成绩会有所飞跃。
Ⅱ 什么是物理作用什么是化学作用
物理作用是物理反应的作用,物质的本质没有变化,就是分子没发生变化,只是形状,状态发生了变,
化学作用由化学变化产生
化学变化就是物质的成份就发生变化了
,分子发生了变化Ⅲ 物理有什么生活用途
生活物理
1、 两车间为何要保持车距?
前后车之间要保持一定的距离,距离的多少要根据汽车行驶速度、驾驶员的反应时间、汽车的制动功能、路面情况而定。
反应时间与驾驶员的身体状况、注意力集中程度有关。
制动功能与汽车本身性能有关。千万不可忽视汽车会临时出现故障哦。
路面情况要考虑雨天、下雪天、结冰、沙石、稻草等影想。
2、蚂蚁从高处落下为何不会摔死?
众所周知,人从楼上掉下摔不死也会摔成重伤,可是蚂蚁从高处落下却会安然无恙,你知道其中的秘密吗?
原来是这样:物体在空气中运动时会受到空气的阻力,其阻力的大小与物体和空气接触的表面积大小有关。越小的物体其表面积大小和重力大小的比值越大,即阻力越容易和重力相平衡,从而不致于下降的速度越来越大,也就是说微小的物体可以在空气中以很小的速度下落,所以蚂蚁落地时速度很小,不至于摔死。
我们还可以设想一种方法使蚂蚁摔死:把蚂蚁放在一根真空的长玻璃管中。当蚂蚁在这种管子中下落时,因为没有空气阻力,如果管子足够长,蚂议就有可能摔死。
3、跳高运动员为何要助跑?
在体育比赛中,跳远的运动员选择较长的助跑距离,而跳高 运动员的助跑距离则要短得多。如果选择较长的助跑距离,是否 就跳不高呢?
跳高运动员能腾起越过横杆,靠的是助跑的惯性力和起跳蹬 地的支撑反作用力。由于惯性力的方向是水平向前的,而支撑反 作用力是垂直(或近似垂直)向上的,所以起跳后的身体重心沿 着一个抛物线轨迹运动。这个抛物线轨迹的高度,取决于起跳时 腾起初速度和腾起角的大小,也就是说,腾起初速度和腾起角是 增加跳高高度的关键。一般说来,应该尽可能增大这两项数值。 最大腾起角为90度。然而,由于跳高不是单纯的垂直向上运动, 越过横杆还必须有一个向前的力量;再则,还须充分利用水平速 度来增大腾起初速度,因此,腾起角应小于90度。至于腾起初速度 ,则和运动员的素质和技术的熟练程度密切相关。腾起初速度越大, 跳得就越高。当腾起角一定时,腾起初速度是起决定作用的。
4、桥面为何要设计成拱形向上的?
桥是不是不应该设计成拱形向上的,而应该设计成凹形的为好。因为汽车在向下行驶之前具备一定的势能,这个势能可以帮助它顺利地到达桥的那一端。可是拱形向上的桥却没有这个优点。
桥设计成向上的理由,是因为汽车经过桥中部时,桥所承受的压力较小;而相比之下,凹形桥承受的压力较大。
由于汽车经过一个弧形的时候,需要有一个向心力F,它是由重力Mg和支承力N合成的。
在拱形桥:F=Mg-N ∴ N=Mg-F
在凹形桥:F=N-Mg ∴ N=Mg+F
由上述两个式子可见,拱形桥的N较小,N是桥对汽车的支承力,其大小等于汽车对桥的压力。所以拱形桥对桥的结构强度设计上有利。至于茜露的理由是对汽车而言,为了汽车能利用势能节约一点汽油,反而改变桥的设计,这岂不是本末倒置了吗?
5、肥皂泡为什么开始时上升,随后便下降?
日常生活中,我们常看到一些小朋友吹肥皂泡,一个个小肥皂泡从吸管中飞出,在阳光的照耀下,发出美丽的色彩。此时,小朋友们沉浸在欢乐和幸福之中,我们大人也常希望肥皂泡能飘浮于空中,形成一道美丽的风景。但我们常常是看到肥皂泡开始时上升,随后便下降,这是为什么呢?
