A. 物理层的原理
物理层(Physical Layer)是计算机网络OSI模型中最低的一层,位于OSI参考模型的最底层,它直接面向实际承担数据传输的物理媒体(即通信通道),物理层的传输单位为比特(bit),即一个二进制位(“0”或“1”)。实际的比特传输必须依赖于传输设备和物理媒体,但是,物理层不是指具体的物理设备,也不是指信号传输的物理媒体,而是指在物理媒体之上为上一层(数据链路层)提供一个传输原始比特流的物理连接。物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。简单的说,物理层确保原始的数据可在各种物理媒体上传输。
⑴为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成。一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接。所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路。
⑵传输数据,物理层要形成适合数据传输需要的实体,为数据传送服务。一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。
⑶完成物理层的一些管理工作。
物理层
PC机的异步串行通信编程方法内容包括DOS、WINDOWS和BIOS级PC通信、基于异步通信与器的系统的PC通信以及通信编程方法。
DOS级通信
PC机一般常有两个异步串行端口,分别称作COM1和COM2,它们都符合RS-232C标准。在DOS操作系统中,COM1、COM2被作为I/O设备进行管理,COM1、COM2便是它们的逻辑设备名。据此,DOS便可通过对COM1、COM2操作实现异步串行通信。DOS的MODE命令可用以设置异步串行端口的参数,DOS的COPY命令允许将异步串行端口作为一个特殊的"文件",进行数据传输。下面举一个利用DOS的MODE、COPY命令,进行双机键盘输入字符传输的例子。MODE命令的格式如下:
MODE端口名:速率,校验方式,数据位数,停止位位数
其中端口名为COM1或COM2;传输速率可选110、150、300、600、1200、2400、4800或9600bps;校验方式为E(偶校验)、(奇校验)或N(无校验);数据位数为7或8位;停止位位数为1或2位。通信双方设置的参数应一致,如双方都打入如下命令:MODECOM1:1200,E,7,1则表示双方以COM1为异步通信端口以1200bps、偶校、7位数据位、1位停止位的设置参数进行通信。DOS中有一标准控制台COM,实际上作输入时CON即键盘,作输出时CON即显示器。
准备发送的PC机执行如下命令:COPYCON:COOM1:表示将从键盘收到的信息通过COM1串行口发送。
B. 物理层的功能是什么
物理层为设备之间
的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
a.媒体和互连设备
物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。通信用的互连设备指DTE和DCE
间的互连设备。DTE既数据终端设备,又称物理设备,如计算机、终端等都包括在内。而DCE则
是数据通信设备或电路连接设备,如调制解调器等。数据传输通常是经过DTE——DCE,再经过
DCE——DTE的路径。互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。
LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。
b.物理层的主要功能
⑴为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒
体连接而成.一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接.所谓激活,就是
不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路.
⑵ 传输数据.物理层要形成适合数据传输需要的实体,为数据传送服务.一是要保证数据能
在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信
道上的拥塞.传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或
异步传输的需要.
⑶ 完成物理层的一些管理工作.
c.物理层的一些重要标准
物理层的一些标准和协议早在OSI/TC97/C16 分技术委员会成立之前就已制定并在应用了,
OSI也制定了一些标准并采用了一些已有的成果.下面将一些重要的标准列出,以便读者查阅.
ISO2110:称为"数据通信----25芯DTE/DCE接口连接器和插针分配".它与EIA(美国电子工业
协会)的"RS-232-C"基本兼容.
C. 物理层的原理和技术
物理层(或称物理层,Physical Layer)是计算机网络OSI模型中最低的一层。物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。简单的说,物理层确保原始的数据可在各种物理媒体上传输。局域网与广域网皆属第1、2层。
物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。
OSI采纳了各种现成的协议,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理层协议。
物理层要解决的主要问题:
(1)物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。
(2)给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。 (3)在两个相邻系统之间唯一地标识数据电路。[2]
物理层主要功能:为数据端设备提供传送数据通路、传输数据。
1.为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成。一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接。所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路。
2.传输数据,物理层要形成适合数据传输需要的实体,为数据传送服务。一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。
3. 完成物理层的一些管理工作。
D. 在无线通信过程中,高层和物理层的界定点在哪里
我按照OSI七层模型的理解,不知道对不对。所谓物理层,关心的就是信号的传输及相关的设备。因此,在无线通信过程中,特理层应该包括无线信号发射及接受装置及无线信道。
E. 物理层的功能是什么
物理层主要功能:为数据端设备提供传送数据通路、传输数据。
1、为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成。
一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接。所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路。
2、传输数据,物理层要形成适合数据传输需要的实体,为数据传送服务。一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。
传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。
3、完成物理层的一些管理工作。
(5)无线通信物理层指的是什么扩展阅读
物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。通信用的互连设备指DTE和DCE间的互连设备。DTE即数据终端设备,又称物理设备,如计算机、终端等都包括在内。而DCE则是数据通信设备或电路连接设备,如调制解调器等。
数据传输通常是经过DTE──DCE,再经过DCE──DTE的路径。互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。
F. 物理层的概念和功能
物理层的主要功能
⑴为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒
体连接而成.一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接.所谓激活,就是
不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路.
⑵
传输数据.物理层要形成适合数据传输需要的实体,为数据传送服务.一是要保证数据能
在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(bit)数),以减少信
道上的拥塞.传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或
异步传输的需要.
⑶
完成物理层的一些管理工作.