这个过程和现象,我们只要留心想一下,就会发现,它其中包含着丰富的物理知识。在开始的时候,肥皂泡里是从嘴里吹出的热空气,肥皂膜把它与外界隔开,形成里外两个区域,里面的热空气温度大于外部空气的温度。此时,肥皂泡内气体的密度小于外部空气的密度,根据阿基米得原理可知,此时肥皂泡受到的浮力大于它受到的重力,因此它会上升。这个过程就跟热气球的原理是一样的。
随着上升过程的开始和时间的推移,肥皂泡内、外气体发生热交换,内部气体温度下降,因热胀冷缩,肥皂泡体积逐步减小,它受到的外界空气的浮力也会逐步变小,而其受到的重力不变,这样,当重力大于浮力时,肥皂泡就会下降。
6、作用力与反作用力
能使物体运动状态发生变化的力叫作用力,反作用力是作用力的反冲力。牛顿力学中的三大定律之一就是“作用力与反作用力”定律。作用力与反作用力的例子在日常生活中无处不在:
1.人走在路上,人给地面一向后作用力,地面给人一向前的反作用力,于是人 往前运动;
2.火箭也是靠反作用力,才能飞向太空。
7、过山车中的物理知识
过山车是一项富有刺激性的娱乐工具。那种风驰电掣、有惊无险的快感令不少人着迷。如果你对物理学感兴趣,那么在乘坐过山车的过程中不仅能够体验到冒险的快感,还有助于理解力学定律。实际上,过山车的运动包含了许多物理学原理,人们在设计过山车时巧妙地运用了这些原理。如果能亲身体验一下由能量守恒、加速度和力交织在一起产生的效果,那感觉真是妙不可言。这次同物理学打交道不用动脑子,只要收紧你的腹肌,保护好肠胃就行了,当然,如果你的身体条件和心理承受能力的限制,无法亲身体验过山车带来的种种感受,你不妨站在一旁仔细观察过山车的运动和乘坐者的反应。
在开始旅行时,过山车的小列车是靠一个机械装置的推力推上最高点的,但在第一次下行后,就再也没有任何装置为它提供动力了。事实上,从这时起,带动它沿着轨道行驶的惟一的"发动机"将是引力势能,即由引力势能转化为动能、又由动能转化为引力势能这样一种不断转化的过程构成的。
第一种能,即引力势能是物体因其所处位置而自身拥有的能量,是由于它的高度和由引力产生的加速度而来的。对过山车来说,它的势能在处于最高点时达到了最大值,也就是当它爬升到"山丘"的顶峰时最大。当过山车开始下降时,它的势能就不断地减少(因为高度下降了),但它不会消失,而是转化成了动能,也就是运动能。不过,在能量的转化过程中,由于过山车的车轮与轨道的摩擦而产生了热量,从而损耗了少量的机械能(动能和势能)。这就是为什么要设计成随后的小山丘比开始时的小山丘要低的原因:过山车已经没有上升到像前一个小山丘那样的高度所需要的机械能了。过山车最后一节小车厢里是过山车赠送给勇敢的乘客最为刺激的礼物。事实上,下降的感受在过山车的尾部车厢最为强烈。因为最后一节车厢通过最高点时的速度比过山车头部的车厢要快,这是由于引力作用于过山车中部的质量中心的缘故。这样,乘坐在最后一节车厢的人就能快速地达到和跨越最高点,从而产生一种要被抛离的感觉,因为质量中心正在加速向下。尾部车厢的车轮是牢固地扣在轨道上的,否则在到达顶峰附近时,小车厢就可能脱轨甩出去。车头部的车厢情况就不同了,它的质量中心在“身后”,在短时间内,它虽然处在下降的状态,但是它要"等待"质量中心越过高点被引力推动。
到达“疯狂之圈”时,沿直线轨道行进的过山车突然向上转弯。这时,乘客就会有一种被挤压到轨道上的感觉,因为这时产生了一种表观的离心力。事实上,在环形轨道上由于铁轨与过山车相互作用产生了的一种向心力。这种环形轨道是略带椭圆形的,目的是为了"平衡"引力的制动效应。当过山车达到圆形轨道的最高点时,事实上它会慢下来,但如果弯曲的程度较小时,这种现象会减弱。一旦过山车走完了它的行程,机械制动装置就会非常安全地使过山车停下来。减速的快慢是由气缸来控制的。
8、弹簧无处不在:
在我们的日常生活中,弹簧形态各异,处处都在为我们服务。常见的弹簧是螺旋形的,叫螺旋弹簧。做力学实验用的弹簧秤、扩胸器的弹簧等都是螺旋弹簧。螺旋弹簧有长有短,有粗有细:扩胸器的弹簧就比弹簧秤的粗且长;在抽屉锁里,弹簧又短又细,约几毫米长;有一种用来紧固螺母的弹簧垫圈,只有一圈,在紧固螺丝螺母时都离不开它。螺旋弹簧在拉伸或压缩时都要产生反抗外力作用的弹力,而且在弹性限度内,形变越大,产生的弹力也越大;一旦外力消失,形变也消失。有的弹簧制成片形的或板形的,叫簧片或板簧。在口琴、手风琴里有铜制的发声簧片,在许多电器开关中也有铜制的簧片,在玩具或钟表里的发条是钢制的板簧,在载重汽车车厢下方也有钢制的板簧。它们在弯曲时会产生恢复原来形状的倾向,弯曲得越厉害,这种倾向越强。有的弹簧像蚊香那样盘绕,例如,实验室的电学测量仪表(电流计、电压计)内,机械钟表中都安装了这种弹簧。这种弹簧在被扭转时也会产生恢复原来形状的倾向,叫做扭簧。
形形色色的弹簧在不同场合下发挥着不同的功能:
1. 测量功能
我们知道,在弹性限度内,弹簧的伸长(或压缩)跟外力成正比。利用弹簧这一性质可制成弹簧秤。
2. 紧压功能
观察各种电器开关会发现,开关的两个触头中,必然有一个触头装有弹簧,以保证两个触头紧密接触,使导通良好。如果接触不良,接触处的电阻变大,电流通过时产生的热量变大,严重的还会使接触处的金属熔化。卡口灯头的两个金属柱都装有弹簧也是为了接触良好;至于螺口灯头的中心金属片以及所有插座的接插金属片都是簧片,其功能都是使双方紧密接触,以保证导通良好。在盒式磁带中,有一块用磷青铜制成的簧片,利用它弯曲形变时产生的弹力使磁头与磁带密切接触。在钉书机中有一个长螺旋弹簧它的作用一方面是顶紧钉书钉,另一方面是当最前面的钉被推出后,可以将后面的钉送到最前面以备钉书时推出,这样,就能自动地将一个个钉推到最前面,直到钉全部用完为止。许多机器自动供料,自动步枪中的子弹自动上膛都靠弹簧的这种功能。此外,像夹衣服的夹子,圆珠笔、钢笔套上的夹片都利用弹簧的紧压功能夹在衣服上。
3. 复位功能
弹簧在外力作用下发生形变,撤去外力后,弹簧就能恢复原状。很多工具和设备都是利用弹簧这一性质来复位的。例如,许多建筑物大门的合页上都装了复位弹簧,人进出后,门会自动复位。人们还利用这一功能制成了自动伞、自动铅笔等用品,十分方便。此外,各种按钮、按键也少不了复位弹簧。
4. 带动功能
机械钟表、发条玩具都是靠上紧发条带动的。当发条被上紧时,发条产生弯曲形变,存储一定的弹性势能。释放后,弹性势能转变为动能,通过传动装置带动时、分、秒针或轮子转动。在许多玩具枪中都装有弹簧,弹簧被压缩后具有势能,扣动扳机,弹簧释放,势能转变为动能,撞击小球沿枪管射出。田径比赛用的发令枪和军用枪支也是利用弹簧被释放后弹性势能转变为动能撞击发令纸或子弹的引信完成发令或发火任务的。
5. 缓冲功能
在机车、汽车车架与车轮之间装有弹簧,利用弹簧的弹性来减缓车辆的颠簸。
6. 振动发声功能
当空气从口琴、手风琴中的簧孔中流动时,冲击簧片,簧片振动发出声音
9、雨衣为什么不透水呢?