其作用是确保比特流能在物理信道上传输。
http://cic.nankai.e.cn/netlab/onlineteach/3/
G. 物理层功能和作用
物理层作用:
1、物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。
2、给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。
3、在两个相邻系统之间唯一地标识数据电路。
物理层主要功能:
1、为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连接而成。一次完整的数据传输,包括激活物理连接,传送数据,终止物理连接。所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连接起来,形成一条通路。
2、传输数据,物理层要形成适合数据传输需要的实体,为数据传送服务。一是要保证数据能在其上正确通过,二是要提供足够的带宽(带宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。
传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。
3、完成物理层的一些管理工作。
(7)无线通信物理层指的是什么扩展阅读:
物理层的主要特点:
由于在OSI之前,许多物理规程或协议已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备所采用。
加之,物理层协议涉及的范围广泛,所以至今没有按OSI的抽象模型制定一套新的物理层协议,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械,电气,功能和规程特性。
由于物理连接的方式很多,传输媒体的种类也很多,因此,具体的物理协议相当复杂。[2]
信号的传输离不开传输介质,而传输介质两端必然有接口用于发送和接收信号。因此,既然物理层主要关心如何传输信号,物理层的主要任务就是规定各种传输介质和接口与传输信号相关的一些特性。
信号的传输离不开传输介质,而传输介质两端必然有接口用于发送和接收信号。因此,既然物理层主要关心如何传输信号,物理层的主要任务就是规定各种传输介质和接口与传输信号相关的一些特性。
机械特性
也叫物理特性,指明通信实体间硬件连接接口的机械特点,如接口所用接线器的形状和尺寸、引线数目和排列、固定和锁定装置等。这很像平时常见的各种规格的电源插头,其尺寸都有严格的规定。
已被ISO 标准化了的DCE接口的几何尺寸及插孔芯数和排列方式。
DTE(Data Terminal Equipment,数据终端设备,用于发送和接收数据的设备,例如用户的计算机)的连接器常用插针形式,其几何尺寸与。
DCE(Data Circuit-terminating Equipment,数据电路终接设备,用来连接DTE与数据通信网络的设备,例如Modem调制解调器)连接器相配合,插针芯数和排列方式与DCE连接器成镜像对称。
电气特性
规定了在物理连接上,导线的电气连接及有关电路的特性,一般包括:接收器和发送器电路特性的说明、信号的识别、最大传输速率的说明、与互连电缆相关的规则、发送器的输出阻抗、接收器的输入阻抗等电气参数等。
功能特性
指明物理接口各条信号线的用途(用法),包括:接口线功能的规定方法,接口信号线的功能分类--数据信号线、控制信号线、定时信号线和接地线4类。
规程特性
指明利用接口传输比特流的全过程及各项用于传输的事件发生的合法顺序,包括事件的执行顺序和数据传输方式,即在物理连接建立、维持和交换信息时,DTE/DCE双方在各自电路上的动作序列。
以上4个特性实现了物理层在传输数据时,对于信号、接口和传输介质的规定。
参考资料来源:网络-物理层
H. 物理通信属于哪一层
物理层(Physical Layer)是计算机网络OSI模型中最低的一层,也是最基本的一层。简单的说,网络的物理层面确保原始的数据可在各种物理媒体上传输。
物理层规定:为传输数据,需要物理链路与设备的创建、维持、拆除,并具有机械的、电子的、功能的、规范的特性。局域网与广域网皆属第1、2层。
物理层执行的主要功能和服务是: 物理层在物理传输介质上执行逐位或逐符号的数据传递。它提供一个标准化的接口连接到传输介质,包括的机械规格的电连接器和电缆,例如电缆的最大长度,的电气规范的传输线的信号电平和阻抗。
物理层负责电磁兼容包括电磁频谱信号强度、模拟带宽等的频率分配和规范。传输介质可以是通过光纤或无线通信链路(例如自由空间光通信或无线电)的电或光传输介质。
线路编码用于将数据转换为可调制到载波或红外光上的电波动模式。数据的流与管理位同步中同步串行通信或启动-停止的信令和流量控制在异步串行通信。
在多个网络参与者之间共享传输介质可以通过简单的电路交换或多路复用来处理。用于共享传输介质的更复杂的介质访问控制协议可以使用载波侦听和冲突检测,例如以太网的带有冲突检测的载波侦听多路访问(CSMA/CD)。
为了优化可靠性和效率,可以使用信号处理技术,例如均衡、训练序列和脉冲整形。可以应用包括前向纠错在内的纠错码和技术来进一步提高可靠性。
与物理层相关的其他主题包括:比特率;点对点、多点或点对多点线配置;物理网络拓扑,例如总线、环形、网状或星形网络;串行或并行通信;单工、半双工或全双工传输模式;和自动协商。
其他应用
1、 无线 LAN或Wi-Fi:PHY 部分由 RF、混合信号和模拟部分(通常称为收发器)和使用数字信号处理器(DSP) 和通信算法处理(包括信道代码)的数字基带部分组成。
这些 PHY 部分通常与片上系统(SOC) 实现中的媒体访问控制(MAC) 层集成。类似的无线应用包括3G/4G/LTE、WiMAX和UWB。
2、 通用串行总线(USB):PHY 芯片集成到主机或嵌入式系统中的大多数 USB 控制器中,并提供接口的数字部分和调制部分之间的桥梁。
3、 IrDA:红外数据协会(IrDA) 规范包括用于数据传输物理层的 IrPHY 规范。
4、 串行 ATA(SATA):串行 ATA 控制器使用 PHY。