下雨天,外出的人们不是打伞,就是穿雨衣。雨衣为什么不透水呢?奥妙就在制作材料上。就拿布制雨衣来说吧,它是用防雨布(经过防水剂处理的普通棉布)制成的。防水剂是一种含有铝盐的石蜡乳化浆。石蜡乳化以后,变成细小的粒子,均匀地分布在棉布的纤维上。石蜡和水是合不来的、水碰见石蜡,就形成椭圆形水珠,在石蜡上面滚来滚去。可见,是石蜡起了防雨的作用。物理学上把这种不透水的现象,叫做“不浸润现象”。而水一旦遇到普通棉布,就通过纤维间的毛细管渗透进去,这就叫做“浸润现象”。
物体是由分子组成的。同一种物质的分子之间的相互作用力,叫做内聚力;而不同物质的分子之间的相互作用力,叫做附着力。在内聚力小于附着力的情况下,就会产生“浸润现象”;反之,则会出现“不浸润现象”。雨衣不透水,正是由于水的内聚力大于水对雨衣的附着力的缘故。
物理学还告诉我们:水的内聚力作用在水表面形成表面张力。水的表面张力使水面形成一层弹性薄膜,当水和其它物体接触时,只要水对它不浸润,那么这层弹性膜就是完好的、可以把水紧紧地包裹着。有人试验过:巧妙地把水倒进浸过蜡的金属筛里,水并没有从筛眼里漏下去。
常见的玻璃,看起来光滑晶亮。可是,水遇上它,却紧紧地缠住不放,带来了种种麻烦:下雨的时候,车前窗玻璃上的雨水挡住了司机的视线,很不安全,于是只好开动划水器,把雨水排去;戴眼镜的人,在喝热水的时候,镜片立即蒙上一层雾汽,挡住了视线,什么东西也看不见了。
人们知道了水的表面张力的特性,了解了水的内聚力与附着力的关系以后,不仅巧妙地制成了雨衣,而且还造出了新颖的“憎”水玻璃——在普通玻璃上涂一层硅有机化合物药膜,它大大削弱了雾汽对玻璃的附着力。用这种憎水玻璃做镜片,为戴眼镜的人解除了蒙雾的苦恼;把这种玻璃安在车的前窗上,划水器也就用不着了。现在你该能说出篷布、布伞不漏雨的道理了吧!
10、“香蕉球”是怎样踢出来的?
如果你经常观看足球比赛的话,一定见过罚前场直接任意球。这时候,通常是防守方五六个球员在球门前组成一道“人墙”,挡住进球路线。进攻方的主罚队员,起脚一记劲射,球绕过了“人墙”,眼看要偏离球门飞出,却又沿弧线拐过弯来直入球门,让守门员措手不及,眼睁睁地看着球进了大门。这就是颇为神奇的“香蕉球”。
为什么足球会在空中沿弧线飞行呢?原来,罚“香蕉球”的时候,运动员并不是拔脚踢中足球的中心,而是稍稍偏向一侧,同时用脚背摩擦足球,使球在空气中前进的同时还不断地旋转。这时,一方面空气迎着球向后流动,另一方面,由于空气与球之间的摩擦,球周围的空气又会被带着一起旋转。这样,球一侧空气的流动速度加快,而另一侧空气的流动速度减慢。物理知识告诉我们:气体的流速越大,压强越小(伯努利方程)。由于足球两侧空气的流动速度不一样,它们对足球所产生的压强也不一样,于是,足球在空气压力的作用下,被迫向空气流速大的一侧转弯了。
乒乓球中,运动员在削球或拉弧圈球时,球的线路会改变,道理与“香蕉球”一样。
要以最快的速度从一个地方去到数百公里,甚至数千公里以外的地方,一般人都会选择乘搭飞机。可是,在不久的将来,一种新的交通工具将会带领人们以高速于城市之间穿梭。
目前为止,一般的子弹火车能以 200 km/h 的速度前进。由于火车与路轨之间的磨擦力限制了火车的最高速度,所以人们便开始研究能悬浮于路轨之上的火车,于是便有磁浮火车的出现了。
顾名思义,磁浮火车是利用磁力使火车悬悬浮于路轨之上。磁浮火车经常被称为 Mangle,即 Magnetically Levitated train 的简写。但是,利用一般的磁铁并不能把火车稳定地浮起。要是你将两块磁铁的北极相对,你会发现无法使一块磁铁稳定地浮在另一块上 (图一)。所以,要把火车浮起并不如想象中般简单。
真正磁浮火车是如何浮起来的?目前,磁浮火车还在试验阶段。德国科学家设计了一个名为 Transrapid 的系统,利用了“电磁力悬浮法”(EMS) 把火车浮起 (图二)。在这个系统中,火车的底部包着一条导轨,在火车底部起落架的电磁铁向着导轨,磁力使火车悬浮在导轨之上约一厘米,即使在静止的时候,火车仍然保持浮起。其它导引磁铁则能使火车在行使时保持稳定。
日本的科学家则利用了“电动力悬浮法”(EDS) 把火车浮起。还记得甚么是“电磁感应”吗?当磁铁在导体附近移动,导体内的磁场会因而改变 (图三),并感应出电流。感应电流又能产生磁场,根据楞次定律,这样产生出来的磁场总是倾向于抗拒引起这个感应的改变。“电动力悬浮法”应用了电磁感应的原理。图四(a)显示了这种磁浮火车的原理。火车在导槽内行走,槽的两边安有一系列 "8" 字形的线圈。当一辆列车快速驶过时,车两边的超导磁铁便会在线圈上感应出电流。巧妙的是,超导磁铁在 "8" 字形的线圈中心以下经过,因此 "8" 字形线圈下半部的磁通量改变比上半部大,感应出如图四(b)所示的电流,产生磁力。"8" 字形线圈下半部的磁极与超导磁铁的磁极相同,上半部则与之相反,结果是这两部分的线圈对超导磁铁产生的磁力,都有一个向上的分力,把列车悬浮起来。由于"8" 字形线圈只有在超导磁铁运动时才能感应出电流并产生磁性,因此当火车静止的时候,便不能浮起。所以,火车在启动时会首先靠轮子来滑行,直到产生的磁力足以承托火车的重量,才将轮子收起来,就好像飞机起飞一样。
那么,磁浮火车是怎样被推动的?它的基本原理很简单。以日本的磁浮火车为例。移动的列车带同超导磁铁在导槽两边的线圈感应出电流,根据这些讯息,系统便会把交流电输入导槽两边的推进线圈,产生南北梅花间竹的磁极 (图五),对超导磁铁造成拉力和推力,使列车加速。
磁浮火车能悬浮在路轨上行驶,免除了火车与路轨之间的磨擦力,故能以高速飞驰。估计未来的磁浮火车能以高达 500 km/h 的速度行驶,比现在最快的火车速度要高一倍。此外,磁浮火车非常宁静。德国农民在磁浮火车路轨附近工作,几乎察觉不到有火车经过呢!但磁浮火车有一个缺点,就是建造导轨的费用昂贵。磁浮火车只能在这些导轨上走,大大限制了它的发展。估计未来的铁路发展,仍会以传统火车为主。
值得中国人民兴奋的是,世界上第一条商用的磁浮铁路将于 2003 年于中国面世。这个计划耗资 26 亿元人民币。到时 Transrapid 磁浮火车将会带领人们以 200 km/h 的高速穿梭于上海市中心和浦东国际机场之间,整个旅程只需 10 分钟!
镜子问题
人距镜越远越走样。因为镜子里的像由镜后镀银面的反射形成的,镀银面的不平或玻璃厚薄不匀都会产生走样。走样的镜子,人距镜越远,由光放大原理,镀银面的反射光到达的位置偏离正常位置就越大,镜子越走样
以上回答你满意么?Ⅳ 物理中的 作用 什么意思
作用的意思是接触并有力产生,使之发生形变或位移。
满意请采纳,O(∩_∩)O谢谢Ⅳ 物理中的 作用 什么意思
物理中的作用是指相互之间存在接触,使之产生形变。
近代物理确认各种物质之间的基本的相互作用可归结为4种:引力相互作用、电磁相互作用、弱相互作用和强相互作用。
近代物理的观点倾向于认为4种基本相互作用是统一的,物理学家正在为建立大统一理论、超统一理论而努力。四种基本相互作用力同样也是宇宙自然界星系星云物质,凝聚在一起的一种核能势力能效,发现四种基本相互作用力,有效的结合在一起是物理学家探索粒子量子化的主要目的之一。Ⅵ 物理在生活起什么作用
您好
作用很多啊,比如
1、了解用电常识,可安全用电
2、估算你家用电量、电费
3、利用简单机械来省力或省距离
4、学习光学后,可正确使用放大镜,显微镜,正确用眼,防止近视
5、学习声学后,可以学会防止噪声带来的危害
6、了解雷电,防雷击
7、了解电磁波在电视、手机等方面的应用
如果我的回答对你有帮助~
请点击【我回答下】的【选为满意回答】按钮!不懂可追问~~~
方便的话,顺手点个【赞同】吧~
如果有其他问题请鼠标放在我账号上点击【求助知友】按钮【水酉不悦】 ,向我提问~
〓来自知道团队【数理化梦之队】〓
祝学习进步Ⅶ 物理知识:物理在生活中的应用
物理知识与我们的生活息息相关。下面是我收集整理的物理在生活中有哪些应用以供大家学习参考。
在传统工业中的应用
在讲述磁性材料的磁性来源、电磁感应、磁性器件时,我们已经提到了有些磁性材料的实际应用。实际上,磁性材料已经在传统工业的各个方面得到了广泛应用。
例如,如果没有磁性材料,电气化就成为不可能,因为发电要用到发电机、输电要用到变压器、电力机械要用到电动机、电话机、收音机和电视机中要用到扬声器。众多仪器仪表都要用到磁钢线圈结构。这些都已经在讲述其它内容时说到了。
军事领域的磁应用
磁性材料在军事领域同样得到了广泛应用。例如,普通的水雷或者地雷只能在接触目标时爆炸,因此作用有限。而如果在水雷或地雷上安装磁性传感器,由于坦克或者军舰都是钢铁制造的,在它们接近(无须接触目标)时,传感器就可以探测到磁场的变化使水雷或地雷爆炸,提高了杀伤力。
在现代战争中,制空权是夺得战役胜利的关键之一。但飞机在飞行过程中很容易被敌方的雷达侦测到,从而具有较大的危险性。为了躲避敌方雷达的监测,可以在飞机表面涂一层特殊的磁性材料-吸波材料,它可以吸收雷达发射的电磁波,使得雷达电磁波很少发生反射,因此敌方雷达无法探测到雷达回波,不能发现飞机,这就使飞机达到了隐身的目的。这就是大名鼎鼎的"隐形飞机".隐身技术是目前世界军事科研领域的一大热点。美国的F117隐形战斗机便是一个成功运用隐身技术的例子。在美国的"星球大战"计划中,有一种新型武器"电磁武器"的开发研究。
传统的火炮都是利用弹药爆炸时的瞬间膨胀产生的推力将炮弹迅速加速,推出炮膛。而电磁炮则是把炮弹放在螺线管中,给螺线管通电,那么螺线管产生的磁场对炮弹将产生巨大的推动力,将炮弹射出。这就是所谓的电磁炮。类似的还有电磁导弹等。
生物界和医学界的磁应用
信鸽爱好者都知道,如果把鸽子放飞到数百公里以外,它们还会自动归巢。鸽子为什么有这么好的认家本领呢?原来,鸽子对地球的磁场很敏感,它们可以利用地球磁场的变化找到自己的家。如果在鸽子的头部绑上一块磁铁,鸽子就会迷航。如果鸽子飞过无线电发射塔,强大的电磁波干扰也会使它们迷失方向。
在医学上,利用核磁共振可以诊断人体异常组织,判断疾病,这就是我们比较熟悉的核磁共振成像技术,其基本原理如下:原子核带有正电,并进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。自旋系统的磁化矢量由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起共振效应。在射频脉冲停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射电信号,把这许多信号检出,并使之时进行空间分辨,就得到运动中原子核分布图像。核磁共振的特点是流动液体不产生信号称为流动效应或流动空白效应。
因此血管是灰白色管状结构,而血液为无信号的黑色。这样使血管很容易软组织分开。正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的硬膜为脂肪所衬托,使脊髓显示为白色的强信号结构。核磁共振已应用于全身各系统的成像诊断。效果最佳的是颅脑,及其脊髓、心脏大血管、关节骨骼、软组织及盆腔等。对心血管疾病不但可以观察各腔室、大血管及瓣膜的解剖变化,而且可作心室分析,进行定性及半定量的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、核素及CT检查。
磁不仅可以诊断,而且能够帮助治疗疾病。磁石是古老中医的一味药材。现在,人们利用血液中不同成分的磁性差别来分离红细胞和白细胞。另外,磁场与人体经络的相互作用可以实现磁疗,在治疗多种疾病方面有独到的作用,已经有磁疗枕、磁疗腰带等应用。用磁铁作成的除铁器可以去除面粉等中可能存在的铁末,磁化水可以防止锅炉结垢,磁化种子可以在一定程度上使农作物增产。天文、地质、考古和采矿等领域的磁应用:我们已经知道,地球是一块巨大的磁铁,那么,它的磁性来自何处?它是自古就有的吗?它和地质状况有什么联系?宇宙中的磁场又是如何的?
至少在图片上我们都见过灿烂的北极光。我国自古代就有了北极光的记载。北极光实际上是太阳风中的粒子和地磁场相互作用的结果。太阳风是由太阳发出的高能带电粒子流。当它们到达地球时,与地磁场发生相互作用,就好象带电流的导线在磁场中受力一样,使得这些粒子向南北极运动和聚集,并且和地球高空的稀薄气体相碰撞,结果使气体分子受激发,从而发光。
太阳黑子是太阳上磁场活动非常剧烈的区域。太阳黑子的爆发对我们的生活会产生影响,例如使得无线电通信暂时中断等。因此,研究太阳黑子对我们有重要意义。
地磁的变化可以用来勘探矿床。由于所有物质均具有或强或弱的磁性,如果它们聚集在一起,形成矿床,那么必然对附近区域的地磁场产生干扰,使得地磁场出现异常情况。根据这一点,可以在陆地、海洋或者空中测量大地的磁性,获得地磁图,对地磁图上磁场异常的区域进行分析和进一步勘探,往往可以发现未知的矿藏或者特殊的地质构造。
不同地质年代的岩石往往具有不同的磁性。因此,可以根据岩石的磁性辅助判断地质年代的变化以及地壳变动。
很多矿藏资源都是共生的,也就是说好几种矿物质混合的一起,它们具有不同的磁性。利用这个特点,人们开发了磁选机,利用不同成分矿物质的不同磁性以及磁性强弱的差别,用磁铁吸引这些物质,那么它们所受到的吸引力就有所区别,结果可以将混在一起的不同磁性的矿物质分开,实现了磁性选矿。
Ⅷ 物理在生活中有什么作用
物理在生活中的应用
物理已渗透入生活中,无处不在,不管是力学, 光学,还是热学等都在生活的小细节中得以体现。
随着社会的进步与发展,人们生活水平的提高,汽车已经成为非常普通的代步工具,它不但给生活带来了便利,并且是物理学在生活中应用的典型例子,因为已离不开它带给便利了。
1. 力学
民以食为天,每个人都在生活中都会接触到做饭,如果您注意生活中的细节,那么您就会轻易的发现有很多与力学直接关联。并且这些知识在上初中的时候就都已经接触到了。 例如,菜刀的刀刃薄是为了减小受力面积,增大压强,这样您才能很容易的切菜甚至是剁很厚的肉类食品。菜刀的刀刃有油,为的是在切菜时,使接触面光滑,减小摩擦,这样做会更省力,给您带来便利。菜刀柄、锅铲柄、电水壶把手有凸凹花纹,使接触面粗糙,增大摩擦,使您握的更牢。磨菜刀时要不断浇水,是因为菜刀与石头摩擦做功产生热使刀的内能增加,温度升高,刀口硬度变小,刀口不利;浇水是利用热传递使菜刀内能减小,温度降低,不会升至过高。又如当您用火铲送煤时,是利用煤的惯性将煤送入火炉。还有就是住宿舍平时免不了去提水,这个是亲身可以实践的,当往保温瓶里注入开水时,根据声音就可以知道水量高低。因为随着水量增多,空气柱的长度减小,振动频率增大,音调升高,也就可以根据声音调控什么时候关水龙头。
2.光学
还有光线在生活中的应用,光线和声音一样是无处不在的。在这里只重点举一个例子—汽车。因为汽车是人类的一个很重要很伟大的发明,通过它的介绍可以对光学有一个比较基础的认识。首先,如果您开过车的话,会发现,汽车驾驶室外面的观后镜是一个凸镜, 它利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。汽车头灯里的反射镜是一个凹镜,它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的,是看得更远,保证夜晚行车的安全。其次,汽车头灯总要装有横竖条纹的玻璃灯罩。汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。
还有,有的轿车上装有茶色玻璃后,行人很难看清车中人的面孔,因为茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔,保证您的隐私性,并且可以遮阳。
如果您更细心一点会发现除大型客车外,绝大多数汽车的前窗都是倾斜的。当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。
3. 热学
上面光学的例子,另外生活中如果仔细观察就会发觉生活中有很多小细节都可用物理学知识来解答,不光是光学,还有热学应用也很明显。五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。 因为一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。明白了这个道理,对很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。
工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。
4. 电学
另外还有电学的应用也极其广泛与重要。没用电的应用,生活将寸步难行,这里举几个简单的例子。生活中的很多用具都是将电能转化后得以使用的,例如,电饭堡煮饭、电炒锅煮菜、电水壶烧开水是利用电能转化为内能,都是利用热传递煮饭、煮菜、烧开水的。排气扇(抽油烟机)利用电能转化为机械能,利用空气对流进行空气变换。微波炉加热均匀,热效率高,卫生无污染。加热原理是利用电能转化为电磁能,再将电磁能转化为内能。厨房中的电灯,利用电流的热效应工作,将电能转化为内能和光能。厨房的炉灶(蜂窝煤灶,液化气灶,煤灶,柴灶)是将化学能转化为内能,即燃料燃烧放出热量。
这样的关于物理学的例子举不胜举,物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。Ⅸ 请解释并举例什么是物理学中的四种基本作用
1、万有引力,就是物与物之间都存在的作用力,会互相吸引,最好的证明就是天体运动或者是地心引力,而且与质量成正比,质量越大,万有引力就越大。还有光线在经过超大质量的天体是会发生偏转也是这个原因。
2、电磁力,这可多了去了,生活中处处用得到,就不过多解释了,比如说理论上相当强大的电磁炮就是用的这原理。
3、强核力(也叫强相互作用力),是目前所知的四种宇宙间基本作用力最强的,也是作用距离最短的,好像原子的组成就是靠这种力。
4、弱核力(也叫弱相互作用力),这个不好解释,举个例子就是铀,一种放射性元素,它会不断向外放出射线,就是在衰变,到最后会变成铅。弱核力就是使它向外辐射的原因。
个人水平有限,只能这么给你解释了。
平均速度是指走过一段路程和所用时间的比值,比如你经过一百米,前五十米在走,后五十米在跑。总路程是一百米,总时间是三十秒,那你的平均速度就是一百米÷三十秒
瞬时速度就是在某一个时刻的速度,你在前五十米时是在走,后五十米在跑,那你前五十米的瞬时速度就没有后五十米的快。瞬时速度就是汽车表盘上的速度。Ⅹ 物理在生活中有什么作用
物理已渗透入生活中,无处不在,不管是力学, 光学,还是热学等都在生活的小细节中得以体现。
宏观物理学不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的;微观物理学的诞生,起源于宏观物理学无法很好地解释黑体辐射、光电效应、原子光谱等新的实验现象。它是宏观物理学的一个修正,并随着实验技术与理论物理的发展而逐渐完善。
物理学研究的领域可分为下列方面:
凝聚态物理——研究物质宏观性质,这些物相内包含极大数目的组元,且组元间相互作用极强。最熟悉的凝聚态相是固体和液体,它们由原子间的键和电磁力所形成。更多的凝聚态相包括超流和玻色-爱因斯坦凝聚态(在十分低温时,某些原子系统内发现)。
某些材料中导电电子呈现的超导相;原子点阵中出现的铁磁和反铁磁相。凝聚态物理一直是最大的的研究领域。历史上,它由固体物理生长出来。1967年由菲立普·安德森最早提出,采用此名。
以上内容参考:网络-物理学 (自然科学学科)